Fourier Series 2

            N. B. Vyas


   Department of Mathematics,
Atmiya Institute of Tech. & Science,
      Rajkot (Guj.)- INDIA



        N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Let f (x) be a periodic function with an arbitrary period 2L
  defined in the interval c < x < c + 2L




                    N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Let f (x) be a periodic function with an arbitrary period 2L
  defined in the interval c < x < c + 2L
  The Fourier series of f (x) is given by




                    N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Let f (x) be a periodic function with an arbitrary period 2L
  defined in the interval c < x < c + 2L
  The Fourier series of f (x) is given by
                 ∞
            a0              nπx          nπx
  f (x) =      +     an cos     + bn sin
            2    n=1
                             L            L




                     N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Let f (x) be a periodic function with an arbitrary period 2L
  defined in the interval c < x < c + 2L
  The Fourier series of f (x) is given by
                 ∞
            a0              nπx          nπx
  f (x) =      +     an cos     + bn sin
            2    n=1
                             L            L
                         c+2L
             1
  where a0 =                    f (x) dx
             L       c




                           N. B. Vyas      Fourier Series 2
Functions of any Period p = 2L


  Let f (x) be a periodic function with an arbitrary period 2L
  defined in the interval c < x < c + 2L
  The Fourier series of f (x) is given by
                 ∞
            a0              nπx          nπx
  f (x) =      +     an cos     + bn sin
            2    n=1
                             L            L
             1 c+2L
  where a0 =           f (x) dx
             L c
       1 c+2L              nπx
  an =         f (x) cos           dx
       L c                   L




                     N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Let f (x) be a periodic function with an arbitrary period 2L
  defined in the interval c < x < c + 2L
  The Fourier series of f (x) is given by
                 ∞
            a0              nπx          nπx
  f (x) =      +     an cos     + bn sin
            2    n=1
                             L            L
             1 c+2L
  where a0 =           f (x) dx
             L c
       1 c+2L              nπx
  an =         f (x) cos        dx
       L c                   L
       1 c+2L              nπx
  bn =        f (x) sin         dx
       L c                   L


                     N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Corollary 1: If c = 0 the interval becomes 0 < x < 2L




                    N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Corollary 1: If c = 0 the interval becomes 0 < x < 2L
                ∞
          a0                 nπx            nπx
  f (x) =    +       an cos        + bn sin
          2    n=1
                              L               L




                    N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Corollary 1: If c = 0 the interval becomes 0 < x < 2L
                ∞
          a0                 nπx            nπx
  f (x) =    +       an cos        + bn sin
          2    n=1
                              L               L
                       2L
               1
  where a0 =                f (x) dx
               L   0




                            N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Corollary 1: If c = 0 the interval becomes 0 < x < 2L
                ∞
          a0                 nπx            nπx
  f (x) =    +       an cos        + bn sin
          2    n=1
                              L               L
                             2L
                  1
  where a0 =                      f (x) dx
                  L      0
                 2L
         1                            nπx
  an =                f (x) cos                dx
         L   0                         L




                                  N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Corollary 1: If c = 0 the interval becomes 0 < x < 2L
                ∞
          a0                 nπx            nπx
  f (x) =    +       an cos        + bn sin
          2    n=1
                              L               L
                        2L
               1
  where a0 =                 f (x) dx
               L    0
            2L
       1                  nπx
  an =           f (x) cos    dx
       L   0               L
             2L
       1                  nπx
  bn =          f (x) sin     dx
       L   0               L




                             N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Corollary 2: If c = −L the interval becomes −L < x < L




                   N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Corollary 2: If c = −L the interval becomes −L < x < L
                ∞
          a0                nπx            nπx
  f (x) =    +       an cos       + bn sin
          2    n=1
                             L              L




                   N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Corollary 2: If c = −L the interval becomes −L < x < L
                ∞
          a0                nπx            nπx
  f (x) =    +       an cos       + bn sin
          2    n=1
                             L              L
                 L
             1
  where a0 =          f (x) dx
             L   −L




                      N. B. Vyas   Fourier Series 2
Functions of any Period p = 2L


  Corollary 2: If c = −L the interval becomes −L < x < L
                ∞
          a0                nπx            nπx
  f (x) =    +       an cos       + bn sin
          2    n=1
                             L              L
             1 L
  where a0 =         f (x) dx
             L −L
       1 L               nπx
  an =       f (x) cos            dx
       L −L                L




                     N. B. Vyas    Fourier Series 2
Functions of any Period p = 2L


  Corollary 2: If c = −L the interval becomes −L < x < L
                ∞
          a0                nπx            nπx
  f (x) =    +       an cos       + bn sin
          2    n=1
                             L              L
             1 L
  where a0 =         f (x) dx
             L −L
       1 L               nπx
  an =       f (x) cos        dx
       L −L                L
       1 L               nπx
  bn =       f (x) sin        dx
       L −L                L



                    N. B. Vyas   Fourier Series 2
Example




Ex. The Fourier series of f (x) = x2 , 0 < x < 2 where
    f (x + 2) = f (x).




                    N. B. Vyas   Fourier Series 2
Example




Ex. The Fourier series of f (x) = x2 , 0 < x < 2 where
    f (x + 2) = f (x).
                             1    1      1        π2
    Hence deduce that 1 − 2 + 2 − 2 + . . . =
                             2    3      4        12




                    N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by




                        N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                   ∞
              a0              nπx          nπx
    f (x) =      +     an cos     + bn sin
              2    n=1
                               L            L




                        N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                   ∞
              a0              nπx          nπx
    f (x) =      +     an cos     + bn sin
              2    n=1
                               L            L
                           2
               1
    where a0 =                 f (x) dx
               L       0




                                N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                   ∞
              a0              nπx          nπx
    f (x) =      +     an cos     + bn sin
              2    n=1
                               L            L
                1 2
    where a0 =         f (x) dx
                L 0
         1 2               nπx
    an =       f (x) cos             dx
         L 0                 L




                        N. B. Vyas    Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                   ∞
              a0              nπx          nπx
    f (x) =      +     an cos     + bn sin
              2    n=1
                               L            L
                1 2
    where a0 =         f (x) dx
                L 0
         1 2               nπx
    an =       f (x) cos        dx
         L 0                 L
         1 2               nπx
    bn =       f (x) sin        dx
         L 0                 L




                        N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                   ∞
              a0              nπx          nπx
    f (x) =      +     an cos     + bn sin
              2    n=1
                               L            L
                1 2
    where a0 =         f (x) dx
                L 0
         1 2               nπx
    an =       f (x) cos        dx
         L 0                 L
         1 2               nπx
    bn =       f (x) sin        dx
         L 0                 L

    Here p = 2L = 2 ⇒ L = 1


                        N. B. Vyas   Fourier Series 2
Example



                             2
                     1
  Step 2. Now a0 =               f (x) dx
                     1   0




                     N. B. Vyas        Fourier Series 2
Example



                                   2
                           1
  Step 2. Now a0 =                     f (x) dx
                           1   0
             2
  a0 =           (x)2 dx
         0




                           N. B. Vyas        Fourier Series 2
Example



                                       2
                               1
  Step 2. Now a0 =                         f (x) dx
                               1   0
                 2
  a0 =               (x)2 dx
             0
         3       2
      x
  =
      3          0




                               N. B. Vyas        Fourier Series 2
Example



                                       2
                               1
  Step 2. Now a0 =                         f (x) dx
                               1   0
                 2
  a0 =               (x)2 dx
             0
         3       2
        x
  =
        3        0
    8
  =
    3




                               N. B. Vyas        Fourier Series 2
Example



                         2
                 1                        nπx
  Step 3. an =               f (x) cos            dx
                 1   0                     1




                             N. B. Vyas   Fourier Series 2
Example



                             2
                     1                        nπx
  Step 3. an =                   f (x) cos            dx
                     1   0                     1
             2
  an =           x2 cos(nπx) dx
         0




                                 N. B. Vyas   Fourier Series 2
Example



                             2
                     1                        nπx
  Step 3. an =                   f (x) cos             dx
                     1   0                     1
             2
  an =           x2 cos(nπx) dx
         0
                                                                    2
             sin nπx                          cos nπx     sin nπx
  = x2                       − (2x) −            2π2
                                                      +2 − 3 3
               nπ                              n            nπ      0




                                 N. B. Vyas    Fourier Series 2
Example



                             2
                     1                        nπx
  Step 3. an =                   f (x) cos             dx
                     1   0                     1
             2
  an =           x2 cos(nπx) dx
         0
                                                                    2
             sin nπx                          cos nπx     sin nπx
  = x2                       − (2x) −            2π2
                                                      +2 − 3 3
               nπ                              n            nπ      0
    4
  = 2 2
   nπ




                                 N. B. Vyas    Fourier Series 2
Example



                         2
                 1                        nπx
  Step 4. bn =               f (x) sin            dx
                 1   0                     1




                             N. B. Vyas   Fourier Series 2
Example



                             2
                     1                        nπx
  Step 4. bn =                   f (x) sin            dx
                     1   0                     1
             2
  bn =           x2 sin(nπx) dx
         0




                                 N. B. Vyas   Fourier Series 2
Example



                             2
                     1                        nπx
  Step 4. bn =                   f (x) sin            dx
                     1   0                     1
             2
  bn =           x2 sin(nπx) dx
         0
                                                                                2
                 cos nπx         sin nπx                              cos nπx
  = x2 −                 − (2x) − 2 2                            +2
                   nπ              nπ                                  n3 π 3   0




                                 N. B. Vyas   Fourier Series 2
Example



                             2
                     1                        nπx
  Step 4. bn =                   f (x) sin            dx
                     1   0                     1
             2
  bn =           x2 sin(nπx) dx
         0
                                                                                2
                 cos nπx         sin nπx                              cos nπx
  = x2 −                 − (2x) − 2 2                            +2
                   nπ              nπ                                  n3 π 3   0
      4
  =−
     nπ




                                 N. B. Vyas   Fourier Series 2
Example

  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (0, 2)




                     N. B. Vyas   Fourier Series 2
Example

  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (0, 2)
               ∞                               ∞
         8            4        nπx          4               nπx
  f (x) = +          2π2
                           cos     +     −            sin
         6 n=1      n           1    n=1
                                           nπ                1




                     N. B. Vyas   Fourier Series 2
Example

  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (0, 2)
               ∞                                ∞
         8            4        nπx          4               nπx
  f (x) = +          2π2
                           cos     +     −            sin
         6 n=1      n           1    n=1
                                           nπ                1
             ∞                    ∞
   4  4           cos(nπx) 4            sin(nπx)
  = + 2                   −
   3 π      n=1
                     n2     π     n=1
                                            n




                     N. B. Vyas    Fourier Series 2
Example

  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (0, 2)
               ∞                                ∞
         8            4        nπx          4               nπx
  f (x) = +          2π2
                           cos     +     −            sin
         6 n=1      n           1    n=1
                                           nπ                1
             ∞                    ∞
   4  4           cos(nπx) 4            sin(nπx)
  = + 2                   −
   3 π      n=1
                     n2     π     n=1
                                            n
  Putting x = 1, we get




                     N. B. Vyas    Fourier Series 2
Example

  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (0, 2)
               ∞                                ∞
         8            4        nπx          4               nπx
  f (x) = +          2π2
                           cos     +     −            sin
         6 n=1      n           1    n=1
                                           nπ                1
             ∞                    ∞
   4  4           cos(nπx) 4            sin(nπx)
  = + 2                   −
   3 π      n=1
                     n2     π     n=1
                                            n
  Putting x = 1, we get
      4    4     1    1 1
  1 = + 2 − 1 + 2 − 2 + ...
      3 π        1    2 3




                     N. B. Vyas    Fourier Series 2
Example

  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (0, 2)
               ∞                                ∞
         8            4        nπx          4               nπx
  f (x) = +          2π2
                           cos     +     −            sin
         6 n=1      n           1    n=1
                                           nπ                1
             ∞                    ∞
   4  4           cos(nπx) 4            sin(nπx)
  = + 2                   −
   3 π      n=1
                     n2     π     n=1
                                            n
  Putting x = 1, we get
      4    4     1    1   1
  1 = + 2 − 1 + 2 − 2 + ...
      3 π        1    2   3
    1    4     1    1   1
  − = 2 − 1 + 2 − 2 + ...
    3   π     1    2    3



                     N. B. Vyas    Fourier Series 2
Example

  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (0, 2)
               ∞                                ∞
         8            4        nπx          4               nπx
  f (x) = +          2π2
                           cos     +     −            sin
         6 n=1      n           1    n=1
                                           nπ                1
             ∞                    ∞
   4  4           cos(nπx) 4            sin(nπx)
  = + 2                   −
   3 π      n=1
                     n2     π     n=1
                                            n
  Putting x = 1, we get
        4     4     1     1     1
  1 = + 2 − 1 + 2 − 2 + ...
        3 π         1     2     3
     1      4     1     1     1
  − = 2 − 1 + 2 − 2 + ...
     3     π      1     2     3
    2
  π       1     1     1     1
       = 2 − 2 + 2 − 2 + ...
  12      1     2     3     4
                     N. B. Vyas    Fourier Series 2
Example




Ex. Find the Fourier series of f (x) = 2x in −1 < x < 1
    where p = 2L = 2.




                   N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by




                        N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                   ∞
            a0              nπx          nπx
    f (x) =    +     an cos     + bn sin
            2    n=1
                             L            L




                        N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                     ∞
            a0              nπx          nπx
    f (x) =    +     an cos     + bn sin
            2    n=1
                             L            L
                         1
                 1
    where a0 =                f (x) dx
                 L       −1




                              N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                        ∞
            a0              nπx          nπx
    f (x) =    +     an cos     + bn sin
            2    n=1
                             L            L
                            1
                    1
    where a0 =                   f (x) dx
                    L       −1
               1
           1                        nπx
    an =            f (x) cos                 dx
           L   −1                    L




                                 N. B. Vyas    Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                       ∞
            a0              nπx          nπx
    f (x) =    +     an cos     + bn sin
            2    n=1
                             L            L
                           1
                   1
    where a0 =                  f (x) dx
                   L       −1
               1
         1                 nπx
    an =           f (x) cos   dx
         L    −1            L
               1
         1                 nπx
    bn =         f (x) sin     dx
         L    −1            L




                                N. B. Vyas   Fourier Series 2
Example


Sol. Step 1: The Fourier series of f (x) is given by
                       ∞
            a0              nπx          nπx
    f (x) =    +     an cos     + bn sin
            2    n=1
                             L            L
                           1
                   1
    where a0 =                  f (x) dx
                   L       −1
               1
         1                 nπx
    an =           f (x) cos   dx
         L    −1            L
               1
         1                 nπx
    bn =         f (x) sin     dx
         L    −1            L

    Here p = 2L = 2 ⇒ L = 1


                                N. B. Vyas   Fourier Series 2
Example




                         1
                     1
  Step 2. Now a0 =            f (x) dx
                     1   −1




                     N. B. Vyas     Fourier Series 2
Example




                          1
                      1
  Step 2. Now a0 =             f (x) dx
                      1   −1
         1
  a0 =        2x dx
         −1




                      N. B. Vyas     Fourier Series 2
Example




                          1
                      1
  Step 2. Now a0 =             f (x) dx
                      1   −1
         1
  a0 =        2x dx
         −1
  =0




                      N. B. Vyas     Fourier Series 2
Example


                     1
                 1                     nπx
  Step 3. an =            f (x) cos             dx
                 1   −1                 1




                          N. B. Vyas   Fourier Series 2
Example


                      1
                  1                     nπx
  Step 3. an =             f (x) cos             dx
                  1   −1                 1
         1
  an =        2x cos(nπx) dx
         −1




                           N. B. Vyas   Fourier Series 2
Example


                      1
                  1                     nπx
  Step 3. an =             f (x) cos             dx
                  1   −1                 1
         1
  an =        2x cos(nπx) dx
         −1
                                                     1
          sin nπx                cos nπx
  = 2x                    − (2) − 2 2
            nπ                    nπ                 −1




                           N. B. Vyas   Fourier Series 2
Example


                      1
                  1                     nπx
  Step 3. an =             f (x) cos             dx
                  1   −1                 1
         1
  an =        2x cos(nπx) dx
         −1
                                                     1
        sin nπx                  cos nπx
  = 2x                    − (2) − 2 2
          nπ                      nπ                 −1
       2(−1)n
  = 0+ 2 2
         nπ




                           N. B. Vyas   Fourier Series 2
Example


                      1
                  1                     nπx
  Step 3. an =             f (x) cos             dx
                  1   −1                 1
         1
  an =        2x cos(nπx) dx
         −1
                                                     1
        sin nπx         cos nπx
  = 2x          − (2) − 2 2
          nπ              nπ                         −1
             n          n
       2(−1)       2(−1)
  = 0+ 2 2 −0− 2 2
         nπ         nπ




                           N. B. Vyas   Fourier Series 2
Example


                      1
                  1                     nπx
  Step 3. an =             f (x) cos             dx
                  1   −1                 1
         1
  an =        2x cos(nπx) dx
         −1
                                                     1
        sin nπx         cos nπx
  = 2x          − (2) − 2 2
          nπ              nπ                         −1
             n          n
       2(−1)       2(−1)
  = 0+ 2 2 −0− 2 2
         nπ         nπ
  =0




                           N. B. Vyas   Fourier Series 2
Example




Ex. Find the Fourier series of periodic function
    f (x)= −1; −1 < x < 0
         = 1; 0 < x < 1
    p = 2L = 2




                    N. B. Vyas   Fourier Series 2
Example




Ex. Find the Fourier series of periodic function
    f (x)= 0; −2 < x < 0
         = 2; 0 < x < 2
    p = 2L = 4




                    N. B. Vyas   Fourier Series 2
Fourier Half Range Series



  A function f (x) defined only on the interval of the form
  0 < x < L.




                    N. B. Vyas   Fourier Series 2
Fourier Half Range Series



  A function f (x) defined only on the interval of the form
  0 < x < L.
  If f (x) is represented on this interval by a Fourier series of
  period 2L




                      N. B. Vyas   Fourier Series 2
Fourier Half Range Series



  A function f (x) defined only on the interval of the form
  0 < x < L.
  If f (x) is represented on this interval by a Fourier series of
  period 2L
  Then such Fourier series are known as half range Fourier
  series or half range expansions.




                     N. B. Vyas   Fourier Series 2
Fourier Half Range Series



  A function f (x) defined only on the interval of the form
  0 < x < L.
  If f (x) is represented on this interval by a Fourier series of
  period 2L
  Then such Fourier series are known as half range Fourier
  series or half range expansions.
  Types of Half Range Fourier series




                     N. B. Vyas   Fourier Series 2
Fourier Half Range Series



     A function f (x) defined only on the interval of the form
     0 < x < L.
     If f (x) is represented on this interval by a Fourier series of
     period 2L
     Then such Fourier series are known as half range Fourier
     series or half range expansions.
     Types of Half Range Fourier series

 1   Fourier Cosine Series




                        N. B. Vyas   Fourier Series 2
Fourier Half Range Series



     A function f (x) defined only on the interval of the form
     0 < x < L.
     If f (x) is represented on this interval by a Fourier series of
     period 2L
     Then such Fourier series are known as half range Fourier
     series or half range expansions.
     Types of Half Range Fourier series

 1   Fourier Cosine Series
 2   Fourier Sine Series




                        N. B. Vyas   Fourier Series 2
Fourier Cosine Series



  Let f (x) be piecewise continuous on [o, l].




                     N. B. Vyas   Fourier Series 2
Fourier Cosine Series



  Let f (x) be piecewise continuous on [o, l].
  the Fourier cosine series expansion of f (x) on the half range
  interval [0, l] is given by




                     N. B. Vyas   Fourier Series 2
Fourier Cosine Series



  Let f (x) be piecewise continuous on [o, l].
  the Fourier cosine series expansion of f (x) on the half range
  interval [0, l] is given by
                ∞
          ao              nπx
  f (x) =    +     an cos
          2    n=1
                           l




                     N. B. Vyas   Fourier Series 2
Fourier Cosine Series



  Let f (x) be piecewise continuous on [o, l].
  the Fourier cosine series expansion of f (x) on the half range
  interval [0, l] is given by
                   ∞
          ao              nπx
  f (x) =    +     an cos
          2    n=1
                           l
                       l
               2
  where a0 =               f (x) dx
               l   0




                            N. B. Vyas   Fourier Series 2
Fourier Cosine Series



  Let f (x) be piecewise continuous on [o, l].
  the Fourier cosine series expansion of f (x) on the half range
  interval [0, l] is given by
                          ∞
          ao              nπx
  f (x) =    +     an cos
          2    n=1
                           l
                              l
                      2
  where a0 =                      f (x) dx
                      l   0
                 l
         2                           nπx
  an =               f (x) cos           dx
         l   0                        l




                                   N. B. Vyas   Fourier Series 2
Fourier Sine Series



   Let f (x) be piecewise continuous on [o, l].




                      N. B. Vyas   Fourier Series 2
Fourier Sine Series



   Let f (x) be piecewise continuous on [o, l].
   the Fourier sine series expansion of f (x) on the half range
   interval [0, l] is given by




                      N. B. Vyas   Fourier Series 2
Fourier Sine Series



   Let f (x) be piecewise continuous on [o, l].
   the Fourier sine series expansion of f (x) on the half range
   interval [0, l] is given by
             ∞
                            nπx
   f (x) =         bn sin
             n=1
                             l




                            N. B. Vyas   Fourier Series 2
Fourier Sine Series



   Let f (x) be piecewise continuous on [o, l].
   the Fourier sine series expansion of f (x) on the half range
   interval [0, l] is given by
              ∞
                              nπx
   f (x) =          bn sin
              n=1
                               l
                l
          2                     nπx
   bn =           f (x) sin         dx
          l   0                  l




                              N. B. Vyas   Fourier Series 2
Example




Ex. Find Fourier cosine and sine series of the function
    f (x) = 1 for 0 ≤ x ≤ 2




                    N. B. Vyas   Fourier Series 2
Example




Sol. Here given interval is 0 ≤ x ≤ 2




                   N. B. Vyas   Fourier Series 2
Example




Sol. Here given interval is 0 ≤ x ≤ 2
     ∴l=2




                   N. B. Vyas   Fourier Series 2
Example



 1   Fourier cosine series
                              ∞
                     a0              nπx
     Step 1. f (x) =    +     an cos
                     2    n=1
                                      l




                     N. B. Vyas   Fourier Series 2
Example



 1   Fourier cosine series
                                ∞
                     a0              nπx
     Step 1. f (x) =    +     an cos
                     2    n=1
                                      l
                        l
                2
     where a0 =             f (x)dx
                l   0




                     N. B. Vyas       Fourier Series 2
Example



 1   Fourier cosine series
                              ∞
                     a0              nπx
     Step 1. f (x) =    +     an cos
                     2    n=1
                                      l
                 2 l
     where a0 =        f (x)dx
                 l 0
          2 l              nπx
     an =      f (x) cos
          l 0                l



                     N. B. Vyas   Fourier Series 2
Example




                         2
                 2
  Step 2. a0 =               f (x)dx
                 2   0




                     N. B. Vyas    Fourier Series 2
Example




                            2
                    2
  Step 2. a0 =                  f (x)dx
                    2   0
          2
  =           1dx
      0




                        N. B. Vyas    Fourier Series 2
Example




                            2
                    2
  Step 2. a0 =                  f (x)dx
                    2   0
          2
  =           1dx = [x]2
                       0
      0




                        N. B. Vyas    Fourier Series 2
Example




                            2
                    2
  Step 2. a0 =                  f (x)dx
                    2   0
          2
  =           1dx = [x]2 = 2.
                       0
      0




                        N. B. Vyas    Fourier Series 2
Example

                        2
               2                        nπx
  Step 3. an =              f (x)cos        dx
               2    0                    2




                   N. B. Vyas     Fourier Series 2
Example


                 2 2           nπx
  Step 3. an =        f (x)cos     dx
                 2 0            2
       2
                  nπx
  =      (1) cos        dx
     0             2




                N. B. Vyas   Fourier Series 2
Example


                 2 2           nπx
  Step 3. an =        f (x)cos     dx
                 2 0            2
       2
                  nπx
  =      (1) cos        dx
     0             2
             nπx 2
                  
      sin
  =
             2 
           nπ      
            2       0




                N. B. Vyas   Fourier Series 2
Example


                 2 2             nπx
  Step 3. an =         f (x)cos      dx
                 2 0              2
       2
                   nπx
  =      (1) cos         dx
     0              2
             nπx 2
                   
      sin
  =
              2 
           nπ       
            2        0
       2
  =          (sin (nπ) − sin (0))
      nπ


                 N. B. Vyas   Fourier Series 2
Example


                 2 2             nπx
  Step 3. an =         f (x)cos       dx
                 2 0              2
       2
                   nπx
  =      (1) cos         dx
     0              2
             nπx 2
                   
      sin
  =
              2 
           nπ       
            2        0
       2
  =          (sin (nπ) − sin (0)) = 0
      nπ


                  N. B. Vyas   Fourier Series 2
Example




  ∴ Fourier cosine series of f (x) is




                  N. B. Vyas   Fourier Series 2
Example




  ∴ Fourier cosine series of f (x) is
                ∞
          a0              nπx
  f (x) =    +     an cos
          2    n=1
                           l




                    N. B. Vyas   Fourier Series 2
Example




  ∴ Fourier cosine series of f (x) is
                ∞
          a0              nπx
  f (x) =    +     an cos
          2    n=1
                           l
      2
  =     +0
      2




                    N. B. Vyas   Fourier Series 2
Example




  ∴ Fourier cosine series of f (x) is
                ∞
          a0              nπx
  f (x) =    +     an cos
          2    n=1
                           l
      2
  =     +0 =1
      2




                    N. B. Vyas   Fourier Series 2

Fourier series 2

  • 1.
    Fourier Series 2 N. B. Vyas Department of Mathematics, Atmiya Institute of Tech. & Science, Rajkot (Guj.)- INDIA N. B. Vyas Fourier Series 2
  • 2.
    Functions of anyPeriod p = 2L Let f (x) be a periodic function with an arbitrary period 2L defined in the interval c < x < c + 2L N. B. Vyas Fourier Series 2
  • 3.
    Functions of anyPeriod p = 2L Let f (x) be a periodic function with an arbitrary period 2L defined in the interval c < x < c + 2L The Fourier series of f (x) is given by N. B. Vyas Fourier Series 2
  • 4.
    Functions of anyPeriod p = 2L Let f (x) be a periodic function with an arbitrary period 2L defined in the interval c < x < c + 2L The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L N. B. Vyas Fourier Series 2
  • 5.
    Functions of anyPeriod p = 2L Let f (x) be a periodic function with an arbitrary period 2L defined in the interval c < x < c + 2L The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L c+2L 1 where a0 = f (x) dx L c N. B. Vyas Fourier Series 2
  • 6.
    Functions of anyPeriod p = 2L Let f (x) be a periodic function with an arbitrary period 2L defined in the interval c < x < c + 2L The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 c+2L where a0 = f (x) dx L c 1 c+2L nπx an = f (x) cos dx L c L N. B. Vyas Fourier Series 2
  • 7.
    Functions of anyPeriod p = 2L Let f (x) be a periodic function with an arbitrary period 2L defined in the interval c < x < c + 2L The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 c+2L where a0 = f (x) dx L c 1 c+2L nπx an = f (x) cos dx L c L 1 c+2L nπx bn = f (x) sin dx L c L N. B. Vyas Fourier Series 2
  • 8.
    Functions of anyPeriod p = 2L Corollary 1: If c = 0 the interval becomes 0 < x < 2L N. B. Vyas Fourier Series 2
  • 9.
    Functions of anyPeriod p = 2L Corollary 1: If c = 0 the interval becomes 0 < x < 2L ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L N. B. Vyas Fourier Series 2
  • 10.
    Functions of anyPeriod p = 2L Corollary 1: If c = 0 the interval becomes 0 < x < 2L ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 2L 1 where a0 = f (x) dx L 0 N. B. Vyas Fourier Series 2
  • 11.
    Functions of anyPeriod p = 2L Corollary 1: If c = 0 the interval becomes 0 < x < 2L ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 2L 1 where a0 = f (x) dx L 0 2L 1 nπx an = f (x) cos dx L 0 L N. B. Vyas Fourier Series 2
  • 12.
    Functions of anyPeriod p = 2L Corollary 1: If c = 0 the interval becomes 0 < x < 2L ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 2L 1 where a0 = f (x) dx L 0 2L 1 nπx an = f (x) cos dx L 0 L 2L 1 nπx bn = f (x) sin dx L 0 L N. B. Vyas Fourier Series 2
  • 13.
    Functions of anyPeriod p = 2L Corollary 2: If c = −L the interval becomes −L < x < L N. B. Vyas Fourier Series 2
  • 14.
    Functions of anyPeriod p = 2L Corollary 2: If c = −L the interval becomes −L < x < L ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L N. B. Vyas Fourier Series 2
  • 15.
    Functions of anyPeriod p = 2L Corollary 2: If c = −L the interval becomes −L < x < L ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L L 1 where a0 = f (x) dx L −L N. B. Vyas Fourier Series 2
  • 16.
    Functions of anyPeriod p = 2L Corollary 2: If c = −L the interval becomes −L < x < L ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 L where a0 = f (x) dx L −L 1 L nπx an = f (x) cos dx L −L L N. B. Vyas Fourier Series 2
  • 17.
    Functions of anyPeriod p = 2L Corollary 2: If c = −L the interval becomes −L < x < L ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 L where a0 = f (x) dx L −L 1 L nπx an = f (x) cos dx L −L L 1 L nπx bn = f (x) sin dx L −L L N. B. Vyas Fourier Series 2
  • 18.
    Example Ex. The Fourierseries of f (x) = x2 , 0 < x < 2 where f (x + 2) = f (x). N. B. Vyas Fourier Series 2
  • 19.
    Example Ex. The Fourierseries of f (x) = x2 , 0 < x < 2 where f (x + 2) = f (x). 1 1 1 π2 Hence deduce that 1 − 2 + 2 − 2 + . . . = 2 3 4 12 N. B. Vyas Fourier Series 2
  • 20.
    Example Sol. Step 1:The Fourier series of f (x) is given by N. B. Vyas Fourier Series 2
  • 21.
    Example Sol. Step 1:The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L N. B. Vyas Fourier Series 2
  • 22.
    Example Sol. Step 1:The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 2 1 where a0 = f (x) dx L 0 N. B. Vyas Fourier Series 2
  • 23.
    Example Sol. Step 1:The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 2 where a0 = f (x) dx L 0 1 2 nπx an = f (x) cos dx L 0 L N. B. Vyas Fourier Series 2
  • 24.
    Example Sol. Step 1:The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 2 where a0 = f (x) dx L 0 1 2 nπx an = f (x) cos dx L 0 L 1 2 nπx bn = f (x) sin dx L 0 L N. B. Vyas Fourier Series 2
  • 25.
    Example Sol. Step 1:The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 2 where a0 = f (x) dx L 0 1 2 nπx an = f (x) cos dx L 0 L 1 2 nπx bn = f (x) sin dx L 0 L Here p = 2L = 2 ⇒ L = 1 N. B. Vyas Fourier Series 2
  • 26.
    Example 2 1 Step 2. Now a0 = f (x) dx 1 0 N. B. Vyas Fourier Series 2
  • 27.
    Example 2 1 Step 2. Now a0 = f (x) dx 1 0 2 a0 = (x)2 dx 0 N. B. Vyas Fourier Series 2
  • 28.
    Example 2 1 Step 2. Now a0 = f (x) dx 1 0 2 a0 = (x)2 dx 0 3 2 x = 3 0 N. B. Vyas Fourier Series 2
  • 29.
    Example 2 1 Step 2. Now a0 = f (x) dx 1 0 2 a0 = (x)2 dx 0 3 2 x = 3 0 8 = 3 N. B. Vyas Fourier Series 2
  • 30.
    Example 2 1 nπx Step 3. an = f (x) cos dx 1 0 1 N. B. Vyas Fourier Series 2
  • 31.
    Example 2 1 nπx Step 3. an = f (x) cos dx 1 0 1 2 an = x2 cos(nπx) dx 0 N. B. Vyas Fourier Series 2
  • 32.
    Example 2 1 nπx Step 3. an = f (x) cos dx 1 0 1 2 an = x2 cos(nπx) dx 0 2 sin nπx cos nπx sin nπx = x2 − (2x) − 2π2 +2 − 3 3 nπ n nπ 0 N. B. Vyas Fourier Series 2
  • 33.
    Example 2 1 nπx Step 3. an = f (x) cos dx 1 0 1 2 an = x2 cos(nπx) dx 0 2 sin nπx cos nπx sin nπx = x2 − (2x) − 2π2 +2 − 3 3 nπ n nπ 0 4 = 2 2 nπ N. B. Vyas Fourier Series 2
  • 34.
    Example 2 1 nπx Step 4. bn = f (x) sin dx 1 0 1 N. B. Vyas Fourier Series 2
  • 35.
    Example 2 1 nπx Step 4. bn = f (x) sin dx 1 0 1 2 bn = x2 sin(nπx) dx 0 N. B. Vyas Fourier Series 2
  • 36.
    Example 2 1 nπx Step 4. bn = f (x) sin dx 1 0 1 2 bn = x2 sin(nπx) dx 0 2 cos nπx sin nπx cos nπx = x2 − − (2x) − 2 2 +2 nπ nπ n3 π 3 0 N. B. Vyas Fourier Series 2
  • 37.
    Example 2 1 nπx Step 4. bn = f (x) sin dx 1 0 1 2 bn = x2 sin(nπx) dx 0 2 cos nπx sin nπx cos nπx = x2 − − (2x) − 2 2 +2 nπ nπ n3 π 3 0 4 =− nπ N. B. Vyas Fourier Series 2
  • 38.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (0, 2) N. B. Vyas Fourier Series 2
  • 39.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (0, 2) ∞ ∞ 8 4 nπx 4 nπx f (x) = + 2π2 cos + − sin 6 n=1 n 1 n=1 nπ 1 N. B. Vyas Fourier Series 2
  • 40.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (0, 2) ∞ ∞ 8 4 nπx 4 nπx f (x) = + 2π2 cos + − sin 6 n=1 n 1 n=1 nπ 1 ∞ ∞ 4 4 cos(nπx) 4 sin(nπx) = + 2 − 3 π n=1 n2 π n=1 n N. B. Vyas Fourier Series 2
  • 41.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (0, 2) ∞ ∞ 8 4 nπx 4 nπx f (x) = + 2π2 cos + − sin 6 n=1 n 1 n=1 nπ 1 ∞ ∞ 4 4 cos(nπx) 4 sin(nπx) = + 2 − 3 π n=1 n2 π n=1 n Putting x = 1, we get N. B. Vyas Fourier Series 2
  • 42.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (0, 2) ∞ ∞ 8 4 nπx 4 nπx f (x) = + 2π2 cos + − sin 6 n=1 n 1 n=1 nπ 1 ∞ ∞ 4 4 cos(nπx) 4 sin(nπx) = + 2 − 3 π n=1 n2 π n=1 n Putting x = 1, we get 4 4 1 1 1 1 = + 2 − 1 + 2 − 2 + ... 3 π 1 2 3 N. B. Vyas Fourier Series 2
  • 43.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (0, 2) ∞ ∞ 8 4 nπx 4 nπx f (x) = + 2π2 cos + − sin 6 n=1 n 1 n=1 nπ 1 ∞ ∞ 4 4 cos(nπx) 4 sin(nπx) = + 2 − 3 π n=1 n2 π n=1 n Putting x = 1, we get 4 4 1 1 1 1 = + 2 − 1 + 2 − 2 + ... 3 π 1 2 3 1 4 1 1 1 − = 2 − 1 + 2 − 2 + ... 3 π 1 2 3 N. B. Vyas Fourier Series 2
  • 44.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (0, 2) ∞ ∞ 8 4 nπx 4 nπx f (x) = + 2π2 cos + − sin 6 n=1 n 1 n=1 nπ 1 ∞ ∞ 4 4 cos(nπx) 4 sin(nπx) = + 2 − 3 π n=1 n2 π n=1 n Putting x = 1, we get 4 4 1 1 1 1 = + 2 − 1 + 2 − 2 + ... 3 π 1 2 3 1 4 1 1 1 − = 2 − 1 + 2 − 2 + ... 3 π 1 2 3 2 π 1 1 1 1 = 2 − 2 + 2 − 2 + ... 12 1 2 3 4 N. B. Vyas Fourier Series 2
  • 45.
    Example Ex. Find theFourier series of f (x) = 2x in −1 < x < 1 where p = 2L = 2. N. B. Vyas Fourier Series 2
  • 46.
    Example Sol. Step 1:The Fourier series of f (x) is given by N. B. Vyas Fourier Series 2
  • 47.
    Example Sol. Step 1:The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L N. B. Vyas Fourier Series 2
  • 48.
    Example Sol. Step 1:The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 1 where a0 = f (x) dx L −1 N. B. Vyas Fourier Series 2
  • 49.
    Example Sol. Step 1:The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 1 where a0 = f (x) dx L −1 1 1 nπx an = f (x) cos dx L −1 L N. B. Vyas Fourier Series 2
  • 50.
    Example Sol. Step 1:The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 1 where a0 = f (x) dx L −1 1 1 nπx an = f (x) cos dx L −1 L 1 1 nπx bn = f (x) sin dx L −1 L N. B. Vyas Fourier Series 2
  • 51.
    Example Sol. Step 1:The Fourier series of f (x) is given by ∞ a0 nπx nπx f (x) = + an cos + bn sin 2 n=1 L L 1 1 where a0 = f (x) dx L −1 1 1 nπx an = f (x) cos dx L −1 L 1 1 nπx bn = f (x) sin dx L −1 L Here p = 2L = 2 ⇒ L = 1 N. B. Vyas Fourier Series 2
  • 52.
    Example 1 1 Step 2. Now a0 = f (x) dx 1 −1 N. B. Vyas Fourier Series 2
  • 53.
    Example 1 1 Step 2. Now a0 = f (x) dx 1 −1 1 a0 = 2x dx −1 N. B. Vyas Fourier Series 2
  • 54.
    Example 1 1 Step 2. Now a0 = f (x) dx 1 −1 1 a0 = 2x dx −1 =0 N. B. Vyas Fourier Series 2
  • 55.
    Example 1 1 nπx Step 3. an = f (x) cos dx 1 −1 1 N. B. Vyas Fourier Series 2
  • 56.
    Example 1 1 nπx Step 3. an = f (x) cos dx 1 −1 1 1 an = 2x cos(nπx) dx −1 N. B. Vyas Fourier Series 2
  • 57.
    Example 1 1 nπx Step 3. an = f (x) cos dx 1 −1 1 1 an = 2x cos(nπx) dx −1 1 sin nπx cos nπx = 2x − (2) − 2 2 nπ nπ −1 N. B. Vyas Fourier Series 2
  • 58.
    Example 1 1 nπx Step 3. an = f (x) cos dx 1 −1 1 1 an = 2x cos(nπx) dx −1 1 sin nπx cos nπx = 2x − (2) − 2 2 nπ nπ −1 2(−1)n = 0+ 2 2 nπ N. B. Vyas Fourier Series 2
  • 59.
    Example 1 1 nπx Step 3. an = f (x) cos dx 1 −1 1 1 an = 2x cos(nπx) dx −1 1 sin nπx cos nπx = 2x − (2) − 2 2 nπ nπ −1 n n 2(−1) 2(−1) = 0+ 2 2 −0− 2 2 nπ nπ N. B. Vyas Fourier Series 2
  • 60.
    Example 1 1 nπx Step 3. an = f (x) cos dx 1 −1 1 1 an = 2x cos(nπx) dx −1 1 sin nπx cos nπx = 2x − (2) − 2 2 nπ nπ −1 n n 2(−1) 2(−1) = 0+ 2 2 −0− 2 2 nπ nπ =0 N. B. Vyas Fourier Series 2
  • 61.
    Example Ex. Find theFourier series of periodic function f (x)= −1; −1 < x < 0 = 1; 0 < x < 1 p = 2L = 2 N. B. Vyas Fourier Series 2
  • 62.
    Example Ex. Find theFourier series of periodic function f (x)= 0; −2 < x < 0 = 2; 0 < x < 2 p = 2L = 4 N. B. Vyas Fourier Series 2
  • 63.
    Fourier Half RangeSeries A function f (x) defined only on the interval of the form 0 < x < L. N. B. Vyas Fourier Series 2
  • 64.
    Fourier Half RangeSeries A function f (x) defined only on the interval of the form 0 < x < L. If f (x) is represented on this interval by a Fourier series of period 2L N. B. Vyas Fourier Series 2
  • 65.
    Fourier Half RangeSeries A function f (x) defined only on the interval of the form 0 < x < L. If f (x) is represented on this interval by a Fourier series of period 2L Then such Fourier series are known as half range Fourier series or half range expansions. N. B. Vyas Fourier Series 2
  • 66.
    Fourier Half RangeSeries A function f (x) defined only on the interval of the form 0 < x < L. If f (x) is represented on this interval by a Fourier series of period 2L Then such Fourier series are known as half range Fourier series or half range expansions. Types of Half Range Fourier series N. B. Vyas Fourier Series 2
  • 67.
    Fourier Half RangeSeries A function f (x) defined only on the interval of the form 0 < x < L. If f (x) is represented on this interval by a Fourier series of period 2L Then such Fourier series are known as half range Fourier series or half range expansions. Types of Half Range Fourier series 1 Fourier Cosine Series N. B. Vyas Fourier Series 2
  • 68.
    Fourier Half RangeSeries A function f (x) defined only on the interval of the form 0 < x < L. If f (x) is represented on this interval by a Fourier series of period 2L Then such Fourier series are known as half range Fourier series or half range expansions. Types of Half Range Fourier series 1 Fourier Cosine Series 2 Fourier Sine Series N. B. Vyas Fourier Series 2
  • 69.
    Fourier Cosine Series Let f (x) be piecewise continuous on [o, l]. N. B. Vyas Fourier Series 2
  • 70.
    Fourier Cosine Series Let f (x) be piecewise continuous on [o, l]. the Fourier cosine series expansion of f (x) on the half range interval [0, l] is given by N. B. Vyas Fourier Series 2
  • 71.
    Fourier Cosine Series Let f (x) be piecewise continuous on [o, l]. the Fourier cosine series expansion of f (x) on the half range interval [0, l] is given by ∞ ao nπx f (x) = + an cos 2 n=1 l N. B. Vyas Fourier Series 2
  • 72.
    Fourier Cosine Series Let f (x) be piecewise continuous on [o, l]. the Fourier cosine series expansion of f (x) on the half range interval [0, l] is given by ∞ ao nπx f (x) = + an cos 2 n=1 l l 2 where a0 = f (x) dx l 0 N. B. Vyas Fourier Series 2
  • 73.
    Fourier Cosine Series Let f (x) be piecewise continuous on [o, l]. the Fourier cosine series expansion of f (x) on the half range interval [0, l] is given by ∞ ao nπx f (x) = + an cos 2 n=1 l l 2 where a0 = f (x) dx l 0 l 2 nπx an = f (x) cos dx l 0 l N. B. Vyas Fourier Series 2
  • 74.
    Fourier Sine Series Let f (x) be piecewise continuous on [o, l]. N. B. Vyas Fourier Series 2
  • 75.
    Fourier Sine Series Let f (x) be piecewise continuous on [o, l]. the Fourier sine series expansion of f (x) on the half range interval [0, l] is given by N. B. Vyas Fourier Series 2
  • 76.
    Fourier Sine Series Let f (x) be piecewise continuous on [o, l]. the Fourier sine series expansion of f (x) on the half range interval [0, l] is given by ∞ nπx f (x) = bn sin n=1 l N. B. Vyas Fourier Series 2
  • 77.
    Fourier Sine Series Let f (x) be piecewise continuous on [o, l]. the Fourier sine series expansion of f (x) on the half range interval [0, l] is given by ∞ nπx f (x) = bn sin n=1 l l 2 nπx bn = f (x) sin dx l 0 l N. B. Vyas Fourier Series 2
  • 78.
    Example Ex. Find Fouriercosine and sine series of the function f (x) = 1 for 0 ≤ x ≤ 2 N. B. Vyas Fourier Series 2
  • 79.
    Example Sol. Here giveninterval is 0 ≤ x ≤ 2 N. B. Vyas Fourier Series 2
  • 80.
    Example Sol. Here giveninterval is 0 ≤ x ≤ 2 ∴l=2 N. B. Vyas Fourier Series 2
  • 81.
    Example 1 Fourier cosine series ∞ a0 nπx Step 1. f (x) = + an cos 2 n=1 l N. B. Vyas Fourier Series 2
  • 82.
    Example 1 Fourier cosine series ∞ a0 nπx Step 1. f (x) = + an cos 2 n=1 l l 2 where a0 = f (x)dx l 0 N. B. Vyas Fourier Series 2
  • 83.
    Example 1 Fourier cosine series ∞ a0 nπx Step 1. f (x) = + an cos 2 n=1 l 2 l where a0 = f (x)dx l 0 2 l nπx an = f (x) cos l 0 l N. B. Vyas Fourier Series 2
  • 84.
    Example 2 2 Step 2. a0 = f (x)dx 2 0 N. B. Vyas Fourier Series 2
  • 85.
    Example 2 2 Step 2. a0 = f (x)dx 2 0 2 = 1dx 0 N. B. Vyas Fourier Series 2
  • 86.
    Example 2 2 Step 2. a0 = f (x)dx 2 0 2 = 1dx = [x]2 0 0 N. B. Vyas Fourier Series 2
  • 87.
    Example 2 2 Step 2. a0 = f (x)dx 2 0 2 = 1dx = [x]2 = 2. 0 0 N. B. Vyas Fourier Series 2
  • 88.
    Example 2 2 nπx Step 3. an = f (x)cos dx 2 0 2 N. B. Vyas Fourier Series 2
  • 89.
    Example 2 2 nπx Step 3. an = f (x)cos dx 2 0 2 2 nπx = (1) cos dx 0 2 N. B. Vyas Fourier Series 2
  • 90.
    Example 2 2 nπx Step 3. an = f (x)cos dx 2 0 2 2 nπx = (1) cos dx 0 2 nπx 2   sin =  2  nπ  2 0 N. B. Vyas Fourier Series 2
  • 91.
    Example 2 2 nπx Step 3. an = f (x)cos dx 2 0 2 2 nπx = (1) cos dx 0 2 nπx 2   sin =  2  nπ  2 0 2 = (sin (nπ) − sin (0)) nπ N. B. Vyas Fourier Series 2
  • 92.
    Example 2 2 nπx Step 3. an = f (x)cos dx 2 0 2 2 nπx = (1) cos dx 0 2 nπx 2   sin =  2  nπ  2 0 2 = (sin (nπ) − sin (0)) = 0 nπ N. B. Vyas Fourier Series 2
  • 93.
    Example ∴Fourier cosine series of f (x) is N. B. Vyas Fourier Series 2
  • 94.
    Example ∴Fourier cosine series of f (x) is ∞ a0 nπx f (x) = + an cos 2 n=1 l N. B. Vyas Fourier Series 2
  • 95.
    Example ∴Fourier cosine series of f (x) is ∞ a0 nπx f (x) = + an cos 2 n=1 l 2 = +0 2 N. B. Vyas Fourier Series 2
  • 96.
    Example ∴Fourier cosine series of f (x) is ∞ a0 nπx f (x) = + an cos 2 n=1 l 2 = +0 =1 2 N. B. Vyas Fourier Series 2