Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




                 Legendre’s Function

                             N. B. Vyas

                      Department of Mathematics
               Atmiya Institute of Technology and Science


                   Department of Mathematics




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




  The differential equation




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




  The differential equation
         2
  (1 − x )y − 2xy + n(n + 1)y = 0




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




  The differential equation
         2
  (1 − x )y − 2xy + n(n + 1)y = 0
  is called Legendre’s differential equation,
  n is real constant




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Legendre’s Polynomials:
⇒ P0 (x) = 1




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Legendre’s Polynomials:
⇒ P0 (x) = 1
⇒ P1 (x) = x




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Legendre’s Polynomials:
⇒ P0 (x) = 1
⇒ P1 (x) = x
            1
⇒ P2 (x) = (3x2 − 1)
            2




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Legendre’s Polynomials:
⇒ P0 (x) = 1
⇒ P1 (x) = x
            1
⇒ P2 (x) = (3x2 − 1)
            2
            1
⇒ P3 (x) = (5x3 − 3x)
            2




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Legendre’s Polynomials:
⇒ P0 (x) = 1
⇒ P1 (x) = x
            1
⇒ P2 (x) = (3x2 − 1)
            2
            1
⇒ P3 (x) = (5x3 − 3x)
            2
            1
⇒ P4 (x) = (35x3 − 30x2 + 3)
            8



                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Legendre’s Polynomials:
⇒ P0 (x) = 1
⇒ P1 (x) = x
            1
⇒ P2 (x) = (3x2 − 1)
            2
            1
⇒ P3 (x) = (5x3 − 3x)
            2
            1
⇒ P4 (x) = (35x3 − 30x2 + 3)
            8
            1
⇒ P5 (x) = (63x5 − 70x3 + 15x)
            8

                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
   Examples of Legendre’s Polynomials
       Generating Function for Pn (x)
                  Rodrigue’s Formula
       Recurrence Relations for Pn (x)




Ex.1 Express f (x) in terms of
     Legendre’s polynomials where
     f (x) = x3 + 2x2 − x − 3.




                           N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)
 ⇒ P1 (x) = x
   ∴ x = P1 (x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)
 ⇒ P1 (x) = x
   ∴ x = P1 (x)
            1
 ⇒ P3 (x) = (5x3 − 3x)
            2




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)
 ⇒ P1 (x) = x
   ∴ x = P1 (x)
            1
 ⇒ P3 (x) = (5x3 − 3x)
            2
 ∴ 2P3 (x) = (5x3 − 3x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)
 ⇒ P1 (x) = x
   ∴ x = P1 (x)
            1
 ⇒ P3 (x) = (5x3 − 3x)
            2
 ∴ 2P3 (x) = (5x3 − 3x)
 ∴ 2P3 (x) + 3x = 5x3




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)
 ⇒ P1 (x) = x
   ∴ x = P1 (x)
            1
 ⇒ P3 (x) = (5x3 − 3x)
            2
 ∴ 2P3 (x) = (5x3 − 3x)
 ∴ 2P3 (x) + 3x = 5x3
 ∴ 2P3 (x) + 3P1 (x) = 5x3          { x = P1 (x)}




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)
 ⇒ P1 (x) = x
   ∴ x = P1 (x)
            1
 ⇒ P3 (x) = (5x3 − 3x)
            2
 ∴ 2P3 (x) = (5x3 − 3x)
 ∴ 2P3 (x) + 3x = 5x3
 ∴ 2P3 (x) + 3P1 (x) = 5x3          { x = P1 (x)}
         2         3
 ∴ x3 = P3 (x) + P1 (x)
         5         5


                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




          1
⇒ P2 (x) = (3x2 − 1)
          2




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




           1
⇒ P2 (x) = (3x2 − 1)
           2
∴ 2P2 (x) = (3x2 − 1)




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




           1
⇒ P2 (x) = (3x2 − 1)
           2
∴ 2P2 (x) = (3x2 − 1)
∴ 2P2 (x) + 1 = 3x2




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




           1
⇒ P2 (x) = (3x2 − 1)
           2
∴ 2P2 (x) = (3x2 − 1)
∴ 2P2 (x) + 1 = 3x2
∴ 2P2 (x) + P0 (x) = 3x2         { 1 = P0 (x)}




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




           1
⇒ P2 (x) = (3x2 − 1)
           2
∴ 2P2 (x) = (3x2 − 1)
∴ 2P2 (x) + 1 = 3x2
∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)}
        2          1
∴ x2 = P2 (x) + P0 (x)
        3          3




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




           1
⇒ P2 (x) = (3x2 − 1)
           2
∴ 2P2 (x) = (3x2 − 1)
∴ 2P2 (x) + 1 = 3x2
∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)}
        2          1
∴ x2 = P2 (x) + P0 (x)
        3          3
  Now, f (x) = x3 + 2x2 − x − 3




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




           1
⇒ P2 (x) = (3x2 − 1)
           2
∴ 2P2 (x) = (3x2 − 1)
∴ 2P2 (x) + 1 = 3x2
∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)}
        2          1
∴ x2 = P2 (x) + P0 (x)
        3          3
  Now, f (x) = x3 + 2x2 − x − 3
   f (x) = x3 + 2x2 − x − 3
           2         3      4        2
         = P3 (x) + P1 (x) + P2 (x) + P0 (x) − P1 (x) − 3P0 (x)
           5         5      3        3



                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
   Examples of Legendre’s Polynomials
       Generating Function for Pn (x)
                  Rodrigue’s Formula
       Recurrence Relations for Pn (x)




Ex.2 Express x3 − 5x2 + 6x + 1 in
     terms of Legendre’s polynomial.




                           N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
   Examples of Legendre’s Polynomials
       Generating Function for Pn (x)
                  Rodrigue’s Formula
       Recurrence Relations for Pn (x)




Ex.3 Express 4x3 − 2x2 − 3x + 8 in
     terms of Legendre’s polynomial.




                           N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Generating Function for Pn(x)
∞
                                   1
      Pn(x)tn = √
n=0
                               1 − 2xt + t2
                                             1
                           = (1 − 2xt + t2)− 2


                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




                                                             1
The function (1 − 2xt + t2)− 2 is
called Generating function of
Legendre’s polynomial Pn(x)




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Ex Show that




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Ex Show that
   (i)Pn(1) = 1




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Ex Show that
   (i)Pn(1) = 1
   (ii)Pn(−1) = (−1)n




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Ex Show that
   (i)Pn(1) = 1
   (ii)Pn(−1) = (−1)n
   (iii)Pn(−x) = (−1)nPn(x)


                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


Solution:
                 ∞
                                                    1
(i) We have           Pn (x)tn = (1 − 2xt + t2 )− 2
                n=0
    Putting x = 1 in eq(1), we get




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


Solution:
                 ∞
                                                        1
(i) We have           Pn (x)tn = (1 − 2xt + t2 )− 2
                n=0
    Putting x = 1 in eq(1), we get
     ∞
                                        1
          Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1
    n=0




                          N. B. Vyas        Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


Solution:
                 ∞
                                                        1
(i) We have           Pn (x)tn = (1 − 2xt + t2 )− 2
                n=0
     Putting x = 1 in eq(1), we get
     ∞
                                        1
           Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1
     n=0
      ∞
                         1
 ∴         Pn (1)tn =       = 1 + t + t2 + t3 + ...
                        1−t
     n=0




                          N. B. Vyas        Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


Solution:
                 ∞
                                                         1
(i) We have           Pn (x)tn = (1 − 2xt + t2 )− 2
                n=0
     Putting x = 1 in eq(1), we get
     ∞
                                         1
           Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1
     n=0
      ∞
                         1
 ∴         Pn (1)tn =       = 1 + t + t2 + t3 + ...
                        1−t
     n=0
      ∞                 ∞
                 n
 ∴         Pn (1)t =          tn
     n=0                n=0




                            N. B. Vyas       Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


Solution:
                 ∞
                                                         1
(i) We have           Pn (x)tn = (1 − 2xt + t2 )− 2
                n=0
     Putting x = 1 in eq(1), we get
     ∞
                                         1
           Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1
     n=0
      ∞
                         1
 ∴         Pn (1)tn =       = 1 + t + t2 + t3 + ...
                        1−t
     n=0
      ∞                 ∞
                 n
 ∴         Pn (1)t =          tn
     n=0                n=0
     Comparing the coefficient of tn both the sides, we get


                            N. B. Vyas       Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


Solution:
                  ∞
                                                         1
(i) We have           Pn (x)tn = (1 − 2xt + t2 )− 2
                n=0
     Putting x = 1 in eq(1), we get
     ∞
                                         1
           Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1
     n=0
      ∞
                         1
 ∴         Pn (1)tn =       = 1 + t + t2 + t3 + ...
                        1−t
     n=0
      ∞                 ∞
                  n
 ∴         Pn (1)t =          tn
     n=0                n=0
     Comparing the coefficient of tn both the sides, we get
     Pn (1) = 1

                            N. B. Vyas       Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(ii) Putting x = −1 in eq(1), we get




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(ii) Putting x = −1 in eq(1), we get
     ∞
                                         1
          Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1
    n=0




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(ii) Putting x = −1 in eq(1), we get
     ∞
                                         1
           Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1
     n=0
      ∞
                          1
 ∴         Pn (−1)tn =       = 1 − t + t2 − t3 + ...
                         1+t
     n=0




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(ii) Putting x = −1 in eq(1), we get
     ∞
                                          1
           Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1
     n=0
      ∞
                          1
 ∴         Pn (−1)tn =       = 1 − t + t2 − t3 + ...
                         1+t
     n=0
      ∞                   ∞
 ∴         Pn (−1)tn =        (−1)n tn
     n=0                 n=0




                          N. B. Vyas     Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(ii) Putting x = −1 in eq(1), we get
     ∞
                                          1
           Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1
     n=0
      ∞
                          1
 ∴         Pn (−1)tn =       = 1 − t + t2 − t3 + ...
                         1+t
     n=0
      ∞                   ∞
 ∴         Pn (−1)tn =        (−1)n tn
     n=0                 n=0
     Comparing coefficients of tn , we get




                          N. B. Vyas     Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(ii) Putting x = −1 in eq(1), we get
     ∞
                                          1
           Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1
     n=0
      ∞
                          1
 ∴         Pn (−1)tn =       = 1 − t + t2 − t3 + ...
                         1+t
     n=0
      ∞                   ∞
 ∴         Pn (−1)tn =        (−1)n tn
     n=0                 n=0
     Comparing coefficients of tn , we get
     Pn (−1) = (−1)n



                          N. B. Vyas     Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                          1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                          1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0
    Now, replacing t by −t in eq(1), we get




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                          1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0
    Now, replacing t by −t in eq(1), we get
     ∞
                                              1
          Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b)
    n=0




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                          1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0
    Now, replacing t by −t in eq(1), we get
     ∞
                                              1
          Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b)
    n=0
    from equation (a) and (b)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                           1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0
    Now, replacing t by −t in eq(1), we get
     ∞
                                               1
          Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b)
    n=0
    from equation (a) and (b)
     ∞                      ∞
                      n
          Pn (−x)(t) =           Pn (x)(−1)n (t)n
    n=0                    n=0




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                           1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0
    Now, replacing t by −t in eq(1), we get
     ∞
                                               1
          Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b)
    n=0
    from equation (a) and (b)
     ∞                      ∞
                      n
          Pn (−x)(t) =           Pn (x)(−1)n (t)n
    n=0                    n=0
    Comparing the coefficients of tn , both sides, we get



                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                           1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0
    Now, replacing t by −t in eq(1), we get
     ∞
                                               1
          Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b)
    n=0
    from equation (a) and (b)
     ∞                      ∞
                      n
          Pn (−x)(t) =           Pn (x)(−1)n (t)n
    n=0                    n=0
    Comparing the coefficients of tn , both sides, we get
    Pn (−x) = (−1)n Pn (x)


                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




               Rodrigue’s Formula

            1 dn
    Pn(x) = n       [(x2 − 1)n]
           2 n! dxn


                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n
    Differentiating wit respect to x




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n
    Differentiating wit respect to x
 ∴ y1 = n(x2 − 1)n−1 (2x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n
    Differentiating wit respect to x
 ∴ y1 = n(x2 − 1)n−1 (2x)
        2nx(x2 − 1)n      2nxy
 ∴ y1 =               = 2
          (x2 − 1)       x −1




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n
    Differentiating wit respect to x
 ∴ y1 = n(x2 − 1)n−1 (2x)
        2nx(x2 − 1)n      2nxy
 ∴ y1 =               = 2
           (x2 − 1)      x −1
 ∴ (x2 − 1)y1 = 2nxy




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n
    Differentiating wit respect to x
 ∴ y1 = n(x2 − 1)n−1 (2x)
        2nx(x2 − 1)n      2nxy
 ∴ y1 =               = 2
           (x2 − 1)      x −1
 ∴ (x2 − 1)y1 = 2nxy
    Differentiating with respect to x,




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n
    Differentiating wit respect to x
 ∴ y1 = n(x2 − 1)n−1 (2x)
        2nx(x2 − 1)n      2nxy
 ∴ y1 =               = 2
           (x2 − 1)      x −1
 ∴ (x2 − 1)y1 = 2nxy
    Differentiating with respect to x,
    (x2 − 1)y2 +2xy1 = 2nxy1 + 2ny




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




      dn
         (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V
     dxn




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




     dn
        (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V
    dxn
   dn
→     ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn
  dxn




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




     dn
        (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V
    dxn
   dn
→     ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn
  dxn
   dn
→     (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn
  dxn




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




     dn
        (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V
    dxn
   dn
→     ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn
  dxn
   dn
→     (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn
  dxn
   dn
→     (2nxy1 ) = nC0 (2nx)yn+1 + nC1 (2n)yn
  dxn




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




       dn
          (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V
      dxn
     dn
→       ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn
    dxn
     dn
→       (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn
    dxn
     dn
→       (2nxy1 ) = nC0 (2nx)yn+1 + nC1 (2n)yn
    dxn
     dn
→       (2ny) = 2nyn
    dxn




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




       dn
          (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V
      dxn
     dn
→       ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn
    dxn
     dn
→       (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn
    dxn
     dn
→       (2nxy1 ) = nC0 (2nx)yn+1 + nC1 (2n)yn
    dxn
     dn
→       (2ny) = 2nyn
    dxn
                                    n(n − 1)
    Also nC0 = 1, nC1 = n, nC2 =
                                       2!



                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0
                 dn y
  Let v = yn = n
                dx




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0
                 dn y
  Let v = yn = n
                 dx
∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0
                 dn y
  Let v = yn = n
                 dx
∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2)
  Equation (2) is a Legendre’s equation in variables v and x




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0
                 dn y
  Let v = yn = n
                 dx
∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2)
   Equation (2) is a Legendre’s equation in variables v and x
⇒ Pn (x) is a solution of equation (2)




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0
                 dn y
  Let v = yn = n
                 dx
∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2)
   Equation (2) is a Legendre’s equation in variables v and x
⇒ Pn (x) is a solution of equation (2)
   Also, v = f (x) is a solution of equation (2)



                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0
                 dn y
  Let v = yn = n
                 dx
∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2)
   Equation (2) is a Legendre’s equation in variables v and x
⇒ Pn (x) is a solution of equation (2)
   Also, v = f (x) is a solution of equation (2)
   Pn = cv where c is constant


                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




               dn y     dn
∴ Pn (x) = c        = c n (x2 − 1)n ——(3)
               dxn     dx




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




           dn y     dn
∴ Pn (x) = c    = c n (x2 − 1)n ——(3)
           dxn     dx
  Now y = (x2 − 1)n




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




           dn y     dn
∴ Pn (x) = c    = c n (x2 − 1)n ——(3)
           dxn     dx
  Now y = (x2 − 1)n
  = (x + 1)n (x − 1)n




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




           dn y     dn
∴ Pn (x) = c    = c n (x2 − 1)n ——(3)
           dxn     dx
  Now y = (x2 − 1)n
  = (x + 1)n (x − 1)n
  dn y             dn
∴      = (x + 1)n n ((x − 1)n )
  dxn             dx




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




           dn y     dn
∴ Pn (x) = c    = c n (x2 − 1)n ——(3)
           dxn     dx
  Now y = (x2 − 1)n
  = (x + 1)n (x − 1)n
  dn y             dn
∴      = (x + 1)n n ((x − 1)n )
  dxn             dx
                 dn−1
  +n(x + 1)n−1 n−1 ((x − 1)n )
                dx




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




           dn y     dn
∴ Pn (x) = c    = c n (x2 − 1)n ——(3)
           dxn     dx
  Now y = (x2 − 1)n
  = (x + 1)n (x − 1)n
  dn y             dn
∴      = (x + 1)n n ((x − 1)n )
  dxn             dx
                 dn−1
  +n(x + 1)n−1 n−1 ((x − 1)n )
                dx
  +...




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




           dn y     dn
∴ Pn (x) = c    = c n (x2 − 1)n ——(3)
           dxn     dx
  Now y = (x2 − 1)n
  = (x + 1)n (x − 1)n
  dn y               dn
∴      = (x + 1)n n ((x − 1)n )
  dxn               dx
                   dn−1
  +n(x + 1)n−1 n−1 ((x − 1)n )
                 dx
  +...
    dn ((x + 1)n )
  +                (x − 1)n
         dxn



                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Recurrence Relations for Pn(x) : −




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


(1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0
       Differentiating equation (i) partially with respect to t, we
       get




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0
       Differentiating equation (i) partially with respect to t, we
       get
        ∞
                           1                 3
           nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                           2
       n=1




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0
       Differentiating equation (i) partially with respect to t, we
       get
        ∞
                           1                 3
           nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                           2
       n=1
                                                                 1
                       = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0
       Differentiating equation (i) partially with respect to t, we
       get
        ∞
                           1                 3
           nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                           2
       n=1
                                                                 1
                       = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t)
                                           1
                         (1 − 2xt + t2 )− 2
                       =                     (x − t)
                           (1 − 2xt + t2 )




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0
       Differentiating equation (i) partially with respect to t, we
       get
        ∞
                           1                 3
           nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                           2
       n=1
                                                                 1
                       = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t)
                                           1
                         (1 − 2xt + t2 )− 2
                       =                     (x − t)
                           (1 − 2xt + t2 )
       from (i)



                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0
       Differentiating equation (i) partially with respect to t, we
       get
        ∞
                           1                 3
           nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                           2
       n=1
                                                                         1
                       = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t)
                                           1
                         (1 − 2xt + t2 )− 2
                       =                     (x − t)
                           (1 − 2xt + t2 )
       from (i)
                            ∞                                   ∞
                                             n−1
       (1 − 2xt +    t2 )         nPn (x)t         = (x − t)         Pn (x)tn
                            n=1                                n=0
                                N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                             ∞                   ∞
∴        nPn (x)tn−1 − 2x               nPn (x)tn +         nPn (x)tn+1 =
    n=1                           n=1                 n=1
      ∞                    ∞
    x         Pn (x)tn −         Pn (x)tn+1
        n=0                n=0




                            N. B. Vyas      Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                             ∞                   ∞
∴        nPn (x)tn−1 − 2x               nPn (x)tn +         nPn (x)tn+1 =
    n=1                           n=1                 n=1
      ∞                    ∞
    x         Pn (x)tn −         Pn (x)tn+1
        n=0                n=0
    replacing n by n+1 in 1st term, n by n-1 in 3rd term in
    L.H.S.




                            N. B. Vyas      Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                             ∞                   ∞
∴        nPn (x)tn−1 − 2x               nPn (x)tn +         nPn (x)tn+1 =
    n=1                           n=1                 n=1
      ∞                    ∞
    x         Pn (x)tn −         Pn (x)tn+1
        n=0                n=0
    replacing n by n+1 in 1st term, n by n-1 in 3rd term in
    L.H.S.
    replacing n by n-1 in 2nd term in R.H.S




                            N. B. Vyas      Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                             ∞                     ∞
∴         nPn (x)tn−1 − 2x              nPn (x)tn +          nPn (x)tn+1 =
    n=1                           n=1                  n=1
      ∞                    ∞
    x         Pn (x)tn −         Pn (x)tn+1
        n=0                n=0
    replacing n by n+1 in 1st term, n by n-1 in 3rd term in
    L.H.S.
    replacing n by n-1 in 2nd term in R.H.S
    ∞                                     ∞                    ∞
         (n + 1)Pn+1 (x)tn − 2x                nPn (x)tn +          (n −
    n=0                                  n=1                  n=2
                            ∞                    ∞
    1)Pn−1 (x)tn = x             Pn (x)tn −           Pn−1 (x)tn
                           n=0                  n=1




                            N. B. Vyas        Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                             ∞                     ∞
∴         nPn (x)tn−1 − 2x              nPn (x)tn +          nPn (x)tn+1 =
    n=1                           n=1                  n=1
      ∞                    ∞
    x         Pn (x)tn −         Pn (x)tn+1
        n=0                n=0
    replacing n by n+1 in 1st term, n by n-1 in 3rd term in
    L.H.S.
    replacing n by n-1 in 2nd term in R.H.S
    ∞                                     ∞                    ∞
         (n + 1)Pn+1 (x)tn − 2x                nPn (x)tn +          (n −
    n=0                                  n=1                  n=2
                            ∞                    ∞
    1)Pn−1 (x)tn = x             Pn (x)tn −           Pn−1 (x)tn
                           n=0                  n=1
    comparing the coefficients of tn on both the sides

                            N. B. Vyas        Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (n + 1)Pn+1 (x) − 2xnPn (x) + (n − 1)Pn−1 (x) =
  xPn (x) − Pn−1 (x)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (n + 1)Pn+1 (x) − 2xnPn (x) + (n − 1)Pn−1 (x) =
  xPn (x) − Pn−1 (x)
∴ (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − (n − 1 + 1)Pn−1 (x)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (n + 1)Pn+1 (x) − 2xnPn (x) + (n − 1)Pn−1 (x) =
  xPn (x) − Pn−1 (x)
∴ (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − (n − 1 + 1)Pn−1 (x)
∴ (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


(2) nPn (x) = xPn (x) − Pn−1 (x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
             Pn (x)t = (1 − 2xt +      t2 ) 2   ——–(i)
       n=0




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
             Pn (x)t = (1 − 2xt +      t2 ) 2   ——–(i)
       n=0
       Differentiating equation (i) partially with respect to x, we
       get




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
             Pn (x)t = (1 − 2xt +      t2 ) 2   ——–(i)
       n=0
       Differentiating equation (i) partially with respect to x, we
       get
        ∞
                       1                 3
           Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t)
                       2
       n=0




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
              Pn (x)t = (1 − 2xt +     t2 ) 2    ——–(i)
        n=0
        Differentiating equation (i) partially with respect to x, we
        get
         ∞
                        1                 3
            Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t)
                        2
        n=0
         ∞                                   1
                    n   t(1 − 2xt + t2 )− 2
    ∴         Pn (x)t =                     ————-(ii)
                          (1 − 2xt + t2 )
        n=0




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
             Pn (x)t = (1 − 2xt +      t2 ) 2    ——–(i)
       n=0
       Differentiating equation (i) partially with respect to x, we
       get
        ∞
                       1                 3
           Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t)
                       2
       n=0
        ∞                                    1
                    t(1 − 2xt + t2 )− 2
                    n
   ∴     Pn (x)t =                      ————-(ii)
                      (1 − 2xt + t2 )
     n=0
   ⇒ Differentiating equation (i) partially with respect to t, we
     get



                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
             Pn (x)t = (1 − 2xt +      t2 ) 2    ——–(i)
       n=0
       Differentiating equation (i) partially with respect to x, we
       get
        ∞
                       1                 3
           Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t)
                       2
       n=0
        ∞                                    1
                    t(1 − 2xt + t2 )− 2
                    n
   ∴     Pn (x)t =                      ————-(ii)
                      (1 − 2xt + t2 )
     n=0
   ⇒ Differentiating equation (i) partially with respect to t, we
     get
      ∞
                          1                3
         nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                          2
       n=1

                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
             Pn (x)t = (1 − 2xt +      t2 ) 2   ——–(i)
       n=0
       Differentiating equation (i) partially with respect to x, we
       get
        ∞
                       1                 3
           Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t)
                       2
       n=0
        ∞                                   1
                    t(1 − 2xt + t2 )− 2
                    n
   ∴     Pn (x)t =                      ————-(ii)
                      (1 − 2xt + t2 )
     n=0
   ⇒ Differentiating equation (i) partially with respect to t, we
     get
      ∞
                          1                3
         nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                          2
       n=1
        ∞                                                1
                        n−1    (x − t)(1 −Legendre’s )− 2
                              N. B. Vyas
                                           2xt + t2 Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


   ∞                                  ∞
                 n−1     (x − t)
        nPn (x)t       =                    Pn (x)tn {by eq. (ii)
                            t
  n=1                                 n=0




                        N. B. Vyas          Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


   ∞                                  ∞
                  n−1     (x − t)
        nPn (x)t        =                   Pn (x)tn {by eq. (ii)
                             t
  n=1                                 n=0
    ∞                                  ∞
∴ t         nPn (x)tn−1 = (x − t)            Pn (x)tn
      n=1                             n=0




                         N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                                  ∞
                 n−1     (x − t)
          nPn (x)t     =                     Pn (x)tn {by eq. (ii)
                            t
    n=1                                n=0
      ∞                                 ∞
∴ t        nPn (x)tn−1 = (x − t)              Pn (x)tn
    n=1                                n=0
    ∞                      ∞                     ∞
∴         nPn (x)tn = x         Pn (x)tn −            Pn (x)tn+1
    n=1                   n=0                   n=0




                          N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                                  ∞
                 n−1     (x − t)
          nPn (x)t     =                     Pn (x)tn {by eq. (ii)
                            t
    n=1                                n=0
      ∞                                 ∞
∴ t        nPn (x)tn−1 = (x − t)              Pn (x)tn
    n=1                                n=0
    ∞                      ∞                     ∞
∴         nPn (x)tn = x         Pn (x)tn −            Pn (x)tn+1
    n=1                   n=0                   n=0
    Replacing n by n-1 in        2nd   term in R.H.S.




                          N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                                  ∞
                 n−1     (x − t)
          nPn (x)t     =                     Pn (x)tn {by eq. (ii)
                            t
    n=1                                n=0
      ∞                                 ∞
∴ t        nPn (x)tn−1 = (x − t)              Pn (x)tn
    n=1                                n=0
    ∞                      ∞                     ∞
∴         nPn (x)tn = x         Pn (x)tn −            Pn (x)tn+1
    n=1                   n=0                   n=0
    Replacing n by n-1 in        2nd   term in R.H.S.
    ∞                      ∞                     ∞
                 n                      n
∴         nPn (x)t = x          Pn (x)t −             Pn−1 (x)tn
    n=1                   n=0                   n=1




                          N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                                  ∞
                 n−1     (x − t)
          nPn (x)t     =                     Pn (x)tn {by eq. (ii)
                            t
    n=1                                n=0
      ∞                                 ∞
∴ t        nPn (x)tn−1 = (x − t)              Pn (x)tn
    n=1                                n=0
    ∞                      ∞                     ∞
∴         nPn (x)tn = x         Pn (x)tn −            Pn (x)tn+1
    n=1                   n=0                   n=0
    Replacing n by n-1 in        2nd   term in R.H.S.
    ∞                      ∞                     ∞
                 n                      n
∴         nPn (x)t = x          Pn (x)t −             Pn−1 (x)tn
    n=1                   n=0                   n=1
    comparing the coefficients of tn on both sides, we get



                          N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                                  ∞
                 n−1     (x − t)
          nPn (x)t     =                     Pn (x)tn {by eq. (ii)
                            t
    n=1                                n=0
      ∞                                 ∞
∴ t        nPn (x)tn−1 = (x − t)              Pn (x)tn
    n=1                                n=0
    ∞                      ∞                     ∞
∴         nPn (x)tn = x         Pn (x)tn −            Pn (x)tn+1
    n=1                   n=0                   n=0
    Replacing n by n-1 in        2nd   term in R.H.S.
    ∞                      ∞                     ∞
                 n                      n
∴         nPn (x)t = x          Pn (x)t −             Pn−1 (x)tn
    n=1                   n=0                   n=1
    comparing the coefficients of tn on both sides, we get
    nPn (x) = xPn (x) − Pn−1 (x)


                          N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get
    ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x)
       —(b)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get
    ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x)
       —(b)
       Also from relation (2)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get
    ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x)
       —(b)
       Also from relation (2)
       nPn (x) = xPn (x) − Pn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get
    ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x)
       —(b)
       Also from relation (2)
       nPn (x) = xPn (x) − Pn−1 (x)
    ∴ xPn (x) = nPn (x) + Pn−1 (x)—– (c)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get
    ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x)
       —(b)
       Also from relation (2)
       nPn (x) = xPn (x) − Pn−1 (x)
    ∴ xPn (x) = nPn (x) + Pn−1 (x)—– (c)
       Substituting the value of (c) in equation (b), we get



                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get
    ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x)
       —(b)
       Also from relation (2)
       nPn (x) = xPn (x) − Pn−1 (x)
    ∴ xPn (x) = nPn (x) + Pn−1 (x)—– (c)
       Substituting the value of (c) in equation (b), we get
    ∴ (2n + 1)Pn (x) + (2n + 1)[nPn (x) + Pn−1 (x)] =
       (n + 1)Pn+1 (x) + nPn−1 (x)
                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) =
  (n + 1)Pn+1 (x) + nPn−1 (x)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) =
  (n + 1)Pn+1 (x) + nPn−1 (x)
∴ (2n + 1)(n + 1)Pn (x) = (n + 1)Pn+1 (x) − (n + 1)Pn−1 (x)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) =
  (n + 1)Pn+1 (x) + nPn−1 (x)
∴ (2n + 1)(n + 1)Pn (x) = (n + 1)Pn+1 (x) − (n + 1)Pn−1 (x)
∴ dividing by (n + 1), we get




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) =
  (n + 1)Pn+1 (x) + nPn−1 (x)
∴ (2n + 1)(n + 1)Pn (x) = (n + 1)Pn+1 (x) − (n + 1)Pn−1 (x)
∴ dividing by (n + 1), we get
∴ (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(4) Pn (x) = xPn−1 (x) + nPn−1 (x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),
    ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),
    ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b)
       Taking (a) - (b), we get




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),
    ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b)
       Taking (a) - (b), we get
    ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),
    ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b)
       Taking (a) - (b), we get
    ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x)
       replacing n by n − 1, we get




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),
    ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b)
       Taking (a) - (b), we get
    ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x)
       replacing n by n − 1, we get
    ∴ nPn−1 (x) = Pn (x) − xPn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),
    ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b)
       Taking (a) - (b), we get
    ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x)
       replacing n by n − 1, we get
    ∴ nPn−1 (x) = Pn (x) − xPn−1 (x)
    ∴ Pn (x) = xPn−1 (x) + nPn−1 (x)



                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )
       nPn (x) = xPn (x) − Pn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )
       nPn (x) = xPn (x) − Pn−1 (x)
       xPn (x) = nPn (x) + Pn−1 (x) ——– (b)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )
       nPn (x) = xPn (x) − Pn−1 (x)
       xPn (x) = nPn (x) + Pn−1 (x) ——– (b)
       taking (a) - x X (b), we get




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )
       nPn (x) = xPn (x) − Pn−1 (x)
       xPn (x) = nPn (x) + Pn−1 (x) ——– (b)
       taking (a) - x X (b), we get
       (1 − x2 )Pn (x) = xPn−1 (x) + nPn−1 (x) − nxPn (x) − xPn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )
       nPn (x) = xPn (x) − Pn−1 (x)
       xPn (x) = nPn (x) + Pn−1 (x) ——– (b)
       taking (a) - x X (b), we get
       (1 − x2 )Pn (x) = xPn−1 (x) + nPn−1 (x) − nxPn (x) − xPn−1 (x)
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )
       nPn (x) = xPn (x) − Pn−1 (x)
       xPn (x) = nPn (x) + Pn−1 (x) ——– (b)
       taking (a) - x X (b), we get
       (1 − x2 )Pn (x) = xPn−1 (x) + nPn−1 (x) − nxPn (x) − xPn−1 (x)
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)]




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)]
       n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x))




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)]
       n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x))
       from equation (a),




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)]
       n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x))
       from equation (a),
       (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]



                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)]
       n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x))
       from equation (a),
       (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]



                             N. B. Vyas    Legendre’s Function

Legendre Function

  • 1.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Function N. B. Vyas Department of Mathematics Atmiya Institute of Technology and Science Department of Mathematics N. B. Vyas Legendre’s Function
  • 2.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) The differential equation N. B. Vyas Legendre’s Function
  • 3.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) The differential equation 2 (1 − x )y − 2xy + n(n + 1)y = 0 N. B. Vyas Legendre’s Function
  • 4.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) The differential equation 2 (1 − x )y − 2xy + n(n + 1)y = 0 is called Legendre’s differential equation, n is real constant N. B. Vyas Legendre’s Function
  • 5.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Polynomials: ⇒ P0 (x) = 1 N. B. Vyas Legendre’s Function
  • 6.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Polynomials: ⇒ P0 (x) = 1 ⇒ P1 (x) = x N. B. Vyas Legendre’s Function
  • 7.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Polynomials: ⇒ P0 (x) = 1 ⇒ P1 (x) = x 1 ⇒ P2 (x) = (3x2 − 1) 2 N. B. Vyas Legendre’s Function
  • 8.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Polynomials: ⇒ P0 (x) = 1 ⇒ P1 (x) = x 1 ⇒ P2 (x) = (3x2 − 1) 2 1 ⇒ P3 (x) = (5x3 − 3x) 2 N. B. Vyas Legendre’s Function
  • 9.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Polynomials: ⇒ P0 (x) = 1 ⇒ P1 (x) = x 1 ⇒ P2 (x) = (3x2 − 1) 2 1 ⇒ P3 (x) = (5x3 − 3x) 2 1 ⇒ P4 (x) = (35x3 − 30x2 + 3) 8 N. B. Vyas Legendre’s Function
  • 10.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Polynomials: ⇒ P0 (x) = 1 ⇒ P1 (x) = x 1 ⇒ P2 (x) = (3x2 − 1) 2 1 ⇒ P3 (x) = (5x3 − 3x) 2 1 ⇒ P4 (x) = (35x3 − 30x2 + 3) 8 1 ⇒ P5 (x) = (63x5 − 70x3 + 15x) 8 N. B. Vyas Legendre’s Function
  • 11.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex.1 Express f (x) in terms of Legendre’s polynomials where f (x) = x3 + 2x2 − x − 3. N. B. Vyas Legendre’s Function
  • 12.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: N. B. Vyas Legendre’s Function
  • 13.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) N. B. Vyas Legendre’s Function
  • 14.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) ⇒ P1 (x) = x ∴ x = P1 (x) N. B. Vyas Legendre’s Function
  • 15.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) ⇒ P1 (x) = x ∴ x = P1 (x) 1 ⇒ P3 (x) = (5x3 − 3x) 2 N. B. Vyas Legendre’s Function
  • 16.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) ⇒ P1 (x) = x ∴ x = P1 (x) 1 ⇒ P3 (x) = (5x3 − 3x) 2 ∴ 2P3 (x) = (5x3 − 3x) N. B. Vyas Legendre’s Function
  • 17.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) ⇒ P1 (x) = x ∴ x = P1 (x) 1 ⇒ P3 (x) = (5x3 − 3x) 2 ∴ 2P3 (x) = (5x3 − 3x) ∴ 2P3 (x) + 3x = 5x3 N. B. Vyas Legendre’s Function
  • 18.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) ⇒ P1 (x) = x ∴ x = P1 (x) 1 ⇒ P3 (x) = (5x3 − 3x) 2 ∴ 2P3 (x) = (5x3 − 3x) ∴ 2P3 (x) + 3x = 5x3 ∴ 2P3 (x) + 3P1 (x) = 5x3 { x = P1 (x)} N. B. Vyas Legendre’s Function
  • 19.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) ⇒ P1 (x) = x ∴ x = P1 (x) 1 ⇒ P3 (x) = (5x3 − 3x) 2 ∴ 2P3 (x) = (5x3 − 3x) ∴ 2P3 (x) + 3x = 5x3 ∴ 2P3 (x) + 3P1 (x) = 5x3 { x = P1 (x)} 2 3 ∴ x3 = P3 (x) + P1 (x) 5 5 N. B. Vyas Legendre’s Function
  • 20.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 N. B. Vyas Legendre’s Function
  • 21.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 ∴ 2P2 (x) = (3x2 − 1) N. B. Vyas Legendre’s Function
  • 22.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 ∴ 2P2 (x) = (3x2 − 1) ∴ 2P2 (x) + 1 = 3x2 N. B. Vyas Legendre’s Function
  • 23.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 ∴ 2P2 (x) = (3x2 − 1) ∴ 2P2 (x) + 1 = 3x2 ∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)} N. B. Vyas Legendre’s Function
  • 24.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 ∴ 2P2 (x) = (3x2 − 1) ∴ 2P2 (x) + 1 = 3x2 ∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)} 2 1 ∴ x2 = P2 (x) + P0 (x) 3 3 N. B. Vyas Legendre’s Function
  • 25.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 ∴ 2P2 (x) = (3x2 − 1) ∴ 2P2 (x) + 1 = 3x2 ∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)} 2 1 ∴ x2 = P2 (x) + P0 (x) 3 3 Now, f (x) = x3 + 2x2 − x − 3 N. B. Vyas Legendre’s Function
  • 26.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 ∴ 2P2 (x) = (3x2 − 1) ∴ 2P2 (x) + 1 = 3x2 ∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)} 2 1 ∴ x2 = P2 (x) + P0 (x) 3 3 Now, f (x) = x3 + 2x2 − x − 3 f (x) = x3 + 2x2 − x − 3 2 3 4 2 = P3 (x) + P1 (x) + P2 (x) + P0 (x) − P1 (x) − 3P0 (x) 5 5 3 3 N. B. Vyas Legendre’s Function
  • 27.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex.2 Express x3 − 5x2 + 6x + 1 in terms of Legendre’s polynomial. N. B. Vyas Legendre’s Function
  • 28.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex.3 Express 4x3 − 2x2 − 3x + 8 in terms of Legendre’s polynomial. N. B. Vyas Legendre’s Function
  • 29.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Generating Function for Pn(x) ∞ 1 Pn(x)tn = √ n=0 1 − 2xt + t2 1 = (1 − 2xt + t2)− 2 N. B. Vyas Legendre’s Function
  • 30.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 The function (1 − 2xt + t2)− 2 is called Generating function of Legendre’s polynomial Pn(x) N. B. Vyas Legendre’s Function
  • 31.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex Show that N. B. Vyas Legendre’s Function
  • 32.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex Show that (i)Pn(1) = 1 N. B. Vyas Legendre’s Function
  • 33.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex Show that (i)Pn(1) = 1 (ii)Pn(−1) = (−1)n N. B. Vyas Legendre’s Function
  • 34.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex Show that (i)Pn(1) = 1 (ii)Pn(−1) = (−1)n (iii)Pn(−x) = (−1)nPn(x) N. B. Vyas Legendre’s Function
  • 35.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ∞ 1 (i) We have Pn (x)tn = (1 − 2xt + t2 )− 2 n=0 Putting x = 1 in eq(1), we get N. B. Vyas Legendre’s Function
  • 36.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ∞ 1 (i) We have Pn (x)tn = (1 − 2xt + t2 )− 2 n=0 Putting x = 1 in eq(1), we get ∞ 1 Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1 n=0 N. B. Vyas Legendre’s Function
  • 37.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ∞ 1 (i) We have Pn (x)tn = (1 − 2xt + t2 )− 2 n=0 Putting x = 1 in eq(1), we get ∞ 1 Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1 n=0 ∞ 1 ∴ Pn (1)tn = = 1 + t + t2 + t3 + ... 1−t n=0 N. B. Vyas Legendre’s Function
  • 38.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ∞ 1 (i) We have Pn (x)tn = (1 − 2xt + t2 )− 2 n=0 Putting x = 1 in eq(1), we get ∞ 1 Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1 n=0 ∞ 1 ∴ Pn (1)tn = = 1 + t + t2 + t3 + ... 1−t n=0 ∞ ∞ n ∴ Pn (1)t = tn n=0 n=0 N. B. Vyas Legendre’s Function
  • 39.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ∞ 1 (i) We have Pn (x)tn = (1 − 2xt + t2 )− 2 n=0 Putting x = 1 in eq(1), we get ∞ 1 Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1 n=0 ∞ 1 ∴ Pn (1)tn = = 1 + t + t2 + t3 + ... 1−t n=0 ∞ ∞ n ∴ Pn (1)t = tn n=0 n=0 Comparing the coefficient of tn both the sides, we get N. B. Vyas Legendre’s Function
  • 40.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ∞ 1 (i) We have Pn (x)tn = (1 − 2xt + t2 )− 2 n=0 Putting x = 1 in eq(1), we get ∞ 1 Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1 n=0 ∞ 1 ∴ Pn (1)tn = = 1 + t + t2 + t3 + ... 1−t n=0 ∞ ∞ n ∴ Pn (1)t = tn n=0 n=0 Comparing the coefficient of tn both the sides, we get Pn (1) = 1 N. B. Vyas Legendre’s Function
  • 41.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (ii) Putting x = −1 in eq(1), we get N. B. Vyas Legendre’s Function
  • 42.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (ii) Putting x = −1 in eq(1), we get ∞ 1 Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1 n=0 N. B. Vyas Legendre’s Function
  • 43.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (ii) Putting x = −1 in eq(1), we get ∞ 1 Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1 n=0 ∞ 1 ∴ Pn (−1)tn = = 1 − t + t2 − t3 + ... 1+t n=0 N. B. Vyas Legendre’s Function
  • 44.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (ii) Putting x = −1 in eq(1), we get ∞ 1 Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1 n=0 ∞ 1 ∴ Pn (−1)tn = = 1 − t + t2 − t3 + ... 1+t n=0 ∞ ∞ ∴ Pn (−1)tn = (−1)n tn n=0 n=0 N. B. Vyas Legendre’s Function
  • 45.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (ii) Putting x = −1 in eq(1), we get ∞ 1 Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1 n=0 ∞ 1 ∴ Pn (−1)tn = = 1 − t + t2 − t3 + ... 1+t n=0 ∞ ∞ ∴ Pn (−1)tn = (−1)n tn n=0 n=0 Comparing coefficients of tn , we get N. B. Vyas Legendre’s Function
  • 46.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (ii) Putting x = −1 in eq(1), we get ∞ 1 Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1 n=0 ∞ 1 ∴ Pn (−1)tn = = 1 − t + t2 − t3 + ... 1+t n=0 ∞ ∞ ∴ Pn (−1)tn = (−1)n tn n=0 n=0 Comparing coefficients of tn , we get Pn (−1) = (−1)n N. B. Vyas Legendre’s Function
  • 47.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get N. B. Vyas Legendre’s Function
  • 48.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 N. B. Vyas Legendre’s Function
  • 49.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 Now, replacing t by −t in eq(1), we get N. B. Vyas Legendre’s Function
  • 50.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 Now, replacing t by −t in eq(1), we get ∞ 1 Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b) n=0 N. B. Vyas Legendre’s Function
  • 51.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 Now, replacing t by −t in eq(1), we get ∞ 1 Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b) n=0 from equation (a) and (b) N. B. Vyas Legendre’s Function
  • 52.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 Now, replacing t by −t in eq(1), we get ∞ 1 Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b) n=0 from equation (a) and (b) ∞ ∞ n Pn (−x)(t) = Pn (x)(−1)n (t)n n=0 n=0 N. B. Vyas Legendre’s Function
  • 53.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 Now, replacing t by −t in eq(1), we get ∞ 1 Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b) n=0 from equation (a) and (b) ∞ ∞ n Pn (−x)(t) = Pn (x)(−1)n (t)n n=0 n=0 Comparing the coefficients of tn , both sides, we get N. B. Vyas Legendre’s Function
  • 54.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 Now, replacing t by −t in eq(1), we get ∞ 1 Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b) n=0 from equation (a) and (b) ∞ ∞ n Pn (−x)(t) = Pn (x)(−1)n (t)n n=0 n=0 Comparing the coefficients of tn , both sides, we get Pn (−x) = (−1)n Pn (x) N. B. Vyas Legendre’s Function
  • 55.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Rodrigue’s Formula 1 dn Pn(x) = n [(x2 − 1)n] 2 n! dxn N. B. Vyas Legendre’s Function
  • 56.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n N. B. Vyas Legendre’s Function
  • 57.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n Differentiating wit respect to x N. B. Vyas Legendre’s Function
  • 58.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n Differentiating wit respect to x ∴ y1 = n(x2 − 1)n−1 (2x) N. B. Vyas Legendre’s Function
  • 59.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n Differentiating wit respect to x ∴ y1 = n(x2 − 1)n−1 (2x) 2nx(x2 − 1)n 2nxy ∴ y1 = = 2 (x2 − 1) x −1 N. B. Vyas Legendre’s Function
  • 60.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n Differentiating wit respect to x ∴ y1 = n(x2 − 1)n−1 (2x) 2nx(x2 − 1)n 2nxy ∴ y1 = = 2 (x2 − 1) x −1 ∴ (x2 − 1)y1 = 2nxy N. B. Vyas Legendre’s Function
  • 61.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n Differentiating wit respect to x ∴ y1 = n(x2 − 1)n−1 (2x) 2nx(x2 − 1)n 2nxy ∴ y1 = = 2 (x2 − 1) x −1 ∴ (x2 − 1)y1 = 2nxy Differentiating with respect to x, N. B. Vyas Legendre’s Function
  • 62.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n Differentiating wit respect to x ∴ y1 = n(x2 − 1)n−1 (2x) 2nx(x2 − 1)n 2nxy ∴ y1 = = 2 (x2 − 1) x −1 ∴ (x2 − 1)y1 = 2nxy Differentiating with respect to x, (x2 − 1)y2 +2xy1 = 2nxy1 + 2ny N. B. Vyas Legendre’s Function
  • 63.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V dxn N. B. Vyas Legendre’s Function
  • 64.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V dxn dn → ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn dxn N. B. Vyas Legendre’s Function
  • 65.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V dxn dn → ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn dxn dn → (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn dxn N. B. Vyas Legendre’s Function
  • 66.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V dxn dn → ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn dxn dn → (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn dxn dn → (2nxy1 ) = nC0 (2nx)yn+1 + nC1 (2n)yn dxn N. B. Vyas Legendre’s Function
  • 67.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V dxn dn → ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn dxn dn → (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn dxn dn → (2nxy1 ) = nC0 (2nx)yn+1 + nC1 (2n)yn dxn dn → (2ny) = 2nyn dxn N. B. Vyas Legendre’s Function
  • 68.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V dxn dn → ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn dxn dn → (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn dxn dn → (2nxy1 ) = nC0 (2nx)yn+1 + nC1 (2n)yn dxn dn → (2ny) = 2nyn dxn n(n − 1) Also nC0 = 1, nC1 = n, nC2 = 2! N. B. Vyas Legendre’s Function
  • 69.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn N. B. Vyas Legendre’s Function
  • 70.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 N. B. Vyas Legendre’s Function
  • 71.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 N. B. Vyas Legendre’s Function
  • 72.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 N. B. Vyas Legendre’s Function
  • 73.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 dn y Let v = yn = n dx N. B. Vyas Legendre’s Function
  • 74.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 dn y Let v = yn = n dx ∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2) N. B. Vyas Legendre’s Function
  • 75.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 dn y Let v = yn = n dx ∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2) Equation (2) is a Legendre’s equation in variables v and x N. B. Vyas Legendre’s Function
  • 76.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 dn y Let v = yn = n dx ∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2) Equation (2) is a Legendre’s equation in variables v and x ⇒ Pn (x) is a solution of equation (2) N. B. Vyas Legendre’s Function
  • 77.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 dn y Let v = yn = n dx ∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2) Equation (2) is a Legendre’s equation in variables v and x ⇒ Pn (x) is a solution of equation (2) Also, v = f (x) is a solution of equation (2) N. B. Vyas Legendre’s Function
  • 78.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 dn y Let v = yn = n dx ∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2) Equation (2) is a Legendre’s equation in variables v and x ⇒ Pn (x) is a solution of equation (2) Also, v = f (x) is a solution of equation (2) Pn = cv where c is constant N. B. Vyas Legendre’s Function
  • 79.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx N. B. Vyas Legendre’s Function
  • 80.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx Now y = (x2 − 1)n N. B. Vyas Legendre’s Function
  • 81.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx Now y = (x2 − 1)n = (x + 1)n (x − 1)n N. B. Vyas Legendre’s Function
  • 82.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx Now y = (x2 − 1)n = (x + 1)n (x − 1)n dn y dn ∴ = (x + 1)n n ((x − 1)n ) dxn dx N. B. Vyas Legendre’s Function
  • 83.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx Now y = (x2 − 1)n = (x + 1)n (x − 1)n dn y dn ∴ = (x + 1)n n ((x − 1)n ) dxn dx dn−1 +n(x + 1)n−1 n−1 ((x − 1)n ) dx N. B. Vyas Legendre’s Function
  • 84.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx Now y = (x2 − 1)n = (x + 1)n (x − 1)n dn y dn ∴ = (x + 1)n n ((x − 1)n ) dxn dx dn−1 +n(x + 1)n−1 n−1 ((x − 1)n ) dx +... N. B. Vyas Legendre’s Function
  • 85.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx Now y = (x2 − 1)n = (x + 1)n (x − 1)n dn y dn ∴ = (x + 1)n n ((x − 1)n ) dxn dx dn−1 +n(x + 1)n−1 n−1 ((x − 1)n ) dx +... dn ((x + 1)n ) + (x − 1)n dxn N. B. Vyas Legendre’s Function
  • 86.
    Legendre’s Polynomials Examplesof Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Recurrence Relations for Pn(x) : − N. B. Vyas Legendre’s Function
  • 87.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) N. B. Vyas Legendre’s Function
  • 88.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have N. B. Vyas Legendre’s Function
  • 89.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 N. B. Vyas Legendre’s Function
  • 90.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 Differentiating equation (i) partially with respect to t, we get N. B. Vyas Legendre’s Function
  • 91.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 N. B. Vyas Legendre’s Function
  • 92.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 1 = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t) N. B. Vyas Legendre’s Function
  • 93.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 1 = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t) 1 (1 − 2xt + t2 )− 2 = (x − t) (1 − 2xt + t2 ) N. B. Vyas Legendre’s Function
  • 94.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 1 = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t) 1 (1 − 2xt + t2 )− 2 = (x − t) (1 − 2xt + t2 ) from (i) N. B. Vyas Legendre’s Function
  • 95.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 1 = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t) 1 (1 − 2xt + t2 )− 2 = (x − t) (1 − 2xt + t2 ) from (i) ∞ ∞ n−1 (1 − 2xt + t2 ) nPn (x)t = (x − t) Pn (x)tn n=1 n=0 N. B. Vyas Legendre’s Function
  • 96.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ ∞ ∴ nPn (x)tn−1 − 2x nPn (x)tn + nPn (x)tn+1 = n=1 n=1 n=1 ∞ ∞ x Pn (x)tn − Pn (x)tn+1 n=0 n=0 N. B. Vyas Legendre’s Function
  • 97.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ ∞ ∴ nPn (x)tn−1 − 2x nPn (x)tn + nPn (x)tn+1 = n=1 n=1 n=1 ∞ ∞ x Pn (x)tn − Pn (x)tn+1 n=0 n=0 replacing n by n+1 in 1st term, n by n-1 in 3rd term in L.H.S. N. B. Vyas Legendre’s Function
  • 98.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ ∞ ∴ nPn (x)tn−1 − 2x nPn (x)tn + nPn (x)tn+1 = n=1 n=1 n=1 ∞ ∞ x Pn (x)tn − Pn (x)tn+1 n=0 n=0 replacing n by n+1 in 1st term, n by n-1 in 3rd term in L.H.S. replacing n by n-1 in 2nd term in R.H.S N. B. Vyas Legendre’s Function
  • 99.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ ∞ ∴ nPn (x)tn−1 − 2x nPn (x)tn + nPn (x)tn+1 = n=1 n=1 n=1 ∞ ∞ x Pn (x)tn − Pn (x)tn+1 n=0 n=0 replacing n by n+1 in 1st term, n by n-1 in 3rd term in L.H.S. replacing n by n-1 in 2nd term in R.H.S ∞ ∞ ∞ (n + 1)Pn+1 (x)tn − 2x nPn (x)tn + (n − n=0 n=1 n=2 ∞ ∞ 1)Pn−1 (x)tn = x Pn (x)tn − Pn−1 (x)tn n=0 n=1 N. B. Vyas Legendre’s Function
  • 100.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ ∞ ∴ nPn (x)tn−1 − 2x nPn (x)tn + nPn (x)tn+1 = n=1 n=1 n=1 ∞ ∞ x Pn (x)tn − Pn (x)tn+1 n=0 n=0 replacing n by n+1 in 1st term, n by n-1 in 3rd term in L.H.S. replacing n by n-1 in 2nd term in R.H.S ∞ ∞ ∞ (n + 1)Pn+1 (x)tn − 2x nPn (x)tn + (n − n=0 n=1 n=2 ∞ ∞ 1)Pn−1 (x)tn = x Pn (x)tn − Pn−1 (x)tn n=0 n=1 comparing the coefficients of tn on both the sides N. B. Vyas Legendre’s Function
  • 101.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (n + 1)Pn+1 (x) − 2xnPn (x) + (n − 1)Pn−1 (x) = xPn (x) − Pn−1 (x) N. B. Vyas Legendre’s Function
  • 102.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (n + 1)Pn+1 (x) − 2xnPn (x) + (n − 1)Pn−1 (x) = xPn (x) − Pn−1 (x) ∴ (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − (n − 1 + 1)Pn−1 (x) N. B. Vyas Legendre’s Function
  • 103.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (n + 1)Pn+1 (x) − 2xnPn (x) + (n − 1)Pn−1 (x) = xPn (x) − Pn−1 (x) ∴ (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − (n − 1 + 1)Pn−1 (x) ∴ (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) N. B. Vyas Legendre’s Function
  • 104.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) N. B. Vyas Legendre’s Function
  • 105.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have N. B. Vyas Legendre’s Function
  • 106.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 N. B. Vyas Legendre’s Function
  • 107.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 Differentiating equation (i) partially with respect to x, we get N. B. Vyas Legendre’s Function
  • 108.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 Differentiating equation (i) partially with respect to x, we get ∞ 1 3 Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t) 2 n=0 N. B. Vyas Legendre’s Function
  • 109.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 Differentiating equation (i) partially with respect to x, we get ∞ 1 3 Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t) 2 n=0 ∞ 1 n t(1 − 2xt + t2 )− 2 ∴ Pn (x)t = ————-(ii) (1 − 2xt + t2 ) n=0 N. B. Vyas Legendre’s Function
  • 110.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 Differentiating equation (i) partially with respect to x, we get ∞ 1 3 Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t) 2 n=0 ∞ 1 t(1 − 2xt + t2 )− 2 n ∴ Pn (x)t = ————-(ii) (1 − 2xt + t2 ) n=0 ⇒ Differentiating equation (i) partially with respect to t, we get N. B. Vyas Legendre’s Function
  • 111.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 Differentiating equation (i) partially with respect to x, we get ∞ 1 3 Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t) 2 n=0 ∞ 1 t(1 − 2xt + t2 )− 2 n ∴ Pn (x)t = ————-(ii) (1 − 2xt + t2 ) n=0 ⇒ Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 N. B. Vyas Legendre’s Function
  • 112.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 Differentiating equation (i) partially with respect to x, we get ∞ 1 3 Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t) 2 n=0 ∞ 1 t(1 − 2xt + t2 )− 2 n ∴ Pn (x)t = ————-(ii) (1 − 2xt + t2 ) n=0 ⇒ Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 ∞ 1 n−1 (x − t)(1 −Legendre’s )− 2 N. B. Vyas 2xt + t2 Function
  • 113.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 N. B. Vyas Legendre’s Function
  • 114.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 ∞ ∞ ∴ t nPn (x)tn−1 = (x − t) Pn (x)tn n=1 n=0 N. B. Vyas Legendre’s Function
  • 115.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 ∞ ∞ ∴ t nPn (x)tn−1 = (x − t) Pn (x)tn n=1 n=0 ∞ ∞ ∞ ∴ nPn (x)tn = x Pn (x)tn − Pn (x)tn+1 n=1 n=0 n=0 N. B. Vyas Legendre’s Function
  • 116.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 ∞ ∞ ∴ t nPn (x)tn−1 = (x − t) Pn (x)tn n=1 n=0 ∞ ∞ ∞ ∴ nPn (x)tn = x Pn (x)tn − Pn (x)tn+1 n=1 n=0 n=0 Replacing n by n-1 in 2nd term in R.H.S. N. B. Vyas Legendre’s Function
  • 117.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 ∞ ∞ ∴ t nPn (x)tn−1 = (x − t) Pn (x)tn n=1 n=0 ∞ ∞ ∞ ∴ nPn (x)tn = x Pn (x)tn − Pn (x)tn+1 n=1 n=0 n=0 Replacing n by n-1 in 2nd term in R.H.S. ∞ ∞ ∞ n n ∴ nPn (x)t = x Pn (x)t − Pn−1 (x)tn n=1 n=0 n=1 N. B. Vyas Legendre’s Function
  • 118.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 ∞ ∞ ∴ t nPn (x)tn−1 = (x − t) Pn (x)tn n=1 n=0 ∞ ∞ ∞ ∴ nPn (x)tn = x Pn (x)tn − Pn (x)tn+1 n=1 n=0 n=0 Replacing n by n-1 in 2nd term in R.H.S. ∞ ∞ ∞ n n ∴ nPn (x)t = x Pn (x)t − Pn−1 (x)tn n=1 n=0 n=1 comparing the coefficients of tn on both sides, we get N. B. Vyas Legendre’s Function
  • 119.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 ∞ ∞ ∴ t nPn (x)tn−1 = (x − t) Pn (x)tn n=1 n=0 ∞ ∞ ∞ ∴ nPn (x)tn = x Pn (x)tn − Pn (x)tn+1 n=1 n=0 n=0 Replacing n by n-1 in 2nd term in R.H.S. ∞ ∞ ∞ n n ∴ nPn (x)t = x Pn (x)t − Pn−1 (x)tn n=1 n=0 n=1 comparing the coefficients of tn on both sides, we get nPn (x) = xPn (x) − Pn−1 (x) N. B. Vyas Legendre’s Function
  • 120.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) N. B. Vyas Legendre’s Function
  • 121.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) N. B. Vyas Legendre’s Function
  • 122.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) N. B. Vyas Legendre’s Function
  • 123.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get N. B. Vyas Legendre’s Function
  • 124.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) —(b) N. B. Vyas Legendre’s Function
  • 125.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) —(b) Also from relation (2) N. B. Vyas Legendre’s Function
  • 126.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) —(b) Also from relation (2) nPn (x) = xPn (x) − Pn−1 (x) N. B. Vyas Legendre’s Function
  • 127.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) —(b) Also from relation (2) nPn (x) = xPn (x) − Pn−1 (x) ∴ xPn (x) = nPn (x) + Pn−1 (x)—– (c) N. B. Vyas Legendre’s Function
  • 128.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) —(b) Also from relation (2) nPn (x) = xPn (x) − Pn−1 (x) ∴ xPn (x) = nPn (x) + Pn−1 (x)—– (c) Substituting the value of (c) in equation (b), we get N. B. Vyas Legendre’s Function
  • 129.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) —(b) Also from relation (2) nPn (x) = xPn (x) − Pn−1 (x) ∴ xPn (x) = nPn (x) + Pn−1 (x)—– (c) Substituting the value of (c) in equation (b), we get ∴ (2n + 1)Pn (x) + (2n + 1)[nPn (x) + Pn−1 (x)] = (n + 1)Pn+1 (x) + nPn−1 (x) N. B. Vyas Legendre’s Function
  • 130.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) = (n + 1)Pn+1 (x) + nPn−1 (x) N. B. Vyas Legendre’s Function
  • 131.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) = (n + 1)Pn+1 (x) + nPn−1 (x) ∴ (2n + 1)(n + 1)Pn (x) = (n + 1)Pn+1 (x) − (n + 1)Pn−1 (x) N. B. Vyas Legendre’s Function
  • 132.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) = (n + 1)Pn+1 (x) + nPn−1 (x) ∴ (2n + 1)(n + 1)Pn (x) = (n + 1)Pn+1 (x) − (n + 1)Pn−1 (x) ∴ dividing by (n + 1), we get N. B. Vyas Legendre’s Function
  • 133.
    Legendre’s Polynomials Examples ofLegendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) = (n + 1)Pn+1 (x) + nPn−1 (x) ∴ (2n + 1)(n + 1)Pn (x) = (n + 1)Pn+1 (x) − (n + 1)Pn−1 (x) ∴ dividing by (n + 1), we get ∴ (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) N. B. Vyas Legendre’s Function
  • 134.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) N. B. Vyas Legendre’s Function
  • 135.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), N. B. Vyas Legendre’s Function
  • 136.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) N. B. Vyas Legendre’s Function
  • 137.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), N. B. Vyas Legendre’s Function
  • 138.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b) N. B. Vyas Legendre’s Function
  • 139.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b) Taking (a) - (b), we get N. B. Vyas Legendre’s Function
  • 140.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b) Taking (a) - (b), we get ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x) N. B. Vyas Legendre’s Function
  • 141.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b) Taking (a) - (b), we get ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x) replacing n by n − 1, we get N. B. Vyas Legendre’s Function
  • 142.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b) Taking (a) - (b), we get ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x) replacing n by n − 1, we get ∴ nPn−1 (x) = Pn (x) − xPn−1 (x) N. B. Vyas Legendre’s Function
  • 143.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b) Taking (a) - (b), we get ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x) replacing n by n − 1, we get ∴ nPn−1 (x) = Pn (x) − xPn−1 (x) ∴ Pn (x) = xPn−1 (x) + nPn−1 (x) N. B. Vyas Legendre’s Function
  • 144.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] N. B. Vyas Legendre’s Function
  • 145.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) N. B. Vyas Legendre’s Function
  • 146.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) N. B. Vyas Legendre’s Function
  • 147.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) N. B. Vyas Legendre’s Function
  • 148.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) nPn (x) = xPn (x) − Pn−1 (x) N. B. Vyas Legendre’s Function
  • 149.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) nPn (x) = xPn (x) − Pn−1 (x) xPn (x) = nPn (x) + Pn−1 (x) ——– (b) N. B. Vyas Legendre’s Function
  • 150.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) nPn (x) = xPn (x) − Pn−1 (x) xPn (x) = nPn (x) + Pn−1 (x) ——– (b) taking (a) - x X (b), we get N. B. Vyas Legendre’s Function
  • 151.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) nPn (x) = xPn (x) − Pn−1 (x) xPn (x) = nPn (x) + Pn−1 (x) ——– (b) taking (a) - x X (b), we get (1 − x2 )Pn (x) = xPn−1 (x) + nPn−1 (x) − nxPn (x) − xPn−1 (x) N. B. Vyas Legendre’s Function
  • 152.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) nPn (x) = xPn (x) − Pn−1 (x) xPn (x) = nPn (x) + Pn−1 (x) ——– (b) taking (a) - x X (b), we get (1 − x2 )Pn (x) = xPn−1 (x) + nPn−1 (x) − nxPn (x) − xPn−1 (x) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] N. B. Vyas Legendre’s Function
  • 153.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) nPn (x) = xPn (x) − Pn−1 (x) xPn (x) = nPn (x) + Pn−1 (x) ——– (b) taking (a) - x X (b), we get (1 − x2 )Pn (x) = xPn−1 (x) + nPn−1 (x) − nxPn (x) − xPn−1 (x) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] N. B. Vyas Legendre’s Function
  • 154.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] N. B. Vyas Legendre’s Function
  • 155.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) N. B. Vyas Legendre’s Function
  • 156.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) N. B. Vyas Legendre’s Function
  • 157.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) N. B. Vyas Legendre’s Function
  • 158.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) N. B. Vyas Legendre’s Function
  • 159.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x) N. B. Vyas Legendre’s Function
  • 160.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)] N. B. Vyas Legendre’s Function
  • 161.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)] n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x)) N. B. Vyas Legendre’s Function
  • 162.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)] n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x)) from equation (a), N. B. Vyas Legendre’s Function
  • 163.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)] n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x)) from equation (a), (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] N. B. Vyas Legendre’s Function
  • 164.
    Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)] n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x)) from equation (a), (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] N. B. Vyas Legendre’s Function