Special Functions
N. B. Vyas
Department of Mathematics,
Atmiya Institute of Tech. and Science,
Rajkot-360005 (Guj.), INDIA.
niravbvyas@gmail.com
N. B. Vyas, AITS - Rajkot Special Functions
Special Functions
1 Beta & Gamma functions
2 Bessel function
3 Error function & Complementary error function
4 Heaviside’s Unit Step Function
5 Pulse Unit Height & Duration
6 Sinusoidal pulse
7 Rectangle function
8 Gate function
9 Dirac Delta function
10 Signum function
11 Saw tooth wave function
12 Triangular wave function
13 Half-wave Rectified Sinusoidal function
14 Full-wave Rectified Sinusoidal function
15 Square wave function
N. B. Vyas, AITS - Rajkot Special Functions
Error function & Complementary error function
The error function is defined by the integral
erf(z) =
2
√
π
z
0
e−t2
dt , z may be real or complex variable.
N. B. Vyas, AITS - Rajkot Special Functions
Error function & Complementary error function
The error function is defined by the integral
erf(z) =
2
√
π
z
0
e−t2
dt , z may be real or complex variable.
This function appears in probability theory, heat conduction theory
and mathematical physics.
When z = 0 ⇒ erf(0) = 0 and
erf(∞) =
2
√
π
∞
0
e−t2
=
Γ(1
2)
√
π
= 1
N. B. Vyas, AITS - Rajkot Special Functions
Error function & Complementary error function
The complementary error function is defined by the integral
erfc(z) =
2
√
π
∞
z
e−t2
dt , z may be real or complex variable.
N. B. Vyas, AITS - Rajkot Special Functions
Error function & Complementary error function
The complementary error function is defined by the integral
erfc(z) =
2
√
π
∞
z
e−t2
dt , z may be real or complex variable.
Using the properties of integral , we note that
erfc(z) = 2√
π
∞
0
e−t2
dt − 2√
π
z
0
e−t2
dt
= 2√
π
√
π
2 − erf(z)
= 1 − erf(z)
N. B. Vyas, AITS - Rajkot Special Functions
Heaviside’s Unit Step Function
The Heaviside’s Unit Step function (also known as delayed unit
step function) is defined by
H(t − a) =
1 , t > a
0 , t < a
N. B. Vyas, AITS - Rajkot Special Functions
Heaviside’s Unit Step Function
The Heaviside’s Unit Step function (also known as delayed unit
step function) is defined by
H(t − a) =
1 , t > a
0 , t < a
It delays output until t = a and then assumes a constant value of 1
unit.
If a = 0 then
H(t) =
1 , t > 0
0 , t < 0
which is generally called as unit step function.
N. B. Vyas, AITS - Rajkot Special Functions
Pulse Unit Height & Duration T
The pulse of unit height and duration T is defined by
f(t) =
1 , 0 < t < T
0 , T < t
N. B. Vyas, AITS - Rajkot Special Functions
Sinusoidal Pulse
The sinusoidal pulse is defined by
f(t) =
sinat , 0 < t < π
a
0 , π
a < t
N. B. Vyas, AITS - Rajkot Special Functions
Rectangle Function
The rectangle function is defined by
f(t) =
1 , a < t < b
0 , otherwise
N. B. Vyas, AITS - Rajkot Special Functions
Rectangle Function
The rectangle function is defined by
f(t) =
1 , a < t < b
0 , otherwise
In term of Heaviside unit step function, we have
f(t) = H(t − a) − H(t − b)
If a = 0 , then rectangle reduces to pulse of unit height and duration b
N. B. Vyas, AITS - Rajkot Special Functions
Gate Function
The gate function is defined as
fa(t) =
1 , |t| < a
0 , |t| > a
N. B. Vyas, AITS - Rajkot Special Functions
Dirac Delta Function
Consider the function fε(t) defined by
fε(t) =
1
ε , 0 ≤ t ≤ ε
0 , t > ε
where ε > 0.
N. B. Vyas, AITS - Rajkot Special Functions
Dirac Delta Function
Consider the function fε(t) defined by
fε(t) =
1
ε , 0 ≤ t ≤ ε
0 , t > ε
where ε > 0.
we note that as ε → 0, the height of the rectangle increases
indefinitely and width decreases in such a way that its area is always
equal to 1.
N. B. Vyas, AITS - Rajkot Special Functions
Signum Function
The signum function , denoted by sgn(t) , is defined by
sgn(t) =
1 , t > 0
−1 , t < 0
N. B. Vyas, AITS - Rajkot Special Functions
Signum Function
The signum function , denoted by sgn(t) , is defined by
sgn(t) =
1 , t > 0
−1 , t < 0
If H(t) is unit step function, then
H(t) =
1
2
[1 + sgn(t)]
and so
sgn(t) = 2H(t) − 1
N. B. Vyas, AITS - Rajkot Special Functions
Saw Tooth Wave Function
The saw tooth function f with period a is defined by
f(t) =
t , 0 ≤ t < a
0 , t ≤ 0
f(t + a) = f(t)
N. B. Vyas, AITS - Rajkot Special Functions
Saw Tooth Wave Function
The saw tooth function f with period a is defined by
f(t) =
t , 0 ≤ t < a
0 , t ≤ 0
f(t + a) = f(t)
The saw tooth function with period 2π is defined as
f(t) =
t , −π < t < π
0 , otherwise
N. B. Vyas, AITS - Rajkot Special Functions
Triangular Wave Function
The triangular wave function f with period 2a is defined by
f(t) =
t , 0 ≤ t < a
2a − t , a ≤ t < 2a
f(t + 2a) = f(t)
N. B. Vyas, AITS - Rajkot Special Functions
Half-Wave Rectified Sinusoidal Function
The half-wave rectified sinusoidal function f with period 2π is
defined by
f(t) =
sint , 0 < t < π
0 , π < t < 2π
f(t + 2π) = f(t)
N. B. Vyas, AITS - Rajkot Special Functions
Full Rectified Sine Wave Function
The full rectified sine wave function f with period π is defined by
f(t) =
sint , 0 < t < π
−sint , π < t < 2π
f(t + π) = f(t) or by
f(t) = |sinωt| with period
π
ω
N. B. Vyas, AITS - Rajkot Special Functions
Square Wave Function
The square wave function f with period 2a is defined by
f(t) =
1 , 0 < t < a
−1 , a < t < 2a
f(t + 2a) = f(t)
N. B. Vyas, AITS - Rajkot Special Functions
N. B. Vyas, AITS - Rajkot Special Functions

Special functions

  • 1.
    Special Functions N. B.Vyas Department of Mathematics, Atmiya Institute of Tech. and Science, Rajkot-360005 (Guj.), INDIA. niravbvyas@gmail.com N. B. Vyas, AITS - Rajkot Special Functions
  • 2.
    Special Functions 1 Beta& Gamma functions 2 Bessel function 3 Error function & Complementary error function 4 Heaviside’s Unit Step Function 5 Pulse Unit Height & Duration 6 Sinusoidal pulse 7 Rectangle function 8 Gate function 9 Dirac Delta function 10 Signum function 11 Saw tooth wave function 12 Triangular wave function 13 Half-wave Rectified Sinusoidal function 14 Full-wave Rectified Sinusoidal function 15 Square wave function N. B. Vyas, AITS - Rajkot Special Functions
  • 3.
    Error function &Complementary error function The error function is defined by the integral erf(z) = 2 √ π z 0 e−t2 dt , z may be real or complex variable. N. B. Vyas, AITS - Rajkot Special Functions
  • 4.
    Error function &Complementary error function The error function is defined by the integral erf(z) = 2 √ π z 0 e−t2 dt , z may be real or complex variable. This function appears in probability theory, heat conduction theory and mathematical physics. When z = 0 ⇒ erf(0) = 0 and erf(∞) = 2 √ π ∞ 0 e−t2 = Γ(1 2) √ π = 1 N. B. Vyas, AITS - Rajkot Special Functions
  • 5.
    Error function &Complementary error function The complementary error function is defined by the integral erfc(z) = 2 √ π ∞ z e−t2 dt , z may be real or complex variable. N. B. Vyas, AITS - Rajkot Special Functions
  • 6.
    Error function &Complementary error function The complementary error function is defined by the integral erfc(z) = 2 √ π ∞ z e−t2 dt , z may be real or complex variable. Using the properties of integral , we note that erfc(z) = 2√ π ∞ 0 e−t2 dt − 2√ π z 0 e−t2 dt = 2√ π √ π 2 − erf(z) = 1 − erf(z) N. B. Vyas, AITS - Rajkot Special Functions
  • 7.
    Heaviside’s Unit StepFunction The Heaviside’s Unit Step function (also known as delayed unit step function) is defined by H(t − a) = 1 , t > a 0 , t < a N. B. Vyas, AITS - Rajkot Special Functions
  • 8.
    Heaviside’s Unit StepFunction The Heaviside’s Unit Step function (also known as delayed unit step function) is defined by H(t − a) = 1 , t > a 0 , t < a It delays output until t = a and then assumes a constant value of 1 unit. If a = 0 then H(t) = 1 , t > 0 0 , t < 0 which is generally called as unit step function. N. B. Vyas, AITS - Rajkot Special Functions
  • 9.
    Pulse Unit Height& Duration T The pulse of unit height and duration T is defined by f(t) = 1 , 0 < t < T 0 , T < t N. B. Vyas, AITS - Rajkot Special Functions
  • 10.
    Sinusoidal Pulse The sinusoidalpulse is defined by f(t) = sinat , 0 < t < π a 0 , π a < t N. B. Vyas, AITS - Rajkot Special Functions
  • 11.
    Rectangle Function The rectanglefunction is defined by f(t) = 1 , a < t < b 0 , otherwise N. B. Vyas, AITS - Rajkot Special Functions
  • 12.
    Rectangle Function The rectanglefunction is defined by f(t) = 1 , a < t < b 0 , otherwise In term of Heaviside unit step function, we have f(t) = H(t − a) − H(t − b) If a = 0 , then rectangle reduces to pulse of unit height and duration b N. B. Vyas, AITS - Rajkot Special Functions
  • 13.
    Gate Function The gatefunction is defined as fa(t) = 1 , |t| < a 0 , |t| > a N. B. Vyas, AITS - Rajkot Special Functions
  • 14.
    Dirac Delta Function Considerthe function fε(t) defined by fε(t) = 1 ε , 0 ≤ t ≤ ε 0 , t > ε where ε > 0. N. B. Vyas, AITS - Rajkot Special Functions
  • 15.
    Dirac Delta Function Considerthe function fε(t) defined by fε(t) = 1 ε , 0 ≤ t ≤ ε 0 , t > ε where ε > 0. we note that as ε → 0, the height of the rectangle increases indefinitely and width decreases in such a way that its area is always equal to 1. N. B. Vyas, AITS - Rajkot Special Functions
  • 16.
    Signum Function The signumfunction , denoted by sgn(t) , is defined by sgn(t) = 1 , t > 0 −1 , t < 0 N. B. Vyas, AITS - Rajkot Special Functions
  • 17.
    Signum Function The signumfunction , denoted by sgn(t) , is defined by sgn(t) = 1 , t > 0 −1 , t < 0 If H(t) is unit step function, then H(t) = 1 2 [1 + sgn(t)] and so sgn(t) = 2H(t) − 1 N. B. Vyas, AITS - Rajkot Special Functions
  • 18.
    Saw Tooth WaveFunction The saw tooth function f with period a is defined by f(t) = t , 0 ≤ t < a 0 , t ≤ 0 f(t + a) = f(t) N. B. Vyas, AITS - Rajkot Special Functions
  • 19.
    Saw Tooth WaveFunction The saw tooth function f with period a is defined by f(t) = t , 0 ≤ t < a 0 , t ≤ 0 f(t + a) = f(t) The saw tooth function with period 2π is defined as f(t) = t , −π < t < π 0 , otherwise N. B. Vyas, AITS - Rajkot Special Functions
  • 20.
    Triangular Wave Function Thetriangular wave function f with period 2a is defined by f(t) = t , 0 ≤ t < a 2a − t , a ≤ t < 2a f(t + 2a) = f(t) N. B. Vyas, AITS - Rajkot Special Functions
  • 21.
    Half-Wave Rectified SinusoidalFunction The half-wave rectified sinusoidal function f with period 2π is defined by f(t) = sint , 0 < t < π 0 , π < t < 2π f(t + 2π) = f(t) N. B. Vyas, AITS - Rajkot Special Functions
  • 22.
    Full Rectified SineWave Function The full rectified sine wave function f with period π is defined by f(t) = sint , 0 < t < π −sint , π < t < 2π f(t + π) = f(t) or by f(t) = |sinωt| with period π ω N. B. Vyas, AITS - Rajkot Special Functions
  • 23.
    Square Wave Function Thesquare wave function f with period 2a is defined by f(t) = 1 , 0 < t < a −1 , a < t < 2a f(t + 2a) = f(t) N. B. Vyas, AITS - Rajkot Special Functions
  • 24.
    N. B. Vyas,AITS - Rajkot Special Functions