Numerical Methods
Ordinary Differential Equations - 3
Dr. N. B. Vyas
Department of Mathematics,
Atmiya Institute of Technology & Science,
Rajkot (Gujarat) - INDIA
niravbvyas@gmail.com
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge’s Method: (Runge-Kutta Method of 3rd Order)
Named after German mathematicians CARL RUNGE
(1856-1927) and WILHELM KUTTA (1867-1944)
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge’s Method: (Runge-Kutta Method of 3rd Order)
Named after German mathematicians CARL RUNGE
(1856-1927) and WILHELM KUTTA (1867-1944)
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Calculate successively
k1 = hf(x0, y0)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge’s Method: (Runge-Kutta Method of 3rd Order)
Named after German mathematicians CARL RUNGE
(1856-1927) and WILHELM KUTTA (1867-1944)
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Calculate successively
k1 = hf(x0, y0)
k2 = hf x0 + h
2
, y0 + k1
2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge’s Method: (Runge-Kutta Method of 3rd Order)
Named after German mathematicians CARL RUNGE
(1856-1927) and WILHELM KUTTA (1867-1944)
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Calculate successively
k1 = hf(x0, y0)
k2 = hf x0 + h
2
, y0 + k1
2
k = hf (x0 + h, y0 + k1)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge’s Method: (Runge-Kutta Method of 3rd Order)
Named after German mathematicians CARL RUNGE
(1856-1927) and WILHELM KUTTA (1867-1944)
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Calculate successively
k1 = hf(x0, y0)
k2 = hf x0 + h
2
, y0 + k1
2
k = hf (x0 + h, y0 + k1)
k3 = hf (x0 + h, y0 + k )
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge’s Method: (Runge-Kutta Method of 3rd Order)
Named after German mathematicians CARL RUNGE
(1856-1927) and WILHELM KUTTA (1867-1944)
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Calculate successively
k1 = hf(x0, y0)
k2 = hf x0 + h
2
, y0 + k1
2
k = hf (x0 + h, y0 + k1)
k3 = hf (x0 + h, y0 + k )
Finally calculate
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge’s Method: (Runge-Kutta Method of 3rd Order)
Named after German mathematicians CARL RUNGE
(1856-1927) and WILHELM KUTTA (1867-1944)
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Calculate successively
k1 = hf(x0, y0)
k2 = hf x0 + h
2
, y0 + k1
2
k = hf (x0 + h, y0 + k1)
k3 = hf (x0 + h, y0 + k )
Finally calculate
k = 1
6
(k1 + 4k2 + k3)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge’s Method: (Runge-Kutta Method of 3rd Order)
Named after German mathematicians CARL RUNGE
(1856-1927) and WILHELM KUTTA (1867-1944)
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Calculate successively
k1 = hf(x0, y0)
k2 = hf x0 + h
2
, y0 + k1
2
k = hf (x0 + h, y0 + k1)
k3 = hf (x0 + h, y0 + k )
Finally calculate
k = 1
6
(k1 + 4k2 + k3)
required approximate value of y = y0 + k
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Runge’s Method
Ex. Use Runge’s method to approximate y when
x = 1.1 given that y = 1.2 when x = 1 and
dy
dx
= 3x + y2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Runge’s Method
Sol. We have
dy
dx
= 3x + y2
, ∴ f(x, y) = 3x + y2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Runge’s Method
Sol. We have
dy
dx
= 3x + y2
, ∴ f(x, y) = 3x + y2
x0 = 1, y0 = 1.2 and h = 0.1
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Runge’s Method
Sol. We have
dy
dx
= 3x + y2
, ∴ f(x, y) = 3x + y2
x0 = 1, y0 = 1.2 and h = 0.1
k1 = hf(x0, y0)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Runge’s Method
Sol. We have
dy
dx
= 3x + y2
, ∴ f(x, y) = 3x + y2
x0 = 1, y0 = 1.2 and h = 0.1
k1 = hf(x0, y0) = 0.444
k2 = hf x0 + h
2 , y0 + k1
2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Runge’s Method
Sol. We have
dy
dx
= 3x + y2
, ∴ f(x, y) = 3x + y2
x0 = 1, y0 = 1.2 and h = 0.1
k1 = hf(x0, y0) = 0.444
k2 = hf x0 + h
2 , y0 + k1
2 = 0.51721
k = hf (x0 + h, y0 + k1)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Runge’s Method
Sol. We have
dy
dx
= 3x + y2
, ∴ f(x, y) = 3x + y2
x0 = 1, y0 = 1.2 and h = 0.1
k1 = hf(x0, y0) = 0.444
k2 = hf x0 + h
2 , y0 + k1
2 = 0.51721
k = hf (x0 + h, y0 + k1) = 0.60027
k3 = hf (x0 + h, y0 + k )
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Runge’s Method
Sol. We have
dy
dx
= 3x + y2
, ∴ f(x, y) = 3x + y2
x0 = 1, y0 = 1.2 and h = 0.1
k1 = hf(x0, y0) = 0.444
k2 = hf x0 + h
2 , y0 + k1
2 = 0.51721
k = hf (x0 + h, y0 + k1) = 0.60027
k3 = hf (x0 + h, y0 + k ) = 0.65411
Hence k = 1
6(k1 + 4k2 + k3)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Runge’s Method
Sol. We have
dy
dx
= 3x + y2
, ∴ f(x, y) = 3x + y2
x0 = 1, y0 = 1.2 and h = 0.1
k1 = hf(x0, y0) = 0.444
k2 = hf x0 + h
2 , y0 + k1
2 = 0.51721
k = hf (x0 + h, y0 + k1) = 0.60027
k3 = hf (x0 + h, y0 + k ) = 0.65411
Hence k = 1
6(k1 + 4k2 + k3) = 0.5278
∴ approximate value of y = y0 + k
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Runge’s Method
Sol. We have
dy
dx
= 3x + y2
, ∴ f(x, y) = 3x + y2
x0 = 1, y0 = 1.2 and h = 0.1
k1 = hf(x0, y0) = 0.444
k2 = hf x0 + h
2 , y0 + k1
2 = 0.51721
k = hf (x0 + h, y0 + k1) = 0.60027
k3 = hf (x0 + h, y0 + k ) = 0.65411
Hence k = 1
6(k1 + 4k2 + k3) = 0.5278
∴ approximate value of y = y0 + k = 1.7278
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge-Kutta Method of 2nd Order:
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge-Kutta Method of 2nd Order:
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Calculate successively
k1 = hf(x0, y0)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge-Kutta Method of 2nd Order:
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Calculate successively
k1 = hf(x0, y0)
k2 = hf (x0 + h, y0 + k1)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge-Kutta Method of 2nd Order:
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Calculate successively
k1 = hf(x0, y0)
k2 = hf (x0 + h, y0 + k1)
Find k =
1
2
(k1 + k2)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge-Kutta Method of 2nd Order:
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Calculate successively
k1 = hf(x0, y0)
k2 = hf (x0 + h, y0 + k1)
Find k =
1
2
(k1 + k2)
∴ y1 = y0 + k
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge-Kutta Method of 4th Order:
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge-Kutta Method of 4th Order:
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Calculate successively
k1 = hf(x0, y0)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge-Kutta Method of 4th Order:
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Calculate successively
k1 = hf(x0, y0)
k2 = hf x0 + h
2 , y0 + k1
2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge-Kutta Method of 4th Order:
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Calculate successively
k1 = hf(x0, y0)
k2 = hf x0 + h
2 , y0 + k1
2
k3 = hf x0 + h
2 , y0 + k2
2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge-Kutta Method of 4th Order:
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Calculate successively
k1 = hf(x0, y0)
k2 = hf x0 + h
2 , y0 + k1
2
k3 = hf x0 + h
2 , y0 + k2
2
k4 = hf(x0 + h, y0 + k3)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge-Kutta Method of 4th Order:
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Calculate successively
k1 = hf(x0, y0)
k2 = hf x0 + h
2 , y0 + k1
2
k3 = hf x0 + h
2 , y0 + k2
2
k4 = hf(x0 + h, y0 + k3)
Find k =
1
6
(k1 + 2k2 + 2k3 + k4)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Ordinary Differential Equations
Runge-Kutta Method of 4th Order:
Consider the differential Equation
dy
dx
= f(x, y), y(x0) = y0
Calculate successively
k1 = hf(x0, y0)
k2 = hf x0 + h
2 , y0 + k1
2
k3 = hf x0 + h
2 , y0 + k2
2
k4 = hf(x0 + h, y0 + k3)
Find k =
1
6
(k1 + 2k2 + 2k3 + k4)
∴ y1 = y0 + k and x1 = x0 + h
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Runge-Kutta Method of 2nd Order
Ex. Use Runge-kutta second order method to find
the approximate value of y(0.2) given that
dy
dx
= x − y2
and y(0) = 1 and h = 0.1
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Runge-Kutta Method of 2nd Order
Ex. Use 4th order Runge-kutta method to solve
dy
dx
= x2
+ y2
, y(0) = 1. Find y(0.2) with h = 0.1.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
Runge-Kutta Method of 2nd Order
Ex. Determine y(0.1) and y(0.2) correct to four
decimal places from
dy
dx
= 2x + y, y(0) = 1. Use
fourth order Runge-Kutta method
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3

Numerical Methods - Oridnary Differential Equations - 3

  • 1.
    Numerical Methods Ordinary DifferentialEquations - 3 Dr. N. B. Vyas Department of Mathematics, Atmiya Institute of Technology & Science, Rajkot (Gujarat) - INDIA niravbvyas@gmail.com Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 2.
    Ordinary Differential Equations Runge’sMethod: (Runge-Kutta Method of 3rd Order) Named after German mathematicians CARL RUNGE (1856-1927) and WILHELM KUTTA (1867-1944) Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 3.
    Ordinary Differential Equations Runge’sMethod: (Runge-Kutta Method of 3rd Order) Named after German mathematicians CARL RUNGE (1856-1927) and WILHELM KUTTA (1867-1944) Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Calculate successively k1 = hf(x0, y0) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 4.
    Ordinary Differential Equations Runge’sMethod: (Runge-Kutta Method of 3rd Order) Named after German mathematicians CARL RUNGE (1856-1927) and WILHELM KUTTA (1867-1944) Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Calculate successively k1 = hf(x0, y0) k2 = hf x0 + h 2 , y0 + k1 2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 5.
    Ordinary Differential Equations Runge’sMethod: (Runge-Kutta Method of 3rd Order) Named after German mathematicians CARL RUNGE (1856-1927) and WILHELM KUTTA (1867-1944) Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Calculate successively k1 = hf(x0, y0) k2 = hf x0 + h 2 , y0 + k1 2 k = hf (x0 + h, y0 + k1) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 6.
    Ordinary Differential Equations Runge’sMethod: (Runge-Kutta Method of 3rd Order) Named after German mathematicians CARL RUNGE (1856-1927) and WILHELM KUTTA (1867-1944) Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Calculate successively k1 = hf(x0, y0) k2 = hf x0 + h 2 , y0 + k1 2 k = hf (x0 + h, y0 + k1) k3 = hf (x0 + h, y0 + k ) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 7.
    Ordinary Differential Equations Runge’sMethod: (Runge-Kutta Method of 3rd Order) Named after German mathematicians CARL RUNGE (1856-1927) and WILHELM KUTTA (1867-1944) Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Calculate successively k1 = hf(x0, y0) k2 = hf x0 + h 2 , y0 + k1 2 k = hf (x0 + h, y0 + k1) k3 = hf (x0 + h, y0 + k ) Finally calculate Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 8.
    Ordinary Differential Equations Runge’sMethod: (Runge-Kutta Method of 3rd Order) Named after German mathematicians CARL RUNGE (1856-1927) and WILHELM KUTTA (1867-1944) Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Calculate successively k1 = hf(x0, y0) k2 = hf x0 + h 2 , y0 + k1 2 k = hf (x0 + h, y0 + k1) k3 = hf (x0 + h, y0 + k ) Finally calculate k = 1 6 (k1 + 4k2 + k3) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 9.
    Ordinary Differential Equations Runge’sMethod: (Runge-Kutta Method of 3rd Order) Named after German mathematicians CARL RUNGE (1856-1927) and WILHELM KUTTA (1867-1944) Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Calculate successively k1 = hf(x0, y0) k2 = hf x0 + h 2 , y0 + k1 2 k = hf (x0 + h, y0 + k1) k3 = hf (x0 + h, y0 + k ) Finally calculate k = 1 6 (k1 + 4k2 + k3) required approximate value of y = y0 + k Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 10.
    Runge’s Method Ex. UseRunge’s method to approximate y when x = 1.1 given that y = 1.2 when x = 1 and dy dx = 3x + y2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 11.
    Runge’s Method Sol. Wehave dy dx = 3x + y2 , ∴ f(x, y) = 3x + y2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 12.
    Runge’s Method Sol. Wehave dy dx = 3x + y2 , ∴ f(x, y) = 3x + y2 x0 = 1, y0 = 1.2 and h = 0.1 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 13.
    Runge’s Method Sol. Wehave dy dx = 3x + y2 , ∴ f(x, y) = 3x + y2 x0 = 1, y0 = 1.2 and h = 0.1 k1 = hf(x0, y0) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 14.
    Runge’s Method Sol. Wehave dy dx = 3x + y2 , ∴ f(x, y) = 3x + y2 x0 = 1, y0 = 1.2 and h = 0.1 k1 = hf(x0, y0) = 0.444 k2 = hf x0 + h 2 , y0 + k1 2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 15.
    Runge’s Method Sol. Wehave dy dx = 3x + y2 , ∴ f(x, y) = 3x + y2 x0 = 1, y0 = 1.2 and h = 0.1 k1 = hf(x0, y0) = 0.444 k2 = hf x0 + h 2 , y0 + k1 2 = 0.51721 k = hf (x0 + h, y0 + k1) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 16.
    Runge’s Method Sol. Wehave dy dx = 3x + y2 , ∴ f(x, y) = 3x + y2 x0 = 1, y0 = 1.2 and h = 0.1 k1 = hf(x0, y0) = 0.444 k2 = hf x0 + h 2 , y0 + k1 2 = 0.51721 k = hf (x0 + h, y0 + k1) = 0.60027 k3 = hf (x0 + h, y0 + k ) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 17.
    Runge’s Method Sol. Wehave dy dx = 3x + y2 , ∴ f(x, y) = 3x + y2 x0 = 1, y0 = 1.2 and h = 0.1 k1 = hf(x0, y0) = 0.444 k2 = hf x0 + h 2 , y0 + k1 2 = 0.51721 k = hf (x0 + h, y0 + k1) = 0.60027 k3 = hf (x0 + h, y0 + k ) = 0.65411 Hence k = 1 6(k1 + 4k2 + k3) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 18.
    Runge’s Method Sol. Wehave dy dx = 3x + y2 , ∴ f(x, y) = 3x + y2 x0 = 1, y0 = 1.2 and h = 0.1 k1 = hf(x0, y0) = 0.444 k2 = hf x0 + h 2 , y0 + k1 2 = 0.51721 k = hf (x0 + h, y0 + k1) = 0.60027 k3 = hf (x0 + h, y0 + k ) = 0.65411 Hence k = 1 6(k1 + 4k2 + k3) = 0.5278 ∴ approximate value of y = y0 + k Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 19.
    Runge’s Method Sol. Wehave dy dx = 3x + y2 , ∴ f(x, y) = 3x + y2 x0 = 1, y0 = 1.2 and h = 0.1 k1 = hf(x0, y0) = 0.444 k2 = hf x0 + h 2 , y0 + k1 2 = 0.51721 k = hf (x0 + h, y0 + k1) = 0.60027 k3 = hf (x0 + h, y0 + k ) = 0.65411 Hence k = 1 6(k1 + 4k2 + k3) = 0.5278 ∴ approximate value of y = y0 + k = 1.7278 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 20.
    Ordinary Differential Equations Runge-KuttaMethod of 2nd Order: Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 21.
    Ordinary Differential Equations Runge-KuttaMethod of 2nd Order: Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Calculate successively k1 = hf(x0, y0) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 22.
    Ordinary Differential Equations Runge-KuttaMethod of 2nd Order: Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Calculate successively k1 = hf(x0, y0) k2 = hf (x0 + h, y0 + k1) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 23.
    Ordinary Differential Equations Runge-KuttaMethod of 2nd Order: Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Calculate successively k1 = hf(x0, y0) k2 = hf (x0 + h, y0 + k1) Find k = 1 2 (k1 + k2) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 24.
    Ordinary Differential Equations Runge-KuttaMethod of 2nd Order: Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Calculate successively k1 = hf(x0, y0) k2 = hf (x0 + h, y0 + k1) Find k = 1 2 (k1 + k2) ∴ y1 = y0 + k Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 25.
    Ordinary Differential Equations Runge-KuttaMethod of 4th Order: Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 26.
    Ordinary Differential Equations Runge-KuttaMethod of 4th Order: Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Calculate successively k1 = hf(x0, y0) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 27.
    Ordinary Differential Equations Runge-KuttaMethod of 4th Order: Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Calculate successively k1 = hf(x0, y0) k2 = hf x0 + h 2 , y0 + k1 2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 28.
    Ordinary Differential Equations Runge-KuttaMethod of 4th Order: Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Calculate successively k1 = hf(x0, y0) k2 = hf x0 + h 2 , y0 + k1 2 k3 = hf x0 + h 2 , y0 + k2 2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 29.
    Ordinary Differential Equations Runge-KuttaMethod of 4th Order: Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Calculate successively k1 = hf(x0, y0) k2 = hf x0 + h 2 , y0 + k1 2 k3 = hf x0 + h 2 , y0 + k2 2 k4 = hf(x0 + h, y0 + k3) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 30.
    Ordinary Differential Equations Runge-KuttaMethod of 4th Order: Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Calculate successively k1 = hf(x0, y0) k2 = hf x0 + h 2 , y0 + k1 2 k3 = hf x0 + h 2 , y0 + k2 2 k4 = hf(x0 + h, y0 + k3) Find k = 1 6 (k1 + 2k2 + 2k3 + k4) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 31.
    Ordinary Differential Equations Runge-KuttaMethod of 4th Order: Consider the differential Equation dy dx = f(x, y), y(x0) = y0 Calculate successively k1 = hf(x0, y0) k2 = hf x0 + h 2 , y0 + k1 2 k3 = hf x0 + h 2 , y0 + k2 2 k4 = hf(x0 + h, y0 + k3) Find k = 1 6 (k1 + 2k2 + 2k3 + k4) ∴ y1 = y0 + k and x1 = x0 + h Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 32.
    Runge-Kutta Method of2nd Order Ex. Use Runge-kutta second order method to find the approximate value of y(0.2) given that dy dx = x − y2 and y(0) = 1 and h = 0.1 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 33.
    Runge-Kutta Method of2nd Order Ex. Use 4th order Runge-kutta method to solve dy dx = x2 + y2 , y(0) = 1. Find y(0.2) with h = 0.1. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3
  • 34.
    Runge-Kutta Method of2nd Order Ex. Determine y(0.1) and y(0.2) correct to four decimal places from dy dx = 2x + y, y(0) = 1. Use fourth order Runge-Kutta method Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations - 3