SlideShare a Scribd company logo
Fourier Series 2

            N. B. Vyas


   Department of Mathematics,
Atmiya Institute of Tech. & Science,
      Rajkot (Guj.)- INDIA



        N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Let f (x) be a periodic function with an arbitrary period 2L
  defined in the interval c < x < c + 2L




                    N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Let f (x) be a periodic function with an arbitrary period 2L
  defined in the interval c < x < c + 2L
  The Fourier series of f (x) is given by




                    N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Let f (x) be a periodic function with an arbitrary period 2L
  defined in the interval c < x < c + 2L
  The Fourier series of f (x) is given by
                 ∞
            a0              nπx          nπx
  f (x) =      +     an cos     + bn sin
            2    n=1
                             L            L




                     N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Let f (x) be a periodic function with an arbitrary period 2L
  defined in the interval c < x < c + 2L
  The Fourier series of f (x) is given by
                 ∞
            a0              nπx          nπx
  f (x) =      +     an cos     + bn sin
            2    n=1
                             L            L
                         c+2L
             1
  where a0 =                    f (x) dx
             L       c




                           N. B. Vyas      Fourier Series 2
Functions of any Period p = 2L


  Let f (x) be a periodic function with an arbitrary period 2L
  defined in the interval c < x < c + 2L
  The Fourier series of f (x) is given by
                 ∞
            a0              nπx          nπx
  f (x) =      +     an cos     + bn sin
            2    n=1
                             L            L
             1 c+2L
  where a0 =           f (x) dx
             L c
       1 c+2L              nπx
  an =         f (x) cos           dx
       L c                   L




                     N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Let f (x) be a periodic function with an arbitrary period 2L
  defined in the interval c < x < c + 2L
  The Fourier series of f (x) is given by
                 ∞
            a0              nπx          nπx
  f (x) =      +     an cos     + bn sin
            2    n=1
                             L            L
             1 c+2L
  where a0 =           f (x) dx
             L c
       1 c+2L              nπx
  an =         f (x) cos        dx
       L c                   L
       1 c+2L              nπx
  bn =        f (x) sin         dx
       L c                   L


                     N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Corollary 1: If c = 0 the interval becomes 0 < x < 2L




                    N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Corollary 1: If c = 0 the interval becomes 0 < x < 2L
                ∞
          a0                 nπx            nπx
  f (x) =    +       an cos        + bn sin
          2    n=1
                              L               L




                    N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Corollary 1: If c = 0 the interval becomes 0 < x < 2L
                ∞
          a0                 nπx            nπx
  f (x) =    +       an cos        + bn sin
          2    n=1
                              L               L
                       2L
               1
  where a0 =                f (x) dx
               L   0




                            N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Corollary 1: If c = 0 the interval becomes 0 < x < 2L
                ∞
          a0                 nπx            nπx
  f (x) =    +       an cos        + bn sin
          2    n=1
                              L               L
                             2L
                  1
  where a0 =                      f (x) dx
                  L      0
                 2L
         1                            nπx
  an =                f (x) cos                dx
         L   0                         L




                                  N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Corollary 1: If c = 0 the interval becomes 0 < x < 2L
                ∞
          a0                 nπx            nπx
  f (x) =    +       an cos        + bn sin
          2    n=1
                              L               L
                        2L
               1
  where a0 =                 f (x) dx
               L    0
            2L
       1                  nπx
  an =           f (x) cos    dx
       L   0               L
             2L
       1                  nπx
  bn =          f (x) sin     dx
       L   0               L




                             N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Corollary 2: If c = −L the interval becomes −L < x < L




                   N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Corollary 2: If c = −L the interval becomes −L < x < L
                ∞
          a0                nπx            nπx
  f (x) =    +       an cos       + bn sin
          2    n=1
                             L              L




                   N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Corollary 2: If c = −L the interval becomes −L < x < L
                ∞
          a0                nπx            nπx
  f (x) =    +       an cos       + bn sin
          2    n=1
                             L              L
                 L
             1
  where a0 =          f (x) dx
             L   −L




                      N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Corollary 2: If c = −L the interval becomes −L < x < L
                ∞
          a0                nπx            nπx
  f (x) =    +       an cos       + bn sin
          2    n=1
                             L              L
             1 L
  where a0 =         f (x) dx
             L −L
       1 L               nπx
  an =       f (x) cos            dx
       L −L                L




                     N. B. Vyas    Fourier Series 2
Functions of any Period p = 2L


  Corollary 2: If c = −L the interval becomes −L < x < L
                ∞
          a0                nπx            nπx
  f (x) =    +       an cos       + bn sin
          2    n=1
                             L              L
             1 L
  where a0 =         f (x) dx
             L −L
       1 L               nπx
  an =       f (x) cos        dx
       L −L                L
       1 L               nπx
  bn =       f (x) sin        dx
       L −L                L



                    N. B. Vyas   Fourier Series 2
Example




Ex. The Fourier series of f (x) = x2 , 0 < x < 2 where
    f (x + 2) = f (x).




                    N. B. Vyas   Fourier Series 2
Example




Ex. The Fourier series of f (x) = x2 , 0 < x < 2 where
    f (x + 2) = f (x).
                             1    1      1        π2
    Hence deduce that 1 − 2 + 2 − 2 + . . . =
                             2    3      4        12




                    N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by




                        N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                   ∞
              a0              nπx          nπx
    f (x) =      +     an cos     + bn sin
              2    n=1
                               L            L




                        N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                   ∞
              a0              nπx          nπx
    f (x) =      +     an cos     + bn sin
              2    n=1
                               L            L
                           2
               1
    where a0 =                 f (x) dx
               L       0




                                N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                   ∞
              a0              nπx          nπx
    f (x) =      +     an cos     + bn sin
              2    n=1
                               L            L
                1 2
    where a0 =         f (x) dx
                L 0
         1 2               nπx
    an =       f (x) cos             dx
         L 0                 L




                        N. B. Vyas    Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                   ∞
              a0              nπx          nπx
    f (x) =      +     an cos     + bn sin
              2    n=1
                               L            L
                1 2
    where a0 =         f (x) dx
                L 0
         1 2               nπx
    an =       f (x) cos        dx
         L 0                 L
         1 2               nπx
    bn =       f (x) sin        dx
         L 0                 L




                        N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                   ∞
              a0              nπx          nπx
    f (x) =      +     an cos     + bn sin
              2    n=1
                               L            L
                1 2
    where a0 =         f (x) dx
                L 0
         1 2               nπx
    an =       f (x) cos        dx
         L 0                 L
         1 2               nπx
    bn =       f (x) sin        dx
         L 0                 L

    Here p = 2L = 2 ⇒ L = 1


                        N. B. Vyas   Fourier Series 2
Example



                             2
                     1
  Step 2. Now a0 =               f (x) dx
                     1   0




                     N. B. Vyas        Fourier Series 2
Example



                                   2
                           1
  Step 2. Now a0 =                     f (x) dx
                           1   0
             2
  a0 =           (x)2 dx
         0




                           N. B. Vyas        Fourier Series 2
Example



                                       2
                               1
  Step 2. Now a0 =                         f (x) dx
                               1   0
                 2
  a0 =               (x)2 dx
             0
         3       2
      x
  =
      3          0




                               N. B. Vyas        Fourier Series 2
Example



                                       2
                               1
  Step 2. Now a0 =                         f (x) dx
                               1   0
                 2
  a0 =               (x)2 dx
             0
         3       2
        x
  =
        3        0
    8
  =
    3




                               N. B. Vyas        Fourier Series 2
Example



                         2
                 1                        nπx
  Step 3. an =               f (x) cos            dx
                 1   0                     1




                             N. B. Vyas   Fourier Series 2
Example



                             2
                     1                        nπx
  Step 3. an =                   f (x) cos            dx
                     1   0                     1
             2
  an =           x2 cos(nπx) dx
         0




                                 N. B. Vyas   Fourier Series 2
Example



                             2
                     1                        nπx
  Step 3. an =                   f (x) cos             dx
                     1   0                     1
             2
  an =           x2 cos(nπx) dx
         0
                                                                    2
             sin nπx                          cos nπx     sin nπx
  = x2                       − (2x) −            2π2
                                                      +2 − 3 3
               nπ                              n            nπ      0




                                 N. B. Vyas    Fourier Series 2
Example



                             2
                     1                        nπx
  Step 3. an =                   f (x) cos             dx
                     1   0                     1
             2
  an =           x2 cos(nπx) dx
         0
                                                                    2
             sin nπx                          cos nπx     sin nπx
  = x2                       − (2x) −            2π2
                                                      +2 − 3 3
               nπ                              n            nπ      0
    4
  = 2 2
   nπ




                                 N. B. Vyas    Fourier Series 2
Example



                         2
                 1                        nπx
  Step 4. bn =               f (x) sin            dx
                 1   0                     1




                             N. B. Vyas   Fourier Series 2
Example



                             2
                     1                        nπx
  Step 4. bn =                   f (x) sin            dx
                     1   0                     1
             2
  bn =           x2 sin(nπx) dx
         0




                                 N. B. Vyas   Fourier Series 2
Example



                             2
                     1                        nπx
  Step 4. bn =                   f (x) sin            dx
                     1   0                     1
             2
  bn =           x2 sin(nπx) dx
         0
                                                                                2
                 cos nπx         sin nπx                              cos nπx
  = x2 −                 − (2x) − 2 2                            +2
                   nπ              nπ                                  n3 π 3   0




                                 N. B. Vyas   Fourier Series 2
Example



                             2
                     1                        nπx
  Step 4. bn =                   f (x) sin            dx
                     1   0                     1
             2
  bn =           x2 sin(nπx) dx
         0
                                                                                2
                 cos nπx         sin nπx                              cos nπx
  = x2 −                 − (2x) − 2 2                            +2
                   nπ              nπ                                  n3 π 3   0
      4
  =−
     nπ




                                 N. B. Vyas   Fourier Series 2
Example

  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (0, 2)




                     N. B. Vyas   Fourier Series 2
Example

  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (0, 2)
               ∞                               ∞
         8            4        nπx          4               nπx
  f (x) = +          2π2
                           cos     +     −            sin
         6 n=1      n           1    n=1
                                           nπ                1




                     N. B. Vyas   Fourier Series 2
Example

  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (0, 2)
               ∞                                ∞
         8            4        nπx          4               nπx
  f (x) = +          2π2
                           cos     +     −            sin
         6 n=1      n           1    n=1
                                           nπ                1
             ∞                    ∞
   4  4           cos(nπx) 4            sin(nπx)
  = + 2                   −
   3 π      n=1
                     n2     π     n=1
                                            n




                     N. B. Vyas    Fourier Series 2
Example

  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (0, 2)
               ∞                                ∞
         8            4        nπx          4               nπx
  f (x) = +          2π2
                           cos     +     −            sin
         6 n=1      n           1    n=1
                                           nπ                1
             ∞                    ∞
   4  4           cos(nπx) 4            sin(nπx)
  = + 2                   −
   3 π      n=1
                     n2     π     n=1
                                            n
  Putting x = 1, we get




                     N. B. Vyas    Fourier Series 2
Example

  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (0, 2)
               ∞                                ∞
         8            4        nπx          4               nπx
  f (x) = +          2π2
                           cos     +     −            sin
         6 n=1      n           1    n=1
                                           nπ                1
             ∞                    ∞
   4  4           cos(nπx) 4            sin(nπx)
  = + 2                   −
   3 π      n=1
                     n2     π     n=1
                                            n
  Putting x = 1, we get
      4    4     1    1 1
  1 = + 2 − 1 + 2 − 2 + ...
      3 π        1    2 3




                     N. B. Vyas    Fourier Series 2
Example

  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (0, 2)
               ∞                                ∞
         8            4        nπx          4               nπx
  f (x) = +          2π2
                           cos     +     −            sin
         6 n=1      n           1    n=1
                                           nπ                1
             ∞                    ∞
   4  4           cos(nπx) 4            sin(nπx)
  = + 2                   −
   3 π      n=1
                     n2     π     n=1
                                            n
  Putting x = 1, we get
      4    4     1    1   1
  1 = + 2 − 1 + 2 − 2 + ...
      3 π        1    2   3
    1    4     1    1   1
  − = 2 − 1 + 2 − 2 + ...
    3   π     1    2    3



                     N. B. Vyas    Fourier Series 2
Example

  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (0, 2)
               ∞                                ∞
         8            4        nπx          4               nπx
  f (x) = +          2π2
                           cos     +     −            sin
         6 n=1      n           1    n=1
                                           nπ                1
             ∞                    ∞
   4  4           cos(nπx) 4            sin(nπx)
  = + 2                   −
   3 π      n=1
                     n2     π     n=1
                                            n
  Putting x = 1, we get
        4     4     1     1     1
  1 = + 2 − 1 + 2 − 2 + ...
        3 π         1     2     3
     1      4     1     1     1
  − = 2 − 1 + 2 − 2 + ...
     3     π      1     2     3
    2
  π       1     1     1     1
       = 2 − 2 + 2 − 2 + ...
  12      1     2     3     4
                     N. B. Vyas    Fourier Series 2
Example




Ex. Find the Fourier series of f (x) = 2x in −1 < x < 1
    where p = 2L = 2.




                   N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by




                        N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                   ∞
            a0              nπx          nπx
    f (x) =    +     an cos     + bn sin
            2    n=1
                             L            L




                        N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                     ∞
            a0              nπx          nπx
    f (x) =    +     an cos     + bn sin
            2    n=1
                             L            L
                         1
                 1
    where a0 =                f (x) dx
                 L       −1




                              N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                        ∞
            a0              nπx          nπx
    f (x) =    +     an cos     + bn sin
            2    n=1
                             L            L
                            1
                    1
    where a0 =                   f (x) dx
                    L       −1
               1
           1                        nπx
    an =            f (x) cos                 dx
           L   −1                    L




                                 N. B. Vyas    Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                       ∞
            a0              nπx          nπx
    f (x) =    +     an cos     + bn sin
            2    n=1
                             L            L
                           1
                   1
    where a0 =                  f (x) dx
                   L       −1
               1
         1                 nπx
    an =           f (x) cos   dx
         L    −1            L
               1
         1                 nπx
    bn =         f (x) sin     dx
         L    −1            L




                                N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                       ∞
            a0              nπx          nπx
    f (x) =    +     an cos     + bn sin
            2    n=1
                             L            L
                           1
                   1
    where a0 =                  f (x) dx
                   L       −1
               1
         1                 nπx
    an =           f (x) cos   dx
         L    −1            L
               1
         1                 nπx
    bn =         f (x) sin     dx
         L    −1            L

    Here p = 2L = 2 ⇒ L = 1


                                N. B. Vyas   Fourier Series 2
Example




                         1
                     1
  Step 2. Now a0 =            f (x) dx
                     1   −1




                     N. B. Vyas     Fourier Series 2
Example




                          1
                      1
  Step 2. Now a0 =             f (x) dx
                      1   −1
         1
  a0 =        2x dx
         −1




                      N. B. Vyas     Fourier Series 2
Example




                          1
                      1
  Step 2. Now a0 =             f (x) dx
                      1   −1
         1
  a0 =        2x dx
         −1
  =0




                      N. B. Vyas     Fourier Series 2
Example


                     1
                 1                     nπx
  Step 3. an =            f (x) cos             dx
                 1   −1                 1




                          N. B. Vyas   Fourier Series 2
Example


                      1
                  1                     nπx
  Step 3. an =             f (x) cos             dx
                  1   −1                 1
         1
  an =        2x cos(nπx) dx
         −1




                           N. B. Vyas   Fourier Series 2
Example


                      1
                  1                     nπx
  Step 3. an =             f (x) cos             dx
                  1   −1                 1
         1
  an =        2x cos(nπx) dx
         −1
                                                     1
          sin nπx                cos nπx
  = 2x                    − (2) − 2 2
            nπ                    nπ                 −1




                           N. B. Vyas   Fourier Series 2
Example


                      1
                  1                     nπx
  Step 3. an =             f (x) cos             dx
                  1   −1                 1
         1
  an =        2x cos(nπx) dx
         −1
                                                     1
        sin nπx                  cos nπx
  = 2x                    − (2) − 2 2
          nπ                      nπ                 −1
       2(−1)n
  = 0+ 2 2
         nπ




                           N. B. Vyas   Fourier Series 2
Example


                      1
                  1                     nπx
  Step 3. an =             f (x) cos             dx
                  1   −1                 1
         1
  an =        2x cos(nπx) dx
         −1
                                                     1
        sin nπx         cos nπx
  = 2x          − (2) − 2 2
          nπ              nπ                         −1
             n          n
       2(−1)       2(−1)
  = 0+ 2 2 −0− 2 2
         nπ         nπ




                           N. B. Vyas   Fourier Series 2
Example


                      1
                  1                     nπx
  Step 3. an =             f (x) cos             dx
                  1   −1                 1
         1
  an =        2x cos(nπx) dx
         −1
                                                     1
        sin nπx         cos nπx
  = 2x          − (2) − 2 2
          nπ              nπ                         −1
             n          n
       2(−1)       2(−1)
  = 0+ 2 2 −0− 2 2
         nπ         nπ
  =0




                           N. B. Vyas   Fourier Series 2
Example




Ex. Find the Fourier series of periodic function
    f (x)= −1; −1 < x < 0
         = 1; 0 < x < 1
    p = 2L = 2




                    N. B. Vyas   Fourier Series 2
Example




Ex. Find the Fourier series of periodic function
    f (x)= 0; −2 < x < 0
         = 2; 0 < x < 2
    p = 2L = 4




                    N. B. Vyas   Fourier Series 2
Fourier Half Range Series



  A function f (x) defined only on the interval of the form
  0 < x < L.




                    N. B. Vyas   Fourier Series 2
Fourier Half Range Series



  A function f (x) defined only on the interval of the form
  0 < x < L.
  If f (x) is represented on this interval by a Fourier series of
  period 2L




                      N. B. Vyas   Fourier Series 2
Fourier Half Range Series



  A function f (x) defined only on the interval of the form
  0 < x < L.
  If f (x) is represented on this interval by a Fourier series of
  period 2L
  Then such Fourier series are known as half range Fourier
  series or half range expansions.




                     N. B. Vyas   Fourier Series 2
Fourier Half Range Series



  A function f (x) defined only on the interval of the form
  0 < x < L.
  If f (x) is represented on this interval by a Fourier series of
  period 2L
  Then such Fourier series are known as half range Fourier
  series or half range expansions.
  Types of Half Range Fourier series




                     N. B. Vyas   Fourier Series 2
Fourier Half Range Series



     A function f (x) defined only on the interval of the form
     0 < x < L.
     If f (x) is represented on this interval by a Fourier series of
     period 2L
     Then such Fourier series are known as half range Fourier
     series or half range expansions.
     Types of Half Range Fourier series

 1   Fourier Cosine Series




                        N. B. Vyas   Fourier Series 2
Fourier Half Range Series



     A function f (x) defined only on the interval of the form
     0 < x < L.
     If f (x) is represented on this interval by a Fourier series of
     period 2L
     Then such Fourier series are known as half range Fourier
     series or half range expansions.
     Types of Half Range Fourier series

 1   Fourier Cosine Series
 2   Fourier Sine Series




                        N. B. Vyas   Fourier Series 2
Fourier Cosine Series



  Let f (x) be piecewise continuous on [o, l].




                     N. B. Vyas   Fourier Series 2
Fourier Cosine Series



  Let f (x) be piecewise continuous on [o, l].
  the Fourier cosine series expansion of f (x) on the half range
  interval [0, l] is given by




                     N. B. Vyas   Fourier Series 2
Fourier Cosine Series



  Let f (x) be piecewise continuous on [o, l].
  the Fourier cosine series expansion of f (x) on the half range
  interval [0, l] is given by
                ∞
          ao              nπx
  f (x) =    +     an cos
          2    n=1
                           l




                     N. B. Vyas   Fourier Series 2
Fourier Cosine Series



  Let f (x) be piecewise continuous on [o, l].
  the Fourier cosine series expansion of f (x) on the half range
  interval [0, l] is given by
                   ∞
          ao              nπx
  f (x) =    +     an cos
          2    n=1
                           l
                       l
               2
  where a0 =               f (x) dx
               l   0




                            N. B. Vyas   Fourier Series 2
Fourier Cosine Series



  Let f (x) be piecewise continuous on [o, l].
  the Fourier cosine series expansion of f (x) on the half range
  interval [0, l] is given by
                          ∞
          ao              nπx
  f (x) =    +     an cos
          2    n=1
                           l
                              l
                      2
  where a0 =                      f (x) dx
                      l   0
                 l
         2                           nπx
  an =               f (x) cos           dx
         l   0                        l




                                   N. B. Vyas   Fourier Series 2
Fourier Sine Series



   Let f (x) be piecewise continuous on [o, l].




                      N. B. Vyas   Fourier Series 2
Fourier Sine Series



   Let f (x) be piecewise continuous on [o, l].
   the Fourier sine series expansion of f (x) on the half range
   interval [0, l] is given by




                      N. B. Vyas   Fourier Series 2
Fourier Sine Series



   Let f (x) be piecewise continuous on [o, l].
   the Fourier sine series expansion of f (x) on the half range
   interval [0, l] is given by
             ∞
                            nπx
   f (x) =         bn sin
             n=1
                             l




                            N. B. Vyas   Fourier Series 2
Fourier Sine Series



   Let f (x) be piecewise continuous on [o, l].
   the Fourier sine series expansion of f (x) on the half range
   interval [0, l] is given by
              ∞
                              nπx
   f (x) =          bn sin
              n=1
                               l
                l
          2                     nπx
   bn =           f (x) sin         dx
          l   0                  l




                              N. B. Vyas   Fourier Series 2
Example




Ex. Find Fourier cosine and sine series of the function
    f (x) = 1 for 0 ≤ x ≤ 2




                    N. B. Vyas   Fourier Series 2
Example




Sol. Here given interval is 0 ≤ x ≤ 2




                   N. B. Vyas   Fourier Series 2
Example




Sol. Here given interval is 0 ≤ x ≤ 2
     ∴l=2




                   N. B. Vyas   Fourier Series 2
Example



 1   Fourier cosine series
                              ∞
                     a0              nπx
     Step 1. f (x) =    +     an cos
                     2    n=1
                                      l




                     N. B. Vyas   Fourier Series 2
Example



 1   Fourier cosine series
                                ∞
                     a0              nπx
     Step 1. f (x) =    +     an cos
                     2    n=1
                                      l
                        l
                2
     where a0 =             f (x)dx
                l   0




                     N. B. Vyas       Fourier Series 2
Example



 1   Fourier cosine series
                              ∞
                     a0              nπx
     Step 1. f (x) =    +     an cos
                     2    n=1
                                      l
                 2 l
     where a0 =        f (x)dx
                 l 0
          2 l              nπx
     an =      f (x) cos
          l 0                l



                     N. B. Vyas   Fourier Series 2
Example




                         2
                 2
  Step 2. a0 =               f (x)dx
                 2   0




                     N. B. Vyas    Fourier Series 2
Example




                            2
                    2
  Step 2. a0 =                  f (x)dx
                    2   0
          2
  =           1dx
      0




                        N. B. Vyas    Fourier Series 2
Example




                            2
                    2
  Step 2. a0 =                  f (x)dx
                    2   0
          2
  =           1dx = [x]2
                       0
      0




                        N. B. Vyas    Fourier Series 2
Example




                            2
                    2
  Step 2. a0 =                  f (x)dx
                    2   0
          2
  =           1dx = [x]2 = 2.
                       0
      0




                        N. B. Vyas    Fourier Series 2
Example

                        2
               2                        nπx
  Step 3. an =              f (x)cos        dx
               2    0                    2




                   N. B. Vyas     Fourier Series 2
Example


                 2 2           nπx
  Step 3. an =        f (x)cos     dx
                 2 0            2
       2
                  nπx
  =      (1) cos        dx
     0             2




                N. B. Vyas   Fourier Series 2
Example


                 2 2           nπx
  Step 3. an =        f (x)cos     dx
                 2 0            2
       2
                  nπx
  =      (1) cos        dx
     0             2
             nπx 2
                  
      sin
  =
             2 
           nπ      
            2       0




                N. B. Vyas   Fourier Series 2
Example


                 2 2             nπx
  Step 3. an =         f (x)cos      dx
                 2 0              2
       2
                   nπx
  =      (1) cos         dx
     0              2
             nπx 2
                   
      sin
  =
              2 
           nπ       
            2        0
       2
  =          (sin (nπ) − sin (0))
      nπ


                 N. B. Vyas   Fourier Series 2
Example


                 2 2             nπx
  Step 3. an =         f (x)cos       dx
                 2 0              2
       2
                   nπx
  =      (1) cos         dx
     0              2
             nπx 2
                   
      sin
  =
              2 
           nπ       
            2        0
       2
  =          (sin (nπ) − sin (0)) = 0
      nπ


                  N. B. Vyas   Fourier Series 2
Example




  ∴ Fourier cosine series of f (x) is




                  N. B. Vyas   Fourier Series 2
Example




  ∴ Fourier cosine series of f (x) is
                ∞
          a0              nπx
  f (x) =    +     an cos
          2    n=1
                           l




                    N. B. Vyas   Fourier Series 2
Example




  ∴ Fourier cosine series of f (x) is
                ∞
          a0              nπx
  f (x) =    +     an cos
          2    n=1
                           l
      2
  =     +0
      2




                    N. B. Vyas   Fourier Series 2
Example




  ∴ Fourier cosine series of f (x) is
                ∞
          a0              nπx
  f (x) =    +     an cos
          2    n=1
                           l
      2
  =     +0 =1
      2




                    N. B. Vyas   Fourier Series 2

More Related Content

What's hot

Laplace Transform of Periodic Function
Laplace Transform of Periodic FunctionLaplace Transform of Periodic Function
Laplace Transform of Periodic Function
Dhaval Shukla
 
Graphs - Discrete Math
Graphs - Discrete MathGraphs - Discrete Math
Graphs - Discrete Math
Sikder Tahsin Al-Amin
 
Properties of dft
Properties of dftProperties of dft
Properties of dft
HeraldRufus1
 
Line integral.ppt
Line integral.pptLine integral.ppt
Line integral.ppt
MichaelTegegn
 
29 conservative fields potential functions
29 conservative fields potential functions29 conservative fields potential functions
29 conservative fields potential functionsmath267
 
5. Signal flow graph, Mason’s gain formula.pptx
5. Signal flow graph, Mason’s gain formula.pptx5. Signal flow graph, Mason’s gain formula.pptx
5. Signal flow graph, Mason’s gain formula.pptx
AMSuryawanshi
 
Bisection theorem proof and convergence analysis
Bisection theorem proof and convergence analysisBisection theorem proof and convergence analysis
Bisection theorem proof and convergence analysis
Hamza Nawaz
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
Dr. Nirav Vyas
 
Trapezoidal rule
Trapezoidal rule Trapezoidal rule
Trapezoidal rule
ShrutiMalpure
 
Size Of Signal
Size Of SignalSize Of Signal
Size Of Signal
Nishant Kumar
 
Presentation on Numerical Integration
Presentation on Numerical IntegrationPresentation on Numerical Integration
Presentation on Numerical Integration
Tausif Shahanshah
 
Fourier series
Fourier seriesFourier series
Fourier series
kishor pokar
 
Fourier transforms
Fourier transforms Fourier transforms
Fourier transforms
Fahad B. Mostafa
 
Matlab Graphics Tutorial
Matlab Graphics TutorialMatlab Graphics Tutorial
Matlab Graphics Tutorial
Cheng-An Yang
 
Lesson 12 rotation of axes
Lesson 12    rotation of axesLesson 12    rotation of axes
Lesson 12 rotation of axesJean Leano
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
Rizwan Kazi
 
Signals and systems-3
Signals and systems-3Signals and systems-3
Signals and systems-3
sarun soman
 
Conformal mapping
Conformal mappingConformal mapping
Z Transform
Z TransformZ Transform
Z Transform
Darshan Bhatt
 

What's hot (20)

Laplace Transform of Periodic Function
Laplace Transform of Periodic FunctionLaplace Transform of Periodic Function
Laplace Transform of Periodic Function
 
Graphs - Discrete Math
Graphs - Discrete MathGraphs - Discrete Math
Graphs - Discrete Math
 
Properties of dft
Properties of dftProperties of dft
Properties of dft
 
Line integral.ppt
Line integral.pptLine integral.ppt
Line integral.ppt
 
29 conservative fields potential functions
29 conservative fields potential functions29 conservative fields potential functions
29 conservative fields potential functions
 
5. Signal flow graph, Mason’s gain formula.pptx
5. Signal flow graph, Mason’s gain formula.pptx5. Signal flow graph, Mason’s gain formula.pptx
5. Signal flow graph, Mason’s gain formula.pptx
 
Bisection theorem proof and convergence analysis
Bisection theorem proof and convergence analysisBisection theorem proof and convergence analysis
Bisection theorem proof and convergence analysis
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
Trapezoidal rule
Trapezoidal rule Trapezoidal rule
Trapezoidal rule
 
Size Of Signal
Size Of SignalSize Of Signal
Size Of Signal
 
B.Tech-II_Unit-V
B.Tech-II_Unit-VB.Tech-II_Unit-V
B.Tech-II_Unit-V
 
Presentation on Numerical Integration
Presentation on Numerical IntegrationPresentation on Numerical Integration
Presentation on Numerical Integration
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Fourier transforms
Fourier transforms Fourier transforms
Fourier transforms
 
Matlab Graphics Tutorial
Matlab Graphics TutorialMatlab Graphics Tutorial
Matlab Graphics Tutorial
 
Lesson 12 rotation of axes
Lesson 12    rotation of axesLesson 12    rotation of axes
Lesson 12 rotation of axes
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
 
Signals and systems-3
Signals and systems-3Signals and systems-3
Signals and systems-3
 
Conformal mapping
Conformal mappingConformal mapping
Conformal mapping
 
Z Transform
Z TransformZ Transform
Z Transform
 

Viewers also liked

Complex function
Complex functionComplex function
Complex function
Dr. Nirav Vyas
 
Application of fourier series
Application of fourier seriesApplication of fourier series
Application of fourier seriesGirish Dhareshwar
 
Engineering Mathematics chapter 11,
Engineering Mathematics chapter 11, Engineering Mathematics chapter 11,
Engineering Mathematics chapter 11,
a_selkghafari
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)
Abhishek Choksi
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
Faiza Saher
 
2nd Annual Arrhythmia and Heart Failure Symposium
2nd Annual Arrhythmia and Heart Failure Symposium2nd Annual Arrhythmia and Heart Failure Symposium
2nd Annual Arrhythmia and Heart Failure Symposium
leticiahall
 
Manipulation of light in the Nano world , Laser Traffic Light , IDM9
Manipulation of light in the Nano world , Laser Traffic Light , IDM9Manipulation of light in the Nano world , Laser Traffic Light , IDM9
Manipulation of light in the Nano world , Laser Traffic Light , IDM9
Qatar University- Young Scientists Center (Al-Bairaq)
 
Symposium of Integrated Mapping Tool for Cardiac Arrhythmia
Symposium of Integrated Mapping Tool for Cardiac ArrhythmiaSymposium of Integrated Mapping Tool for Cardiac Arrhythmia
Symposium of Integrated Mapping Tool for Cardiac Arrhythmia
Taiwan Heart Rhythm Society
 
Dr hoppe arrythmias
Dr hoppe arrythmiasDr hoppe arrythmias
Dr hoppe arrythmiasguest68d38f
 
Dr Vanita Arora - Arrhythmia Diagnosis in India
Dr Vanita Arora - Arrhythmia Diagnosis in IndiaDr Vanita Arora - Arrhythmia Diagnosis in India
Dr Vanita Arora - Arrhythmia Diagnosis in India
Dr Vanita Arora
 
Aplicaciones de las series de fourier
Aplicaciones de las series de fourierAplicaciones de las series de fourier
Aplicaciones de las series de fourier
Pedro Guerrero
 
Hair Boom (Hair Bang) Product Introduction - Laser Helmet for Hair Loss
Hair Boom (Hair Bang) Product Introduction - Laser Helmet for Hair LossHair Boom (Hair Bang) Product Introduction - Laser Helmet for Hair Loss
Hair Boom (Hair Bang) Product Introduction - Laser Helmet for Hair Loss
WONTECH
 
Heart Arrhythmia
Heart Arrhythmia Heart Arrhythmia
Heart Arrhythmia
Pranav Challa
 
Gold nano particles and laser
Gold nano particles and laserGold nano particles and laser
Gold nano particles and laser
UOG PHYSICISTS !!!!!
 

Viewers also liked (20)

Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Chapter 2 (maths 3)
Chapter 2 (maths 3)Chapter 2 (maths 3)
Chapter 2 (maths 3)
 
Fourier series 3
Fourier series 3Fourier series 3
Fourier series 3
 
Complex function
Complex functionComplex function
Complex function
 
Application of fourier series
Application of fourier seriesApplication of fourier series
Application of fourier series
 
Engineering Mathematics chapter 11,
Engineering Mathematics chapter 11, Engineering Mathematics chapter 11,
Engineering Mathematics chapter 11,
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)
 
Chapter 4 (maths 3)
Chapter 4 (maths 3)Chapter 4 (maths 3)
Chapter 4 (maths 3)
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 
2nd Annual Arrhythmia and Heart Failure Symposium
2nd Annual Arrhythmia and Heart Failure Symposium2nd Annual Arrhythmia and Heart Failure Symposium
2nd Annual Arrhythmia and Heart Failure Symposium
 
Manipulation of light in the Nano world , Laser Traffic Light , IDM9
Manipulation of light in the Nano world , Laser Traffic Light , IDM9Manipulation of light in the Nano world , Laser Traffic Light , IDM9
Manipulation of light in the Nano world , Laser Traffic Light , IDM9
 
Symposium of Integrated Mapping Tool for Cardiac Arrhythmia
Symposium of Integrated Mapping Tool for Cardiac ArrhythmiaSymposium of Integrated Mapping Tool for Cardiac Arrhythmia
Symposium of Integrated Mapping Tool for Cardiac Arrhythmia
 
Dr hoppe arrythmias
Dr hoppe arrythmiasDr hoppe arrythmias
Dr hoppe arrythmias
 
Dr Vanita Arora - Arrhythmia Diagnosis in India
Dr Vanita Arora - Arrhythmia Diagnosis in IndiaDr Vanita Arora - Arrhythmia Diagnosis in India
Dr Vanita Arora - Arrhythmia Diagnosis in India
 
Aplicaciones de las series de fourier
Aplicaciones de las series de fourierAplicaciones de las series de fourier
Aplicaciones de las series de fourier
 
Hair Boom (Hair Bang) Product Introduction - Laser Helmet for Hair Loss
Hair Boom (Hair Bang) Product Introduction - Laser Helmet for Hair LossHair Boom (Hair Bang) Product Introduction - Laser Helmet for Hair Loss
Hair Boom (Hair Bang) Product Introduction - Laser Helmet for Hair Loss
 
Ecg
EcgEcg
Ecg
 
Heart Arrhythmia
Heart Arrhythmia Heart Arrhythmia
Heart Arrhythmia
 
Gold nano particles and laser
Gold nano particles and laserGold nano particles and laser
Gold nano particles and laser
 

Similar to Fourier series 2

Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16derry92
 
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.pptRvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
shivamvadgama50
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdf
habtamu292245
 
1.1 elementary concepts
1.1 elementary concepts1.1 elementary concepts
1.1 elementary concepts
d00a7ece
 
1.1 Elementary Concepts.pdf
1.1 Elementary Concepts.pdf1.1 Elementary Concepts.pdf
1.1 Elementary Concepts.pdf
d00a7ece
 
Maths assignment
Maths assignmentMaths assignment
Maths assignmentNtshima
 
Fourier 3
Fourier 3Fourier 3
Fourier 3
nugon
 
Fourier series
Fourier series Fourier series
Fourier series
Pinky Chaudhari
 
AEM Fourier series
 AEM Fourier series AEM Fourier series
AEM Fourier series
Siddhi Viradiya
 
Fourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lFourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 l
Pepa Vidosa Serradilla
 
TPDE_UNIT II-FOURIER SERIES_PPT.pptx
TPDE_UNIT II-FOURIER SERIES_PPT.pptxTPDE_UNIT II-FOURIER SERIES_PPT.pptx
TPDE_UNIT II-FOURIER SERIES_PPT.pptx
ragavvelmurugan
 
Aa1
Aa1Aa1
Deflection 2
Deflection 2Deflection 2
Deflection 2anashalim
 
ilovepdf_merged.pdf
ilovepdf_merged.pdfilovepdf_merged.pdf
ilovepdf_merged.pdf
NaorinHalim
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
taha25
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guideakabaka12
 

Similar to Fourier series 2 (20)

Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16
 
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.pptRvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdf
 
1.1 elementary concepts
1.1 elementary concepts1.1 elementary concepts
1.1 elementary concepts
 
1.1 Elementary Concepts.pdf
1.1 Elementary Concepts.pdf1.1 Elementary Concepts.pdf
1.1 Elementary Concepts.pdf
 
Maths assignment
Maths assignmentMaths assignment
Maths assignment
 
Fourier 3
Fourier 3Fourier 3
Fourier 3
 
Fourier series
Fourier series Fourier series
Fourier series
 
Math report
Math reportMath report
Math report
 
AEM Fourier series
 AEM Fourier series AEM Fourier series
AEM Fourier series
 
Fourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lFourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 l
 
Cse41
Cse41Cse41
Cse41
 
TPDE_UNIT II-FOURIER SERIES_PPT.pptx
TPDE_UNIT II-FOURIER SERIES_PPT.pptxTPDE_UNIT II-FOURIER SERIES_PPT.pptx
TPDE_UNIT II-FOURIER SERIES_PPT.pptx
 
Aa1
Aa1Aa1
Aa1
 
0708 ch 7 day 8
0708 ch 7 day 80708 ch 7 day 8
0708 ch 7 day 8
 
Deflection 2
Deflection 2Deflection 2
Deflection 2
 
ilovepdf_merged.pdf
ilovepdf_merged.pdfilovepdf_merged.pdf
ilovepdf_merged.pdf
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guide
 
Taylor series
Taylor seriesTaylor series
Taylor series
 

More from Dr. Nirav Vyas

Reduction forumla
Reduction forumlaReduction forumla
Reduction forumla
Dr. Nirav Vyas
 
Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic Mean
Dr. Nirav Vyas
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressions
Dr. Nirav Vyas
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressions
Dr. Nirav Vyas
 
Combinations
CombinationsCombinations
Combinations
Dr. Nirav Vyas
 
Permutation
PermutationPermutation
Permutation
Dr. Nirav Vyas
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture Notes
Dr. Nirav Vyas
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture Notes
Dr. Nirav Vyas
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture Notes
Dr. Nirav Vyas
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen values
Dr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3
Dr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2
Dr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1
Dr. Nirav Vyas
 
Special functions
Special functionsSpecial functions
Special functions
Dr. Nirav Vyas
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
Dr. Nirav Vyas
 
Numerical Methods 3
Numerical Methods 3Numerical Methods 3
Numerical Methods 3
Dr. Nirav Vyas
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
Dr. Nirav Vyas
 
Numerical Methods 1
Numerical Methods 1Numerical Methods 1
Numerical Methods 1
Dr. Nirav Vyas
 
Interpolation with unequal interval
Interpolation with unequal intervalInterpolation with unequal interval
Interpolation with unequal interval
Dr. Nirav Vyas
 

More from Dr. Nirav Vyas (20)

Reduction forumla
Reduction forumlaReduction forumla
Reduction forumla
 
Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic Mean
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressions
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressions
 
Combinations
CombinationsCombinations
Combinations
 
Permutation
PermutationPermutation
Permutation
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture Notes
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture Notes
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture Notes
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen values
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3
 
Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1
 
Special functions
Special functionsSpecial functions
Special functions
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
 
Laplace Transforms
Laplace TransformsLaplace Transforms
Laplace Transforms
 
Numerical Methods 3
Numerical Methods 3Numerical Methods 3
Numerical Methods 3
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
 
Numerical Methods 1
Numerical Methods 1Numerical Methods 1
Numerical Methods 1
 
Interpolation with unequal interval
Interpolation with unequal intervalInterpolation with unequal interval
Interpolation with unequal interval
 

Recently uploaded

Transferable Skills - Your Roadmap - Part 1 and 2 - Dirk Spencer Senior Recru...
Transferable Skills - Your Roadmap - Part 1 and 2 - Dirk Spencer Senior Recru...Transferable Skills - Your Roadmap - Part 1 and 2 - Dirk Spencer Senior Recru...
Transferable Skills - Your Roadmap - Part 1 and 2 - Dirk Spencer Senior Recru...
Dirk Spencer Corporate Recruiter LION
 
欧洲杯买球平台-欧洲杯买球平台推荐-欧洲杯买球平台| 立即访问【ac123.net】
欧洲杯买球平台-欧洲杯买球平台推荐-欧洲杯买球平台| 立即访问【ac123.net】欧洲杯买球平台-欧洲杯买球平台推荐-欧洲杯买球平台| 立即访问【ac123.net】
欧洲杯买球平台-欧洲杯买球平台推荐-欧洲杯买球平台| 立即访问【ac123.net】
foismail170
 
Chapters 3 Contracts.pptx Chapters 3 Contracts.pptx
Chapters 3  Contracts.pptx Chapters 3  Contracts.pptxChapters 3  Contracts.pptx Chapters 3  Contracts.pptx
Chapters 3 Contracts.pptx Chapters 3 Contracts.pptx
Sheldon Byron
 
欧洲杯投注app-欧洲杯投注app推荐-欧洲杯投注app| 立即访问【ac123.net】
欧洲杯投注app-欧洲杯投注app推荐-欧洲杯投注app| 立即访问【ac123.net】欧洲杯投注app-欧洲杯投注app推荐-欧洲杯投注app| 立即访问【ac123.net】
欧洲杯投注app-欧洲杯投注app推荐-欧洲杯投注app| 立即访问【ac123.net】
foismail170
 
皇冠体育- 皇冠体育官方网站- CROWN SPORTS| 立即访问【ac123.net】
皇冠体育- 皇冠体育官方网站- CROWN SPORTS| 立即访问【ac123.net】皇冠体育- 皇冠体育官方网站- CROWN SPORTS| 立即访问【ac123.net】
皇冠体育- 皇冠体育官方网站- CROWN SPORTS| 立即访问【ac123.net】
larisashrestha558
 
New Explore Careers and College Majors 2024.pdf
New Explore Careers and College Majors 2024.pdfNew Explore Careers and College Majors 2024.pdf
New Explore Careers and College Majors 2024.pdf
Dr. Mary Askew
 
一比一原版(UVic毕业证)维多利亚大学毕业证如何办理
一比一原版(UVic毕业证)维多利亚大学毕业证如何办理一比一原版(UVic毕业证)维多利亚大学毕业证如何办理
一比一原版(UVic毕业证)维多利亚大学毕业证如何办理
pxyhy
 
134. Reviewer Certificate in Computer Science
134. Reviewer Certificate in Computer Science134. Reviewer Certificate in Computer Science
134. Reviewer Certificate in Computer Science
Manu Mitra
 
Luke Royak's Personal Brand Exploration!
Luke Royak's Personal Brand Exploration!Luke Royak's Personal Brand Exploration!
Luke Royak's Personal Brand Exploration!
LukeRoyak
 
How to create an effective K-POC tutorial
How to create an effective K-POC tutorialHow to create an effective K-POC tutorial
How to create an effective K-POC tutorial
vencislavkaaa
 
Exploring Career Paths in Cybersecurity for Technical Communicators
Exploring Career Paths in Cybersecurity for Technical CommunicatorsExploring Career Paths in Cybersecurity for Technical Communicators
Exploring Career Paths in Cybersecurity for Technical Communicators
Ben Woelk, CISSP, CPTC
 
Heidi Livengood Resume Senior Technical Recruiter / HR Generalist
Heidi Livengood Resume Senior Technical Recruiter / HR GeneralistHeidi Livengood Resume Senior Technical Recruiter / HR Generalist
Heidi Livengood Resume Senior Technical Recruiter / HR Generalist
HeidiLivengood
 
RECOGNITION AWARD 13 - TO ALESSANDRO MARTINS.pdf
RECOGNITION AWARD 13 - TO ALESSANDRO MARTINS.pdfRECOGNITION AWARD 13 - TO ALESSANDRO MARTINS.pdf
RECOGNITION AWARD 13 - TO ALESSANDRO MARTINS.pdf
AlessandroMartins454470
 
How to Master LinkedIn for Career and Business
How to Master LinkedIn for Career and BusinessHow to Master LinkedIn for Career and Business
How to Master LinkedIn for Career and Business
ideatoipo
 
DOC-20240602-WA0001..pdf DOC-20240602-WA0001..pdf
DOC-20240602-WA0001..pdf DOC-20240602-WA0001..pdfDOC-20240602-WA0001..pdf DOC-20240602-WA0001..pdf
DOC-20240602-WA0001..pdf DOC-20240602-WA0001..pdf
Pushpendra Kumar
 
Interactive Dictionary AIDS-B.pptx aaaaaaaaaaaaaaaaaaaaaaaaaa
Interactive Dictionary AIDS-B.pptx aaaaaaaaaaaaaaaaaaaaaaaaaaInteractive Dictionary AIDS-B.pptx aaaaaaaaaaaaaaaaaaaaaaaaaa
Interactive Dictionary AIDS-B.pptx aaaaaaaaaaaaaaaaaaaaaaaaaa
23211a7274
 
一比一原版(YU毕业证)约克大学毕业证如何办理
一比一原版(YU毕业证)约克大学毕业证如何办理一比一原版(YU毕业证)约克大学毕业证如何办理
一比一原版(YU毕业证)约克大学毕业证如何办理
yuhofha
 
一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理
一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理
一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理
yuhofha
 
Personal Brand exploration KE.pdf for assignment
Personal Brand exploration KE.pdf for assignmentPersonal Brand exploration KE.pdf for assignment
Personal Brand exploration KE.pdf for assignment
ragingokie
 
135. Reviewer Certificate in Journal of Engineering
135. Reviewer Certificate in Journal of Engineering135. Reviewer Certificate in Journal of Engineering
135. Reviewer Certificate in Journal of Engineering
Manu Mitra
 

Recently uploaded (20)

Transferable Skills - Your Roadmap - Part 1 and 2 - Dirk Spencer Senior Recru...
Transferable Skills - Your Roadmap - Part 1 and 2 - Dirk Spencer Senior Recru...Transferable Skills - Your Roadmap - Part 1 and 2 - Dirk Spencer Senior Recru...
Transferable Skills - Your Roadmap - Part 1 and 2 - Dirk Spencer Senior Recru...
 
欧洲杯买球平台-欧洲杯买球平台推荐-欧洲杯买球平台| 立即访问【ac123.net】
欧洲杯买球平台-欧洲杯买球平台推荐-欧洲杯买球平台| 立即访问【ac123.net】欧洲杯买球平台-欧洲杯买球平台推荐-欧洲杯买球平台| 立即访问【ac123.net】
欧洲杯买球平台-欧洲杯买球平台推荐-欧洲杯买球平台| 立即访问【ac123.net】
 
Chapters 3 Contracts.pptx Chapters 3 Contracts.pptx
Chapters 3  Contracts.pptx Chapters 3  Contracts.pptxChapters 3  Contracts.pptx Chapters 3  Contracts.pptx
Chapters 3 Contracts.pptx Chapters 3 Contracts.pptx
 
欧洲杯投注app-欧洲杯投注app推荐-欧洲杯投注app| 立即访问【ac123.net】
欧洲杯投注app-欧洲杯投注app推荐-欧洲杯投注app| 立即访问【ac123.net】欧洲杯投注app-欧洲杯投注app推荐-欧洲杯投注app| 立即访问【ac123.net】
欧洲杯投注app-欧洲杯投注app推荐-欧洲杯投注app| 立即访问【ac123.net】
 
皇冠体育- 皇冠体育官方网站- CROWN SPORTS| 立即访问【ac123.net】
皇冠体育- 皇冠体育官方网站- CROWN SPORTS| 立即访问【ac123.net】皇冠体育- 皇冠体育官方网站- CROWN SPORTS| 立即访问【ac123.net】
皇冠体育- 皇冠体育官方网站- CROWN SPORTS| 立即访问【ac123.net】
 
New Explore Careers and College Majors 2024.pdf
New Explore Careers and College Majors 2024.pdfNew Explore Careers and College Majors 2024.pdf
New Explore Careers and College Majors 2024.pdf
 
一比一原版(UVic毕业证)维多利亚大学毕业证如何办理
一比一原版(UVic毕业证)维多利亚大学毕业证如何办理一比一原版(UVic毕业证)维多利亚大学毕业证如何办理
一比一原版(UVic毕业证)维多利亚大学毕业证如何办理
 
134. Reviewer Certificate in Computer Science
134. Reviewer Certificate in Computer Science134. Reviewer Certificate in Computer Science
134. Reviewer Certificate in Computer Science
 
Luke Royak's Personal Brand Exploration!
Luke Royak's Personal Brand Exploration!Luke Royak's Personal Brand Exploration!
Luke Royak's Personal Brand Exploration!
 
How to create an effective K-POC tutorial
How to create an effective K-POC tutorialHow to create an effective K-POC tutorial
How to create an effective K-POC tutorial
 
Exploring Career Paths in Cybersecurity for Technical Communicators
Exploring Career Paths in Cybersecurity for Technical CommunicatorsExploring Career Paths in Cybersecurity for Technical Communicators
Exploring Career Paths in Cybersecurity for Technical Communicators
 
Heidi Livengood Resume Senior Technical Recruiter / HR Generalist
Heidi Livengood Resume Senior Technical Recruiter / HR GeneralistHeidi Livengood Resume Senior Technical Recruiter / HR Generalist
Heidi Livengood Resume Senior Technical Recruiter / HR Generalist
 
RECOGNITION AWARD 13 - TO ALESSANDRO MARTINS.pdf
RECOGNITION AWARD 13 - TO ALESSANDRO MARTINS.pdfRECOGNITION AWARD 13 - TO ALESSANDRO MARTINS.pdf
RECOGNITION AWARD 13 - TO ALESSANDRO MARTINS.pdf
 
How to Master LinkedIn for Career and Business
How to Master LinkedIn for Career and BusinessHow to Master LinkedIn for Career and Business
How to Master LinkedIn for Career and Business
 
DOC-20240602-WA0001..pdf DOC-20240602-WA0001..pdf
DOC-20240602-WA0001..pdf DOC-20240602-WA0001..pdfDOC-20240602-WA0001..pdf DOC-20240602-WA0001..pdf
DOC-20240602-WA0001..pdf DOC-20240602-WA0001..pdf
 
Interactive Dictionary AIDS-B.pptx aaaaaaaaaaaaaaaaaaaaaaaaaa
Interactive Dictionary AIDS-B.pptx aaaaaaaaaaaaaaaaaaaaaaaaaaInteractive Dictionary AIDS-B.pptx aaaaaaaaaaaaaaaaaaaaaaaaaa
Interactive Dictionary AIDS-B.pptx aaaaaaaaaaaaaaaaaaaaaaaaaa
 
一比一原版(YU毕业证)约克大学毕业证如何办理
一比一原版(YU毕业证)约克大学毕业证如何办理一比一原版(YU毕业证)约克大学毕业证如何办理
一比一原版(YU毕业证)约克大学毕业证如何办理
 
一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理
一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理
一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理
 
Personal Brand exploration KE.pdf for assignment
Personal Brand exploration KE.pdf for assignmentPersonal Brand exploration KE.pdf for assignment
Personal Brand exploration KE.pdf for assignment
 
135. Reviewer Certificate in Journal of Engineering
135. Reviewer Certificate in Journal of Engineering135. Reviewer Certificate in Journal of Engineering
135. Reviewer Certificate in Journal of Engineering
 

Fourier series 2

  • 1. Fourier Series 2 N. B. Vyas Department of Mathematics, Atmiya Institute of Tech. & Science, Rajkot (Guj.)- INDIA N. B. Vyas Fourier Series 2
  • 2. Functions of any Period p = 2L Let f (x) be a periodic function with an arbitrary period 2L defined in the interval c < x < c + 2L N. B. Vyas Fourier Series 2
  • 3. Functions of any Period p = 2L Let f (x) be a periodic function with an arbitrary period 2L defined in the interval c < x < c + 2L The Fourier series of f (x) is given by N. B. Vyas Fourier Series 2
  • 4. Functions of any Period p = 2L Let f (x) be a periodic function with an arbitrary period 2L defined in the interval c < x < c + 2L The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L N. B. Vyas Fourier Series 2
  • 5. Functions of any Period p = 2L Let f (x) be a periodic function with an arbitrary period 2L defined in the interval c < x < c + 2L The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L c+2L 1 where a0 = f (x) dx L c N. B. Vyas Fourier Series 2
  • 6. Functions of any Period p = 2L Let f (x) be a periodic function with an arbitrary period 2L defined in the interval c < x < c + 2L The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 c+2L where a0 = f (x) dx L c 1 c+2L nπx an = f (x) cos dx L c L N. B. Vyas Fourier Series 2
  • 7. Functions of any Period p = 2L Let f (x) be a periodic function with an arbitrary period 2L defined in the interval c < x < c + 2L The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 c+2L where a0 = f (x) dx L c 1 c+2L nπx an = f (x) cos dx L c L 1 c+2L nπx bn = f (x) sin dx L c L N. B. Vyas Fourier Series 2
  • 8. Functions of any Period p = 2L Corollary 1: If c = 0 the interval becomes 0 < x < 2L N. B. Vyas Fourier Series 2
  • 9. Functions of any Period p = 2L Corollary 1: If c = 0 the interval becomes 0 < x < 2L ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L N. B. Vyas Fourier Series 2
  • 10. Functions of any Period p = 2L Corollary 1: If c = 0 the interval becomes 0 < x < 2L ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 2L 1 where a0 = f (x) dx L 0 N. B. Vyas Fourier Series 2
  • 11. Functions of any Period p = 2L Corollary 1: If c = 0 the interval becomes 0 < x < 2L ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 2L 1 where a0 = f (x) dx L 0 2L 1 nπx an = f (x) cos dx L 0 L N. B. Vyas Fourier Series 2
  • 12. Functions of any Period p = 2L Corollary 1: If c = 0 the interval becomes 0 < x < 2L ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 2L 1 where a0 = f (x) dx L 0 2L 1 nπx an = f (x) cos dx L 0 L 2L 1 nπx bn = f (x) sin dx L 0 L N. B. Vyas Fourier Series 2
  • 13. Functions of any Period p = 2L Corollary 2: If c = −L the interval becomes −L < x < L N. B. Vyas Fourier Series 2
  • 14. Functions of any Period p = 2L Corollary 2: If c = −L the interval becomes −L < x < L ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L N. B. Vyas Fourier Series 2
  • 15. Functions of any Period p = 2L Corollary 2: If c = −L the interval becomes −L < x < L ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L L 1 where a0 = f (x) dx L −L N. B. Vyas Fourier Series 2
  • 16. Functions of any Period p = 2L Corollary 2: If c = −L the interval becomes −L < x < L ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 L where a0 = f (x) dx L −L 1 L nπx an = f (x) cos dx L −L L N. B. Vyas Fourier Series 2
  • 17. Functions of any Period p = 2L Corollary 2: If c = −L the interval becomes −L < x < L ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 L where a0 = f (x) dx L −L 1 L nπx an = f (x) cos dx L −L L 1 L nπx bn = f (x) sin dx L −L L N. B. Vyas Fourier Series 2
  • 18. Example Ex. The Fourier series of f (x) = x2 , 0 < x < 2 where f (x + 2) = f (x). N. B. Vyas Fourier Series 2
  • 19. Example Ex. The Fourier series of f (x) = x2 , 0 < x < 2 where f (x + 2) = f (x). 1 1 1 π2 Hence deduce that 1 − 2 + 2 − 2 + . . . = 2 3 4 12 N. B. Vyas Fourier Series 2
  • 20. Example Sol. Step 1: The Fourier series of f (x) is given by N. B. Vyas Fourier Series 2
  • 21. Example Sol. Step 1: The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L N. B. Vyas Fourier Series 2
  • 22. Example Sol. Step 1: The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 2 1 where a0 = f (x) dx L 0 N. B. Vyas Fourier Series 2
  • 23. Example Sol. Step 1: The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 2 where a0 = f (x) dx L 0 1 2 nπx an = f (x) cos dx L 0 L N. B. Vyas Fourier Series 2
  • 24. Example Sol. Step 1: The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 2 where a0 = f (x) dx L 0 1 2 nπx an = f (x) cos dx L 0 L 1 2 nπx bn = f (x) sin dx L 0 L N. B. Vyas Fourier Series 2
  • 25. Example Sol. Step 1: The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 2 where a0 = f (x) dx L 0 1 2 nπx an = f (x) cos dx L 0 L 1 2 nπx bn = f (x) sin dx L 0 L Here p = 2L = 2 ⇒ L = 1 N. B. Vyas Fourier Series 2
  • 26. Example 2 1 Step 2. Now a0 = f (x) dx 1 0 N. B. Vyas Fourier Series 2
  • 27. Example 2 1 Step 2. Now a0 = f (x) dx 1 0 2 a0 = (x)2 dx 0 N. B. Vyas Fourier Series 2
  • 28. Example 2 1 Step 2. Now a0 = f (x) dx 1 0 2 a0 = (x)2 dx 0 3 2 x = 3 0 N. B. Vyas Fourier Series 2
  • 29. Example 2 1 Step 2. Now a0 = f (x) dx 1 0 2 a0 = (x)2 dx 0 3 2 x = 3 0 8 = 3 N. B. Vyas Fourier Series 2
  • 30. Example 2 1 nπx Step 3. an = f (x) cos dx 1 0 1 N. B. Vyas Fourier Series 2
  • 31. Example 2 1 nπx Step 3. an = f (x) cos dx 1 0 1 2 an = x2 cos(nπx) dx 0 N. B. Vyas Fourier Series 2
  • 32. Example 2 1 nπx Step 3. an = f (x) cos dx 1 0 1 2 an = x2 cos(nπx) dx 0 2 sin nπx cos nπx sin nπx = x2 − (2x) − 2π2 +2 − 3 3 nπ n nπ 0 N. B. Vyas Fourier Series 2
  • 33. Example 2 1 nπx Step 3. an = f (x) cos dx 1 0 1 2 an = x2 cos(nπx) dx 0 2 sin nπx cos nπx sin nπx = x2 − (2x) − 2π2 +2 − 3 3 nπ n nπ 0 4 = 2 2 nπ N. B. Vyas Fourier Series 2
  • 34. Example 2 1 nπx Step 4. bn = f (x) sin dx 1 0 1 N. B. Vyas Fourier Series 2
  • 35. Example 2 1 nπx Step 4. bn = f (x) sin dx 1 0 1 2 bn = x2 sin(nπx) dx 0 N. B. Vyas Fourier Series 2
  • 36. Example 2 1 nπx Step 4. bn = f (x) sin dx 1 0 1 2 bn = x2 sin(nπx) dx 0 2 cos nπx sin nπx cos nπx = x2 − − (2x) − 2 2 +2 nπ nπ n3 π 3 0 N. B. Vyas Fourier Series 2
  • 37. Example 2 1 nπx Step 4. bn = f (x) sin dx 1 0 1 2 bn = x2 sin(nπx) dx 0 2 cos nπx sin nπx cos nπx = x2 − − (2x) − 2 2 +2 nπ nπ n3 π 3 0 4 =− nπ N. B. Vyas Fourier Series 2
  • 38. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (0, 2) N. B. Vyas Fourier Series 2
  • 39. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (0, 2) ∞ ∞ 8 4 nπx 4 nπx f (x) = + 2π2 cos + − sin 6 n=1 n 1 n=1 nπ 1 N. B. Vyas Fourier Series 2
  • 40. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (0, 2) ∞ ∞ 8 4 nπx 4 nπx f (x) = + 2π2 cos + − sin 6 n=1 n 1 n=1 nπ 1 ∞ ∞ 4 4 cos(nπx) 4 sin(nπx) = + 2 − 3 π n=1 n2 π n=1 n N. B. Vyas Fourier Series 2
  • 41. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (0, 2) ∞ ∞ 8 4 nπx 4 nπx f (x) = + 2π2 cos + − sin 6 n=1 n 1 n=1 nπ 1 ∞ ∞ 4 4 cos(nπx) 4 sin(nπx) = + 2 − 3 π n=1 n2 π n=1 n Putting x = 1, we get N. B. Vyas Fourier Series 2
  • 42. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (0, 2) ∞ ∞ 8 4 nπx 4 nπx f (x) = + 2π2 cos + − sin 6 n=1 n 1 n=1 nπ 1 ∞ ∞ 4 4 cos(nπx) 4 sin(nπx) = + 2 − 3 π n=1 n2 π n=1 n Putting x = 1, we get 4 4 1 1 1 1 = + 2 − 1 + 2 − 2 + ... 3 π 1 2 3 N. B. Vyas Fourier Series 2
  • 43. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (0, 2) ∞ ∞ 8 4 nπx 4 nπx f (x) = + 2π2 cos + − sin 6 n=1 n 1 n=1 nπ 1 ∞ ∞ 4 4 cos(nπx) 4 sin(nπx) = + 2 − 3 π n=1 n2 π n=1 n Putting x = 1, we get 4 4 1 1 1 1 = + 2 − 1 + 2 − 2 + ... 3 π 1 2 3 1 4 1 1 1 − = 2 − 1 + 2 − 2 + ... 3 π 1 2 3 N. B. Vyas Fourier Series 2
  • 44. Example Step 5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (0, 2) ∞ ∞ 8 4 nπx 4 nπx f (x) = + 2π2 cos + − sin 6 n=1 n 1 n=1 nπ 1 ∞ ∞ 4 4 cos(nπx) 4 sin(nπx) = + 2 − 3 π n=1 n2 π n=1 n Putting x = 1, we get 4 4 1 1 1 1 = + 2 − 1 + 2 − 2 + ... 3 π 1 2 3 1 4 1 1 1 − = 2 − 1 + 2 − 2 + ... 3 π 1 2 3 2 π 1 1 1 1 = 2 − 2 + 2 − 2 + ... 12 1 2 3 4 N. B. Vyas Fourier Series 2
  • 45. Example Ex. Find the Fourier series of f (x) = 2x in −1 < x < 1 where p = 2L = 2. N. B. Vyas Fourier Series 2
  • 46. Example Sol. Step 1: The Fourier series of f (x) is given by N. B. Vyas Fourier Series 2
  • 47. Example Sol. Step 1: The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L N. B. Vyas Fourier Series 2
  • 48. Example Sol. Step 1: The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 1 where a0 = f (x) dx L −1 N. B. Vyas Fourier Series 2
  • 49. Example Sol. Step 1: The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 1 where a0 = f (x) dx L −1 1 1 nπx an = f (x) cos dx L −1 L N. B. Vyas Fourier Series 2
  • 50. Example Sol. Step 1: The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 1 where a0 = f (x) dx L −1 1 1 nπx an = f (x) cos dx L −1 L 1 1 nπx bn = f (x) sin dx L −1 L N. B. Vyas Fourier Series 2
  • 51. Example Sol. Step 1: The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 1 where a0 = f (x) dx L −1 1 1 nπx an = f (x) cos dx L −1 L 1 1 nπx bn = f (x) sin dx L −1 L Here p = 2L = 2 ⇒ L = 1 N. B. Vyas Fourier Series 2
  • 52. Example 1 1 Step 2. Now a0 = f (x) dx 1 −1 N. B. Vyas Fourier Series 2
  • 53. Example 1 1 Step 2. Now a0 = f (x) dx 1 −1 1 a0 = 2x dx −1 N. B. Vyas Fourier Series 2
  • 54. Example 1 1 Step 2. Now a0 = f (x) dx 1 −1 1 a0 = 2x dx −1 =0 N. B. Vyas Fourier Series 2
  • 55. Example 1 1 nπx Step 3. an = f (x) cos dx 1 −1 1 N. B. Vyas Fourier Series 2
  • 56. Example 1 1 nπx Step 3. an = f (x) cos dx 1 −1 1 1 an = 2x cos(nπx) dx −1 N. B. Vyas Fourier Series 2
  • 57. Example 1 1 nπx Step 3. an = f (x) cos dx 1 −1 1 1 an = 2x cos(nπx) dx −1 1 sin nπx cos nπx = 2x − (2) − 2 2 nπ nπ −1 N. B. Vyas Fourier Series 2
  • 58. Example 1 1 nπx Step 3. an = f (x) cos dx 1 −1 1 1 an = 2x cos(nπx) dx −1 1 sin nπx cos nπx = 2x − (2) − 2 2 nπ nπ −1 2(−1)n = 0+ 2 2 nπ N. B. Vyas Fourier Series 2
  • 59. Example 1 1 nπx Step 3. an = f (x) cos dx 1 −1 1 1 an = 2x cos(nπx) dx −1 1 sin nπx cos nπx = 2x − (2) − 2 2 nπ nπ −1 n n 2(−1) 2(−1) = 0+ 2 2 −0− 2 2 nπ nπ N. B. Vyas Fourier Series 2
  • 60. Example 1 1 nπx Step 3. an = f (x) cos dx 1 −1 1 1 an = 2x cos(nπx) dx −1 1 sin nπx cos nπx = 2x − (2) − 2 2 nπ nπ −1 n n 2(−1) 2(−1) = 0+ 2 2 −0− 2 2 nπ nπ =0 N. B. Vyas Fourier Series 2
  • 61. Example Ex. Find the Fourier series of periodic function f (x)= −1; −1 < x < 0 = 1; 0 < x < 1 p = 2L = 2 N. B. Vyas Fourier Series 2
  • 62. Example Ex. Find the Fourier series of periodic function f (x)= 0; −2 < x < 0 = 2; 0 < x < 2 p = 2L = 4 N. B. Vyas Fourier Series 2
  • 63. Fourier Half Range Series A function f (x) defined only on the interval of the form 0 < x < L. N. B. Vyas Fourier Series 2
  • 64. Fourier Half Range Series A function f (x) defined only on the interval of the form 0 < x < L. If f (x) is represented on this interval by a Fourier series of period 2L N. B. Vyas Fourier Series 2
  • 65. Fourier Half Range Series A function f (x) defined only on the interval of the form 0 < x < L. If f (x) is represented on this interval by a Fourier series of period 2L Then such Fourier series are known as half range Fourier series or half range expansions. N. B. Vyas Fourier Series 2
  • 66. Fourier Half Range Series A function f (x) defined only on the interval of the form 0 < x < L. If f (x) is represented on this interval by a Fourier series of period 2L Then such Fourier series are known as half range Fourier series or half range expansions. Types of Half Range Fourier series N. B. Vyas Fourier Series 2
  • 67. Fourier Half Range Series A function f (x) defined only on the interval of the form 0 < x < L. If f (x) is represented on this interval by a Fourier series of period 2L Then such Fourier series are known as half range Fourier series or half range expansions. Types of Half Range Fourier series 1 Fourier Cosine Series N. B. Vyas Fourier Series 2
  • 68. Fourier Half Range Series A function f (x) defined only on the interval of the form 0 < x < L. If f (x) is represented on this interval by a Fourier series of period 2L Then such Fourier series are known as half range Fourier series or half range expansions. Types of Half Range Fourier series 1 Fourier Cosine Series 2 Fourier Sine Series N. B. Vyas Fourier Series 2
  • 69. Fourier Cosine Series Let f (x) be piecewise continuous on [o, l]. N. B. Vyas Fourier Series 2
  • 70. Fourier Cosine Series Let f (x) be piecewise continuous on [o, l]. the Fourier cosine series expansion of f (x) on the half range interval [0, l] is given by N. B. Vyas Fourier Series 2
  • 71. Fourier Cosine Series Let f (x) be piecewise continuous on [o, l]. the Fourier cosine series expansion of f (x) on the half range interval [0, l] is given by ∞ ao nπx f (x) = + an cos 2 n=1 l N. B. Vyas Fourier Series 2
  • 72. Fourier Cosine Series Let f (x) be piecewise continuous on [o, l]. the Fourier cosine series expansion of f (x) on the half range interval [0, l] is given by ∞ ao nπx f (x) = + an cos 2 n=1 l l 2 where a0 = f (x) dx l 0 N. B. Vyas Fourier Series 2
  • 73. Fourier Cosine Series Let f (x) be piecewise continuous on [o, l]. the Fourier cosine series expansion of f (x) on the half range interval [0, l] is given by ∞ ao nπx f (x) = + an cos 2 n=1 l l 2 where a0 = f (x) dx l 0 l 2 nπx an = f (x) cos dx l 0 l N. B. Vyas Fourier Series 2
  • 74. Fourier Sine Series Let f (x) be piecewise continuous on [o, l]. N. B. Vyas Fourier Series 2
  • 75. Fourier Sine Series Let f (x) be piecewise continuous on [o, l]. the Fourier sine series expansion of f (x) on the half range interval [0, l] is given by N. B. Vyas Fourier Series 2
  • 76. Fourier Sine Series Let f (x) be piecewise continuous on [o, l]. the Fourier sine series expansion of f (x) on the half range interval [0, l] is given by ∞ nπx f (x) = bn sin n=1 l N. B. Vyas Fourier Series 2
  • 77. Fourier Sine Series Let f (x) be piecewise continuous on [o, l]. the Fourier sine series expansion of f (x) on the half range interval [0, l] is given by ∞ nπx f (x) = bn sin n=1 l l 2 nπx bn = f (x) sin dx l 0 l N. B. Vyas Fourier Series 2
  • 78. Example Ex. Find Fourier cosine and sine series of the function f (x) = 1 for 0 ≤ x ≤ 2 N. B. Vyas Fourier Series 2
  • 79. Example Sol. Here given interval is 0 ≤ x ≤ 2 N. B. Vyas Fourier Series 2
  • 80. Example Sol. Here given interval is 0 ≤ x ≤ 2 ∴l=2 N. B. Vyas Fourier Series 2
  • 81. Example 1 Fourier cosine series ∞ a0 nπx Step 1. f (x) = + an cos 2 n=1 l N. B. Vyas Fourier Series 2
  • 82. Example 1 Fourier cosine series ∞ a0 nπx Step 1. f (x) = + an cos 2 n=1 l l 2 where a0 = f (x)dx l 0 N. B. Vyas Fourier Series 2
  • 83. Example 1 Fourier cosine series ∞ a0 nπx Step 1. f (x) = + an cos 2 n=1 l 2 l where a0 = f (x)dx l 0 2 l nπx an = f (x) cos l 0 l N. B. Vyas Fourier Series 2
  • 84. Example 2 2 Step 2. a0 = f (x)dx 2 0 N. B. Vyas Fourier Series 2
  • 85. Example 2 2 Step 2. a0 = f (x)dx 2 0 2 = 1dx 0 N. B. Vyas Fourier Series 2
  • 86. Example 2 2 Step 2. a0 = f (x)dx 2 0 2 = 1dx = [x]2 0 0 N. B. Vyas Fourier Series 2
  • 87. Example 2 2 Step 2. a0 = f (x)dx 2 0 2 = 1dx = [x]2 = 2. 0 0 N. B. Vyas Fourier Series 2
  • 88. Example 2 2 nπx Step 3. an = f (x)cos dx 2 0 2 N. B. Vyas Fourier Series 2
  • 89. Example 2 2 nπx Step 3. an = f (x)cos dx 2 0 2 2 nπx = (1) cos dx 0 2 N. B. Vyas Fourier Series 2
  • 90. Example 2 2 nπx Step 3. an = f (x)cos dx 2 0 2 2 nπx = (1) cos dx 0 2 nπx 2   sin =  2  nπ  2 0 N. B. Vyas Fourier Series 2
  • 91. Example 2 2 nπx Step 3. an = f (x)cos dx 2 0 2 2 nπx = (1) cos dx 0 2 nπx 2   sin =  2  nπ  2 0 2 = (sin (nπ) − sin (0)) nπ N. B. Vyas Fourier Series 2
  • 92. Example 2 2 nπx Step 3. an = f (x)cos dx 2 0 2 2 nπx = (1) cos dx 0 2 nπx 2   sin =  2  nπ  2 0 2 = (sin (nπ) − sin (0)) = 0 nπ N. B. Vyas Fourier Series 2
  • 93. Example ∴ Fourier cosine series of f (x) is N. B. Vyas Fourier Series 2
  • 94. Example ∴ Fourier cosine series of f (x) is ∞ a0 nπx f (x) = + an cos 2 n=1 l N. B. Vyas Fourier Series 2
  • 95. Example ∴ Fourier cosine series of f (x) is ∞ a0 nπx f (x) = + an cos 2 n=1 l 2 = +0 2 N. B. Vyas Fourier Series 2
  • 96. Example ∴ Fourier cosine series of f (x) is ∞ a0 nπx f (x) = + an cos 2 n=1 l 2 = +0 =1 2 N. B. Vyas Fourier Series 2