Fourier Series

             N. B. Vyas


    Department of Mathematics,
Atmiya Institute of Tech. and Science,
       Rajkot (Guj.) - INDIA



         N. B. Vyas   Fourier Series
Periodic Function


  A function f (x) which satisfies the relation f (x) = f (x + T ) for
  all real x and some fixed T is called Periodic function.




                       N. B. Vyas   Fourier Series
Periodic Function


  A function f (x) which satisfies the relation f (x) = f (x + T ) for
  all real x and some fixed T is called Periodic function.
  The smallest positive number T , for which this relation holds, is
  called the period of f (x).




                       N. B. Vyas   Fourier Series
Periodic Function


  A function f (x) which satisfies the relation f (x) = f (x + T ) for
  all real x and some fixed T is called Periodic function.
  The smallest positive number T , for which this relation holds, is
  called the period of f (x).
  If T is the period of f (x) then




                       N. B. Vyas    Fourier Series
Periodic Function


  A function f (x) which satisfies the relation f (x) = f (x + T ) for
  all real x and some fixed T is called Periodic function.
  The smallest positive number T , for which this relation holds, is
  called the period of f (x).
  If T is the period of f (x) then
  f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT )




                        N. B. Vyas   Fourier Series
Periodic Function


  A function f (x) which satisfies the relation f (x) = f (x + T ) for
  all real x and some fixed T is called Periodic function.
  The smallest positive number T , for which this relation holds, is
  called the period of f (x).
  If T is the period of f (x) then
  f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT )
  f (x) = f (x − T ) = f (x − 2T ) = . . . = f (x − nT )




                        N. B. Vyas   Fourier Series
Periodic Function


   A function f (x) which satisfies the relation f (x) = f (x + T ) for
   all real x and some fixed T is called Periodic function.
   The smallest positive number T , for which this relation holds, is
   called the period of f (x).
   If T is the period of f (x) then
   f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT )
   f (x) = f (x − T ) = f (x − 2T ) = . . . = f (x − nT )
 ∴ f (x) = f (x ± nT ), where n is a positive integer




                         N. B. Vyas   Fourier Series
Periodic Function


    A function f (x) which satisfies the relation f (x) = f (x + T ) for
    all real x and some fixed T is called Periodic function.
    The smallest positive number T , for which this relation holds, is
    called the period of f (x).
    If T is the period of f (x) then
    f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT )
    f (x) = f (x − T ) = f (x − 2T ) = . . . = f (x − nT )
 ∴ f (x) = f (x ± nT ), where n is a positive integer
Eg. Sinx, Cosx, Secx and Cosecx are periodic functions with period
    2π




                          N. B. Vyas   Fourier Series
Periodic Function


    A function f (x) which satisfies the relation f (x) = f (x + T ) for
    all real x and some fixed T is called Periodic function.
    The smallest positive number T , for which this relation holds, is
    called the period of f (x).
    If T is the period of f (x) then
    f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT )
    f (x) = f (x − T ) = f (x − 2T ) = . . . = f (x − nT )
 ∴ f (x) = f (x ± nT ), where n is a positive integer
Eg. Sinx, Cosx, Secx and Cosecx are periodic functions with period
    2π
    tanx and cotx are periodic functions with period π.



                          N. B. Vyas   Fourier Series
Even & Odd functions



  A function f (x) is said to be even if f (−x) = f (x).




                     N. B. Vyas   Fourier Series
Even & Odd functions



    A function f (x) is said to be even if f (−x) = f (x).
Eg. x2 and cosx are even function.




                       N. B. Vyas   Fourier Series
Even & Odd functions



    A function f (x) is said to be even if f (−x) = f (x).
Eg. x2 and cosx are even function.
      c                     c
          f (x)dx = 2           f (x)dx ; if f (x) is an even function.
     −c                 0




                                N. B. Vyas   Fourier Series
Even & Odd functions



    A function f (x) is said to be even if f (−x) = f (x).
Eg. x2 and cosx are even function.
      c                     c
          f (x)dx = 2           f (x)dx ; if f (x) is an even function.
     −c                 0
    A function f (x) is said to be odd if f (−x) = −f (x).




                                N. B. Vyas   Fourier Series
Even & Odd functions



    A function f (x) is said to be even if f (−x) = f (x).
Eg. x2 and cosx are even function.
      c                     c
          f (x)dx = 2           f (x)dx ; if f (x) is an even function.
     −c                 0
    A function f (x) is said to be odd if f (−x) = −f (x).
Eg. x3 and sinx are odd function.




                                N. B. Vyas   Fourier Series
Even & Odd functions



    A function f (x) is said to be even if f (−x) = f (x).
Eg. x2 and cosx are even function.
      c                     c
          f (x)dx = 2           f (x)dx ; if f (x) is an even function.
     −c                 0
    A function f (x) is said to be odd if f (−x) = −f (x).
Eg. x3 and sinx are odd function.
      c
          f (x)dx = 0 ; if f (x) is an odd function.
     −c




                                N. B. Vyas   Fourier Series
Some Important Formula
                        eax
    eax sin bx dx =            (a sin bx − b cos bx) + c
                      a2 + b 2




                      N. B. Vyas   Fourier Series
Some Important Formula
                     eax
    eax sin bx dx =         (a sin bx − b cos bx) + c
                   a2 + b 2
                     eax
    eax cos bx dx = 2       (a cosbx + b sinbx) + c
                   a + b2




                      N. B. Vyas   Fourier Series
Some Important Formula
                        eax
    eax sin bx dx =            (a sin bx − b cos bx) + c
                      a2 + b 2
                        eax
      eax cos bx dx = 2        (a cosbx + b sinbx) + c
                      a + b2
     c+2π
                           cos nx c+2π
           sin nx dx = −                 = 0, n = 0
   c                          n     c




                      N. B. Vyas   Fourier Series
Some Important Formula
                        eax
    eax sin bx dx =            (a sin bx − b cos bx) + c
                      a2 + b 2
                        eax
      eax cos bx dx = 2        (a cosbx + b sinbx) + c
                      a + b2
     c+2π
                           cos nx c+2π
           sin nx dx = −                 = 0, n = 0
   c                          n     c
     c+2π                         c+2π
                        sin nx
           cos nx dx =                 = 0, n = 0
   c                       n      c




                      N. B. Vyas   Fourier Series
Some Important Formula
                        eax
    eax sin bx dx =            (a sin bx − b cos bx) + c
                      a2 + b 2
                        eax
      eax cos bx dx = 2        (a cosbx + b sinbx) + c
                      a + b2
     c+2π
                           cos nx c+2π
           sin nx dx = −                 = 0, n = 0
   c                          n     c
     c+2π                         c+2π
                        sin nx
           cos nx dx =                 = 0, n = 0
   c                       n      c
     c+2π
                                1 c+2π
           sin mx cos nx dx =            2sin mx cos nx dx
   c                            2 c




                      N. B. Vyas   Fourier Series
Some Important Formula
                         eax
    eax sin bx dx =             (a sin bx − b cos bx) + c
                       a2 + b 2
                         eax
      eax cos bx dx = 2         (a cosbx + b sinbx) + c
                       a + b2
     c+2π
                            cos nx c+2π
           sin nx dx = −                  = 0, n = 0
   c                           n     c
     c+2π                          c+2π
                         sin nx
           cos nx dx =                  = 0, n = 0
   c                        n      c
     c+2π
                                 1 c+2π
           sin mx cos nx dx =             2sin mx cos nx dx
   c                             2 c
     1 c+2π
  =             [sin (m + n)x + sin (m − n)x] dx
     2 c



                      N. B. Vyas   Fourier Series
Some Important Formula
                         eax
     eax sin bx dx =            (a sin bx − b cos bx) + c
                       a2 + b 2
                         eax
      eax cos bx dx = 2         (a cosbx + b sinbx) + c
                       a + b2
     c+2π
                            cos nx c+2π
           sin nx dx = −                  = 0, n = 0
   c                           n     c
     c+2π                          c+2π
                         sin nx
           cos nx dx =                  = 0, n = 0
   c                        n      c
     c+2π
                                 1 c+2π
           sin mx cos nx dx =             2sin mx cos nx dx
   c                             2 c
     1 c+2π
  =             [sin (m + n)x + sin (m − n)x] dx
     2 c
                                              c+2π
        1 cos (m + n)x cos (m − n)x
  =−                      +                        = 0, n = 0
        2       m+n               m−n         c
                       N. B. Vyas   Fourier Series
Some Important Formula
       c+2π                                c+2π
                                   1
              cos mx cos nx dx =   2
                                                  2cos mx cos nx dx
   c                                   c




                         N. B. Vyas        Fourier Series
Some Important Formula
       c+2π                                   c+2π
                                      1
               cos mx cos nx dx =     2
                                                     2cos mx cos nx dx
   c                                      c
               c+2π
       1
  =    2
                      [cos (m + n)x + cos (m − n)x] dx
           c




                             N. B. Vyas       Fourier Series
Some Important Formula
       c+2π                                   c+2π
                                      1
               cos mx cos nx dx =     2
                                                     2cos mx cos nx dx
   c                                      c
               c+2π
       1
  =    2
                      [cos (m + n)x + cos (m − n)x] dx
           c
                                                       c+2π
       1   sin (m + n)x sin (m − n)x
  =    2
                       +                                       = 0, m = n
              m+n          m−n                         c
       c+2π
               sin mx sin nx dx
   c




                             N. B. Vyas       Fourier Series
Some Important Formula
       c+2π                                   c+2π
                                      1
               cos mx cos nx dx =     2
                                                     2cos mx cos nx dx
   c                                      c
               c+2π
       1
  =    2
                      [cos (m + n)x + cos (m − n)x] dx
           c
                                                       c+2π
       1   sin (m + n)x sin (m − n)x
  =    2
                       +                                       = 0, m = n
              m+n          m−n                         c
       c+2π
               sin mx sin nx dx = 0
   c
       c+2π
               sin nx cos nx dx
   c




                             N. B. Vyas       Fourier Series
Some Important Formula
       c+2π                                   c+2π
                                      1
               cos mx cos nx dx =     2
                                                     2cos mx cos nx dx
   c                                      c
               c+2π
       1
  =    2
                      [cos (m + n)x + cos (m − n)x] dx
           c
                                                       c+2π
       1   sin (m + n)x sin (m − n)x
  =    2
                       +                                       = 0, m = n
              m+n          m−n                         c
       c+2π
               sin mx sin nx dx = 0
   c
       c+2π
               sin nx cos nx dx = 0, n = 0
   c




                             N. B. Vyas       Fourier Series
Some Important Formula
       c+2π                                   c+2π
                                      1
               cos mx cos nx dx =     2
                                                     2cos mx cos nx dx
   c                                      c
               c+2π
       1
  =    2
                      [cos (m + n)x + cos (m − n)x] dx
           c
                                                       c+2π
       1   sin (m + n)x sin (m − n)x
  =    2
                       +                                       = 0, m = n
              m+n          m−n                         c
       c+2π
               sin mx sin nx dx = 0
   c
       c+2π
               sin nx cos nx dx = 0, n = 0
   c
       c+2π
               cos2 nx dx
   c




                             N. B. Vyas       Fourier Series
Some Important Formula
       c+2π                                   c+2π
                                      1
               cos mx cos nx dx =     2
                                                     2cos mx cos nx dx
   c                                      c
               c+2π
       1
  =    2
                      [cos (m + n)x + cos (m − n)x] dx
           c
                                                       c+2π
       1   sin (m + n)x sin (m − n)x
  =    2
                       +                                       = 0, m = n
              m+n          m−n                         c
       c+2π
               sin mx sin nx dx = 0
   c
       c+2π
               sin nx cos nx dx = 0, n = 0
   c
       c+2π
               cos2 nx dx = π
   c




                             N. B. Vyas       Fourier Series
Some Important Formula
       c+2π                                   c+2π
                                      1
               cos mx cos nx dx =     2
                                                     2cos mx cos nx dx
   c                                      c
               c+2π
       1
  =    2
                      [cos (m + n)x + cos (m − n)x] dx
           c
                                                       c+2π
       1   sin (m + n)x sin (m − n)x
  =    2
                       +                                       = 0, m = n
              m+n          m−n                         c
       c+2π
               sin mx sin nx dx = 0
   c
       c+2π
               sin nx cos nx dx = 0, n = 0
   c
       c+2π
               cos2 nx dx = π
   c
       c+2π
               sin2 nx dx
   c
                             N. B. Vyas       Fourier Series
Some Important Formula
       c+2π                                   c+2π
                                      1
               cos mx cos nx dx =     2
                                                     2cos mx cos nx dx
   c                                      c
               c+2π
       1
  =    2
                      [cos (m + n)x + cos (m − n)x] dx
           c
                                                       c+2π
       1   sin (m + n)x sin (m − n)x
  =    2
                       +                                       = 0, m = n
              m+n          m−n                         c
       c+2π
               sin mx sin nx dx = 0
   c
       c+2π
               sin nx cos nx dx = 0, n = 0
   c
       c+2π
               cos2 nx dx = π
   c
       c+2π
               sin2 nx dx = π
   c
                             N. B. Vyas       Fourier Series
Some Important Formula

  (Leibnitz’s Rule)To integrate the product of two
  functions, one of which is power of x . We apply the
  generalized rule of integration by parts
    u vdx = u v1 − u v2 + u v3 − u v4 + . . .




                    N. B. Vyas   Fourier Series
Some Important Formula

      (Leibnitz’s Rule)To integrate the product of two
      functions, one of which is power of x . We apply the
      generalized rule of integration by parts
        u vdx = u v1 − u v2 + u v3 − u v4 + . . .

Eg.     x3 e−2x dx




                        N. B. Vyas   Fourier Series
Some Important Formula

      (Leibnitz’s Rule)To integrate the product of two
      functions, one of which is power of x . We apply the
      generalized rule of integration by parts
        u vdx = u v1 − u v2 + u v3 − u v4 + . . .

Eg.     x3 e−2x dx
             e−2x             e−2x                e−2x         e−2x
      = x3           − 3x2            + 6x               −6
              −2             (−2)2               (−2)3        (−2)4




                         N. B. Vyas   Fourier Series
Some Important Formula

      (Leibnitz’s Rule)To integrate the product of two
      functions, one of which is power of x . We apply the
      generalized rule of integration by parts
        u vdx = u v1 − u v2 + u v3 − u v4 + . . .

Eg.     x3 e−2x dx
             e−2x             e−2x                e−2x         e−2x
      = x3           − 3x2            + 6x               −6
              −2             (−2)2               (−2)3        (−2)4
         1
      = − e−2x (4x3 + 6x2 + 6x + 3)
         8




                         N. B. Vyas   Fourier Series
Some Important Formula

      (Leibnitz’s Rule)To integrate the product of two
      functions, one of which is power of x . We apply the
      generalized rule of integration by parts
        u vdx = u v1 − u v2 + u v3 − u v4 + . . .

Eg.     x3 e−2x dx
             e−2x             e−2x                e−2x         e−2x
      = x3           − 3x2            + 6x               −6
              −2             (−2)2               (−2)3        (−2)4
           1
      = − e−2x (4x3 + 6x2 + 6x + 3)
           8
      sin nπ = 0



                         N. B. Vyas   Fourier Series
Some Important Formula

      (Leibnitz’s Rule)To integrate the product of two
      functions, one of which is power of x . We apply the
      generalized rule of integration by parts
        u vdx = u v1 − u v2 + u v3 − u v4 + . . .

Eg.     x3 e−2x dx
             e−2x             e−2x                e−2x         e−2x
      = x3           − 3x2            + 6x               −6
              −2             (−2)2               (−2)3        (−2)4
           1
      = − e−2x (4x3 + 6x2 + 6x + 3)
           8
      sin nπ = 0 and cos nπ = (−1)n



                         N. B. Vyas   Fourier Series
Some Important Formula

      (Leibnitz’s Rule)To integrate the product of two
      functions, one of which is power of x . We apply the
      generalized rule of integration by parts
        u vdx = u v1 − u v2 + u v3 − u v4 + . . .

Eg.     x3 e−2x dx
             e−2x             e−2x                e−2x         e−2x
      = x3           − 3x2            + 6x               −6
              −2             (−2)2               (−2)3        (−2)4
           1
      = − e−2x (4x3 + 6x2 + 6x + 3)
           8
      sin nπ = 0 and cos nπ = (−1)n
      sin n + 1 π = (−1)n
               2



                         N. B. Vyas   Fourier Series
Some Important Formula

      (Leibnitz’s Rule)To integrate the product of two
      functions, one of which is power of x . We apply the
      generalized rule of integration by parts
        u vdx = u v1 − u v2 + u v3 − u v4 + . . .

Eg.     x3 e−2x dx
             e−2x             e−2x                e−2x             e−2x
      = x3           − 3x2            + 6x                   −6
              −2             (−2)2               (−2)3            (−2)4
           1
      = − e−2x (4x3 + 6x2 + 6x + 3)
           8
      sin nπ = 0 and cos nπ = (−1)n
      sin n + 1 π = (−1)n and cos n +
               2
                                                1
                                                2
                                                       π=0


                         N. B. Vyas   Fourier Series
Some Important Formula

      (Leibnitz’s Rule)To integrate the product of two
      functions, one of which is power of x . We apply the
      generalized rule of integration by parts
        u vdx = u v1 − u v2 + u v3 − u v4 + . . .

Eg.     x3 e−2x dx
             e−2x             e−2x                e−2x             e−2x
      = x3           − 3x2            + 6x                   −6
              −2             (−2)2               (−2)3            (−2)4
           1
      = − e−2x (4x3 + 6x2 + 6x + 3)
           8
      sin nπ = 0 and cos nπ = (−1)n
      sin n + 1 π = (−1)n and cos n +
               2
                                                1
                                                2
                                                       π=0
      where n is integer.
                         N. B. Vyas   Fourier Series
Fourier Series


  The Fourier series for the function f (x) in the interval
  c < x < c + 2π is given by




                     N. B. Vyas   Fourier Series
Fourier Series


  The Fourier series for the function f (x) in the interval
  c < x < c + 2π is given by
                ∞               ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1




                     N. B. Vyas   Fourier Series
Fourier Series


  The Fourier series for the function f (x) in the interval
  c < x < c + 2π is given by
                ∞               ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
                       c+2π
               1
  where a0 =                  f (x) dx
               π   c




                         N. B. Vyas      Fourier Series
Fourier Series


  The Fourier series for the function f (x) in the interval
  c < x < c + 2π is given by
                ∞               ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
                             c+2π
                   1
  where a0 =                        f (x) dx
                   π     c
                 c+2π
         1
  an =                  f (x) cos nx dx
         π   c




                               N. B. Vyas      Fourier Series
Fourier Series


  The Fourier series for the function f (x) in the interval
  c < x < c + 2π is given by
                ∞               ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
                           c+2π
                 1
  where a0 =                      f (x) dx
                 π     c
               c+2π
       1
  an =                f (x) cos nx dx
       π   c
               c+2π
       1
  bn =                f (x) sin nx dx
       π   c




                             N. B. Vyas      Fourier Series
Fourier Series



  Corollary 1: If c = 0, the interval becomes 0 < x < 2π




                    N. B. Vyas   Fourier Series
Fourier Series



  Corollary 1: If c = 0, the interval becomes 0 < x < 2π
                ∞                ∞
          a0
  f (x) =    +      an cos nx +     bn sin nx
          2    n=1              n=1




                    N. B. Vyas   Fourier Series
Fourier Series



  Corollary 1: If c = 0, the interval becomes 0 < x < 2π
                ∞                ∞
          a0
  f (x) =    +      an cos nx +     bn sin nx
          2    n=1              n=1
                       2π
               1
  where a0 =                f (x) dx
               π   0




                            N. B. Vyas   Fourier Series
Fourier Series



  Corollary 1: If c = 0, the interval becomes 0 < x < 2π
                ∞                ∞
          a0
  f (x) =    +      an cos nx +     bn sin nx
          2    n=1              n=1
                              2π
                      1
  where a0 =                       f (x) dx
                      π   0
                 2π
         1
  an =                f (x) cos nx dx
         π   0




                                   N. B. Vyas   Fourier Series
Fourier Series



  Corollary 1: If c = 0, the interval becomes 0 < x < 2π
                ∞                ∞
          a0
  f (x) =    +      an cos nx +     bn sin nx
          2    n=1              n=1
                            2π
                    1
  where a0 =                     f (x) dx
                    π   0
               2π
       1
  an =              f (x) cos nx dx
       π   0
            2π
       1
  bn =              f (x) sin nx dx
       π   0




                                 N. B. Vyas   Fourier Series
Fourier Series



  Corollary 2: If c = −π, the interval becomes −π << π




                    N. B. Vyas   Fourier Series
Fourier Series



  Corollary 2: If c = −π, the interval becomes −π << π
                ∞                ∞
          a0
  f (x) =    +      an cos nx +     bn sin nx
          2    n=1              n=1




                    N. B. Vyas   Fourier Series
Fourier Series



  Corollary 2: If c = −π, the interval becomes −π << π
                ∞                ∞
          a0
  f (x) =    +      an cos nx +     bn sin nx
          2    n=1              n=1
                   π
               1
  where a0 =            f (x) dx
               π   −π




                        N. B. Vyas   Fourier Series
Fourier Series



  Corollary 2: If c = −π, the interval becomes −π << π
                ∞                ∞
          a0
  f (x) =    +      an cos nx +     bn sin nx
          2    n=1              n=1
                       π
                  1
  where a0 =               f (x) dx
                  π   −π
             π
         1
  an =            f (x) cos nx dx
         π   −π




                           N. B. Vyas   Fourier Series
Fourier Series



  Corollary 2: If c = −π, the interval becomes −π << π
                ∞                ∞
          a0
  f (x) =    +      an cos nx +     bn sin nx
          2    n=1              n=1
                     π
                1
  where a0 =             f (x) dx
                π   −π
            π
       1
  an =          f (x) cos nx dx
       π   −π
            π
       1
  bn =          f (x) sin nx dx
       π   −π




                         N. B. Vyas   Fourier Series
Fourier Series

  Special Case 1: If the interval is −c < x < c and f (x) is an
  odd function i.e. f (−x) = −f (x). Let C = π




                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 1: If the interval is −c < x < c and f (x) is an
  odd function i.e. f (−x) = −f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1




                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 1: If the interval is −c < x < c and f (x) is an
  odd function i.e. f (−x) = −f (x). Let C = π
                 ∞                    ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
                     π
             1
  where a0 =             f (x) dx = 0
             π   −π




                         N. B. Vyas     Fourier Series
Fourier Series

  Special Case 1: If the interval is −c < x < c and f (x) is an
  odd function i.e. f (−x) = −f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
             1 π
  where a0 =         f (x) dx = 0
             π −π
       1 π
  an =       f (x) cos nx dx = 0
       π −π




                     N. B. Vyas     Fourier Series
Fourier Series

  Special Case 1: If the interval is −c < x < c and f (x) is an
  odd function i.e. f (−x) = −f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
              1 π
  where a0 =         f (x) dx = 0
              π −π
        1 π
  an =       f (x) cos nx dx = 0
        π −π
  because cos nx is an even function , f (x)cos nx is an odd
  function




                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 1: If the interval is −c < x < c and f (x) is an
  odd function i.e. f (−x) = −f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
              1 π
  where a0 =         f (x) dx = 0
              π −π
        1 π
  an =       f (x) cos nx dx = 0
        π −π
  because cos nx is an even function , f (x)cos nx is an odd
  function
        1 π                     2 π
  bn =       f (x) sin nx dx =      f (x) sin nx dx
       π −π                     π 0



                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 1: If the interval is −c < x < c and f (x) is an
  odd function i.e. f (−x) = −f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
              1 π
  where a0 =         f (x) dx = 0
              π −π
        1 π
  an =       f (x) cos nx dx = 0
        π −π
  because cos nx is an even function , f (x)cos nx is an odd
  function
        1 π                     2 π
  bn =       f (x) sin nx dx =      f (x) sin nx dx
       π −π                     π 0
  because sin nx is an odd function , f (x)sin nx is an even
  function
                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 2: If the interval is −c < x < c and f (x) is an
  even function i.e. f (−x) = f (x). Let C = π




                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 2: If the interval is −c < x < c and f (x) is an
  even function i.e. f (−x) = f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1




                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 2: If the interval is −c < x < c and f (x) is an
  even function i.e. f (−x) = f (x). Let C = π
                 ∞                    ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
                     π                        π
             1                 2
  where a0 =        f (x) dx =                    f (x) dx
             π   −π            π          0




                         N. B. Vyas   Fourier Series
Fourier Series

  Special Case 2: If the interval is −c < x < c and f (x) is an
  even function i.e. f (−x) = f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
             1 π                  2       π
  where a0 =         f (x) dx =               f (x) dx
             π −π                 π   0
       1 π                        2       π
  an =       f (x) cos nx dx =                f (x) cos nx dx
       π −π                       π   0




                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 2: If the interval is −c < x < c and f (x) is an
  even function i.e. f (−x) = f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
              1 π               2 π
  where a0 =         f (x) dx =     f (x) dx
              π −π              π 0
        1 π                     2 π
  an =       f (x) cos nx dx =       f (x) cos nx dx
        π −π                    π 0
  because cos nx is an even function , f (x)cos nx is an even
  function




                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 2: If the interval is −c < x < c and f (x) is an
  even function i.e. f (−x) = f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
              1 π               2 π
  where a0 =         f (x) dx =     f (x) dx
              π −π              π 0
        1 π                     2 π
  an =       f (x) cos nx dx =       f (x) cos nx dx
        π −π                    π 0
  because cos nx is an even function , f (x)cos nx is an even
  function
        1 π
  bn =       f (x) sin nx dx = 0
       π −π



                     N. B. Vyas   Fourier Series
Fourier Series

  Special Case 2: If the interval is −c < x < c and f (x) is an
  even function i.e. f (−x) = f (x). Let C = π
                ∞                 ∞
          a0
  f (x) =    +     an cos nx +     bn sin nx
          2    n=1             n=1
              1 π               2 π
  where a0 =         f (x) dx =     f (x) dx
              π −π              π 0
        1 π                     2 π
  an =       f (x) cos nx dx =       f (x) cos nx dx
        π −π                    π 0
  because cos nx is an even function , f (x)cos nx is an even
  function
        1 π
  bn =       f (x) sin nx dx = 0
       π −π
  because sin nx is an odd function , f (x)sin nx is an odd
  function
                     N. B. Vyas   Fourier Series
Example




                                                 2
                                     π−x
Ex. Obtain Fourier series of f (x) =                 in the
                                       2
    interval 0 ≤ x ≤ 2π. Hence deduce that
    π2     1    1    1
        = 2 − 2 + 2 − ...
    12 1        2   3




                   N. B. Vyas   Fourier Series
Example




                                                 2
                                     π−x
Ex. Obtain Fourier series of f (x) =                 in the
                                       2
    interval 0 ≤ x ≤ 2π. Hence deduce that
    π2     1    1    1
        = 2 − 2 + 2 − ...
    12 1        2   3




                   N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                   ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                     ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                         2π
                 1
    where a0 =                f (x) dx
                 π   0




                              N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                            ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                                2π
                        1
    where a0 =                       f (x) dx
                        π   0
                   2π
           1
    an =                f (x) cos nx dx
           π   0




                                     N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                          ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                              2π
                      1
    where a0 =                     f (x) dx
                      π   0
                 2π
         1
    an =              f (x) cos nx dx
         π    0
               2π
         1
    bn =              f (x) sin nx dx
         π   0




                                   N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                          ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                              2π
                      1
    where a0 =                     f (x) dx
                      π   0
                 2π
         1
    an =              f (x) cos nx dx
         π    0
               2π
         1
    bn =              f (x) sin nx dx
         π   0




                                   N. B. Vyas   Fourier Series
Example



                             2π
                     1
  Step 2. Now a0 =                f (x) dx
                     π   0




                     N. B. Vyas        Fourier Series
Example



                            1 2π
  Step 2. Now a0 =                f (x) dx
                            π 0
                 2π
         1            (π − x)2
  a0 =                         dx
         π   0           4




                            N. B. Vyas   Fourier Series
Example



                            1 2π
  Step 2. Now a0 =                f (x) dx
                            π 0
                 2π
         1            (π − x)2
  a0 =                         dx
         π   0           4
                          2π
     1 (π − x)3                       1
  =                            =−        (−π 3 − π 3 )
    4π   (−3)             0          12π




                               N. B. Vyas   Fourier Series
Example



                            1 2π
  Step 2. Now a0 =                f (x) dx
                            π 0
                 2π
         1            (π − x)2
  a0 =                         dx
         π   0           4
                          2π
     1 (π − x)3                       1
  =                            =−        (−π 3 − π 3 )
    4π   (−3)             0          12π
      2
    π
  =
     6




                               N. B. Vyas   Fourier Series
Example




                         2π
                 1
  Step 3. an =                f (x) cos nx dx
                 π   0




                          N. B. Vyas    Fourier Series
Example




                       1 2π
  Step 3. an =                f (x) cos nx dx
                       π 0
                 2π
         1            (π − x)2
  an =                         cos nx dx
         π   0           4




                            N. B. Vyas   Fourier Series
Example




                       1 2π
  Step 3. an =                f (x) cos nx dx
                       π 0
                 2π
         1            (π − x)2
  an =                         cos nx dx
         π   0           4
    1
  = 2
   n




                            N. B. Vyas   Fourier Series
Example




                         2π
                 1
  Step 4. bn =                f (x) sin nx dx
                 π   0




                          N. B. Vyas    Fourier Series
Example




                     1 2π
  Step 4. bn =              f (x) sin nx dx
                     π 0
               2π
       1            (π − x)2
  bn =                       sin nx dx
       π   0           4




                           N. B. Vyas   Fourier Series
Example




                     1 2π
  Step 4. bn =              f (x) sin nx dx
                     π 0
               2π
       1            (π − x)2
  bn =                       sin nx dx
       π   0           4
  =0




                           N. B. Vyas   Fourier Series
Example


  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]




                     N. B. Vyas   Fourier Series
Example


  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]
           2            ∞
    π−x            π2     1
               =      +      cos nx
     2             12 n=1 n2




                       N. B. Vyas   Fourier Series
Example


  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]
           2            ∞
    π−x            π2     1
               =      +      cos nx
     2             12 n=1 n2
    π2   1         1          1
  =    + 2 cos x + 2 cos 2x + 2 cos 3x + . . .
    12 1          2          3




                       N. B. Vyas   Fourier Series
Example


  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]
           2            ∞
    π−x            π2     1
               =      +      cos nx
     2             12 n=1 n2
    π2    1         1         1
  =    + 2 cos x + 2 cos 2x + 2 cos 3x + . . .
    12 1            2        3
  Putting x = π, we get




                       N. B. Vyas   Fourier Series
Example


  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]
           2            ∞
    π−x            π2     1
               =      +      cos nx
     2             12 n=1 n2
    π2    1         1         1
  =    + 2 cos x + 2 cos 2x + 2 cos 3x + . . .
    12 1            2        3
  Putting x = π, we get
      π2    1    1    1   1
  0=     − 2 + 2 − 2 + 2 − ...
      12 1       2    3   4




                       N. B. Vyas   Fourier Series
Example


  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]
           2            ∞
    π−x            π2     1
               =      +      cos nx
     2             12 n=1 n2
     π2    1         1         1
  =     + 2 cos x + 2 cos 2x + 2 cos 3x + . . .
     12 1            2        3
  Putting x = π, we get
       π2    1   1     1   1
  0=      − 2 + 2 − 2 + 2 − ...
       12 1      2     3   4
  π2     1     1   1     1
      = 2 − 2 + 2 − 2 + ...
  12    1     2    3     4


                       N. B. Vyas   Fourier Series
Example




Ex. Expand in a Fourier series the function f (x) = x
    in the interval 0 ≤ x ≤ 2π.




                    N. B. Vyas   Fourier Series
Example




Ex. Expand in a Fourier series the function f (x) = x
    in the interval 0 ≤ x ≤ 2π.




                    N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                   ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                     ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                         2π
                 1
    where a0 =                f (x) dx
                 π   0




                              N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                            ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                                2π
                        1
    where a0 =                       f (x) dx
                        π   0
                   2π
           1
    an =                f (x) cos nx dx
           π   0




                                     N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                          ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                              2π
                      1
    where a0 =                     f (x) dx
                      π   0
                 2π
         1
    an =              f (x) cos nx dx
         π    0
               2π
         1
    bn =              f (x) sin nx dx
         π   0




                                   N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                          ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                              2π
                      1
    where a0 =                     f (x) dx
                      π   0
                 2π
         1
    an =              f (x) cos nx dx
         π    0
               2π
         1
    bn =              f (x) sin nx dx
         π   0




                                   N. B. Vyas   Fourier Series
Example



                             2π
                     1
  Step 2. Now a0 =                f (x) dx
                     π   0




                     N. B. Vyas        Fourier Series
Example



                                     2π
                             1
  Step 2. Now a0 =                        f (x) dx
                             π   0
                 2π
         1
  a0 =                x dx
         π   0




                             N. B. Vyas        Fourier Series
Example



                                  2π
                          1
  Step 2. Now a0 =                     f (x) dx
                          π   0
              2π
         1
  a0 =             x dx
         π   0
             2 2π
       1 x
  =
      4π 2     0




                          N. B. Vyas        Fourier Series
Example



                                  2π
                          1
  Step 2. Now a0 =                     f (x) dx
                          π   0
              2π
         1
  a0 =             x dx
         π   0
             2 2π
     1 x
  =
    4π 2       0
  = 2π




                          N. B. Vyas        Fourier Series
Example



                         2π
                 1
  Step 3. an =                f (x) cos nx dx
                 π   0




                          N. B. Vyas    Fourier Series
Example



                               2π
                       1
  Step 3. an =                      f (x) cos nx dx
                       π   0
                 2π
         1
  an =                x cos nx dx
         π   0




                                N. B. Vyas    Fourier Series
Example



                         2π
                 1
  Step 3. an =                f (x) cos nx dx
                 π   0
          1 2π
  an =          x cos nx dx
          π 0
                                       2π
         sin nx        cos nx
   x             − −
           n              n            0




                          N. B. Vyas       Fourier Series
Example



                         2π
                 1
  Step 3. an =                f (x) cos nx dx
                 π   0
          1 2π
  an =          x cos nx dx
          π 0
                                       2π
         sin nx        cos nx
   x             − −
           n              n            0
  =0




                          N. B. Vyas       Fourier Series
Example




                         2π
                 1
  Step 4. bn =                f (x) sin nx dx
                 π   0




                          N. B. Vyas    Fourier Series
Example




                               2π
                       1
  Step 4. bn =                      f (x) sin nx dx
                       π   0
                 2π
         1
  bn =                x sin nx dx
         π   0




                                N. B. Vyas    Fourier Series
Example




                            2π
                    1
  Step 4. bn =                   f (x) sin nx dx
                    π   0
              2π
      1
  bn =             x sin nx dx
      π   0
    −2
  =
    n




                             N. B. Vyas    Fourier Series
Example




  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]




                     N. B. Vyas   Fourier Series
Example




  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]
                     ∞
          2π         −2
  f (x) =    +0+        sin nx
           2     n=1
                     n




                     N. B. Vyas   Fourier Series
Example




  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]
                        ∞
          2π         −2
  f (x) =    +0+        sin nx
           2     n=1
                     n
         ∞
               sin nx
  =π−
         n=1
                 n




                        N. B. Vyas   Fourier Series
Example




  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval [0, 2π]
                        ∞
          2π         −2
  f (x) =    +0+        sin nx
           2     n=1
                     n
         ∞
               sin nx
  =π−
         n=1
                 n




                        N. B. Vyas   Fourier Series
Example




Ex. Determine the Fourier series expansion of the
    function f (x) = xsin x in the interval 0 ≤ x ≤ 2π.




                    N. B. Vyas   Fourier Series
Example




Ex. Determine the Fourier series expansion of the
    function f (x) = xsin x in the interval 0 ≤ x ≤ 2π.




                    N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                   ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                     ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                         2π
                 1
    where a0 =                f (x) dx
                 π   0




                              N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                            ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                                2π
                        1
    where a0 =                       f (x) dx
                        π   0
                   2π
           1
    an =                f (x) cos nx dx
           π   0




                                     N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                          ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                              2π
                      1
    where a0 =                     f (x) dx
                      π   0
                 2π
         1
    an =              f (x) cos nx dx
         π    0
               2π
         1
    bn =              f (x) sin nx dx
         π   0




                                   N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                          ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                              2π
                      1
    where a0 =                     f (x) dx
                      π   0
                 2π
         1
    an =              f (x) cos nx dx
         π    0
               2π
         1
    bn =              f (x) sin nx dx
         π   0




                                   N. B. Vyas   Fourier Series
Example


                             2π
                     1
  Step 2. Now a0 =                f (x) dx
                     π   0




                     N. B. Vyas        Fourier Series
Example


                                     2π
                          1
  Step 2. Now a0 =                        f (x) dx
                          π      0
               2π
       1
  a0 =              x sin x dx
       π   0




                           N. B. Vyas          Fourier Series
Example


                             2π
                     1
  Step 2. Now a0 =                f (x) dx
                     π   0
       1 2π
  a0 =      x sin x dx
       π 0
     1
  = [−x cos x + sin x]2π
                       0
     π




                     N. B. Vyas        Fourier Series
Example


                             2π
                     1
  Step 2. Now a0 =                f (x) dx
                     π   0
       1 2π
  a0 =      x sin x dx
       π 0
     1
  = [−x cos x + sin x]2π
                       0
     π
     1
  = (−2 π cos 2π + sin 2π − 0 + sin 0)
     π




                     N. B. Vyas        Fourier Series
Example


                             2π
                     1
  Step 2. Now a0 =                f (x) dx
                     π   0
       1 2π
  a0 =      x sin x dx
       π 0
     1
  = [−x cos x + sin x]2π
                       0
     π
     1
  = (−2 π cos 2π + sin 2π − 0 + sin 0)
     π
       −2π
  a0 =     = −2
        π




                     N. B. Vyas        Fourier Series
Example


                       2π
               1
  Step 3. an =              f (x) cos nx dx
               π   0




                        N. B. Vyas    Fourier Series
Example


               1 2π
  Step 3. an =         f (x) cos nx dx
               π 0
       1 2π
  an =        x sin x cos nx dx
       π 0




                     N. B. Vyas   Fourier Series
Example


                 1 2π
  Step 3. an =          f (x) cos nx dx
                 π 0
        1 2π
  an =         x sin x cos nx dx
        π 0
          2π
      1
  =          x (2 sin x cos nx) dx
     2π 0




                      N. B. Vyas   Fourier Series
Example


                 1 2π
  Step 3. an =          f (x) cos nx dx
                 π 0
        1 2π
  an =         x sin x cos nx dx
        π 0
          2π
      1
  =          x (2 sin x cos nx) dx
     2π 0
          2π
      1
  =          x (sin (n + 1)x − sin (n − 1)x) dx
     2π 0




                     N. B. Vyas   Fourier Series
Example


                 1 2π
  Step 3. an =          f (x) cos nx dx
                 π 0
        1 2π
  an =         x sin x cos nx dx
        π 0
          2π
      1
  =          x (2 sin x cos nx) dx
     2π 0
          2π
      1
  =          x (sin (n + 1)x − sin (n − 1)x) dx
     2π 0
          2π                            2π
      1                             1
  =          x sin (n + 1)x dx −           x sin (n − 1)x dx
     2π 0                          2π 0



                      N. B. Vyas   Fourier Series
Example


                  2π                                    2π
          1                                   1
  an =                 x sin (n + 1)x dx −                   x sin (n − 1)x dx
         2π   0                              2π     0




                            N. B. Vyas   Fourier Series
Example


                 2π                                    2π
         1                                   1
  an =                x sin (n + 1)x dx −                   x sin (n − 1)x dx
        2π   0                              2π     0
  If n = 1




                           N. B. Vyas   Fourier Series
Example


                 2π                                       2π
         1                                      1
  an =                x sin (n + 1)x dx −                      x sin (n − 1)x dx
        2π   0                                 2π     0
  If n = 1
                      2π
            1
  ∴ a1 =                   x sin 2x dx
           2π     0




                              N. B. Vyas   Fourier Series
Example


                 2π                                       2π
         1                                        1
  an =                x sin (n + 1)x dx −                      x sin (n − 1)x dx
        2π   0                                   2π   0
  If n = 1
                      2π
            1
  ∴ a1 =                   x sin 2x dx
           2π     0
                                            2π
     1            cos 2x          sin 2x
  =    −x                       +
    2π              2               4       0




                              N. B. Vyas   Fourier Series
Example


                 2π                                       2π
         1                                        1
  an =                x sin (n + 1)x dx −                      x sin (n − 1)x dx
        2π   0                                   2π   0
  If n = 1
                      2π
            1
  ∴ a1 =                   x sin 2x dx
           2π     0
                                            2π
     1            cos 2x          sin 2x
  =     −x                      +
    2π              2               4       0
      1
  =−
      2




                              N. B. Vyas   Fourier Series
Example

                  2π                                    2π
          1                                   1
  an =                 x sin (n + 1)x dx −                   x sin (n − 1)x dx
         2π   0                              2π     0




                            N. B. Vyas   Fourier Series
Example

                 2π                                    2π
         1                                   1
  an =                x sin (n + 1)x dx −                   x sin (n − 1)x dx
        2π   0                              2π     0
  If n = 1




                           N. B. Vyas   Fourier Series
Example

                 2π                                    2π
         1                                   1
  an =                x sin (n + 1)x dx −                   x sin (n − 1)x dx
        2π   0                              2π     0
  If n = 1
                                                                        2π
            1     cos (n + 1)x                       sin (n + 1)x
  ∴ an =      x −                          − −
           2π        n+1                               (n + 1)2         0




                           N. B. Vyas   Fourier Series
Example

                 2π                                    2π
         1                                   1
  an =                x sin (n + 1)x dx −                   x sin (n − 1)x dx
        2π   0                              2π     0
  If n = 1
                                                                        2π
            1     cos (n + 1)x                       sin (n + 1)x
  ∴ an =      x −                          − −
           2π        n+1                               (n + 1)2         0
                                                                  2π
       1     cos (n − 1)x                   sin (n − 1)x
  −      x −                        − −
      2π        n−1                           (n − 1)2            0




                           N. B. Vyas   Fourier Series
Example

                 2π                                    2π
         1                                   1
  an =                x sin (n + 1)x dx −                   x sin (n − 1)x dx
        2π   0                              2π     0
  If n = 1
                                                                        2π
            1     cos (n + 1)x                       sin (n + 1)x
  ∴ an =      x −                          − −
           2π        n+1                               (n + 1)2         0
                                                                  2π
     1      cos (n − 1)x      sin (n − 1)x
  −     x −               − −
    2π         n−1              (n − 1)2                          0
      1    2π          2π
  =     −      +0+         −0
     2π   n+1         n−1




                           N. B. Vyas   Fourier Series
Example

                 2π                                    2π
         1                                   1
  an =                x sin (n + 1)x dx −                   x sin (n − 1)x dx
        2π   0                              2π     0
  If n = 1
                                                                        2π
            1     cos (n + 1)x                       sin (n + 1)x
  ∴ an =      x −                          − −
           2π        n+1                               (n + 1)2         0
                                                                  2π
     1        cos (n − 1)x      sin (n − 1)x
  −       x −               − −
    2π           n−1              (n − 1)2                        0
      1      2π          2π
  =       −      +0+         −0
     2π     n+1         n−1
        2
  = 2
     n −1


                           N. B. Vyas   Fourier Series
Example



                         2π
                 1
  Step 4. bn =                f (x) sin nx dx
                 π   0




                          N. B. Vyas    Fourier Series
Example



                               2π
                       1
  Step 4. bn =                      f (x) sin nx dx
                       π   0
              2π
      1
  =                x sin x sin nx dx
      π   0




                                N. B. Vyas    Fourier Series
Example



                                 2π
                         1
  Step 4. bn =                        f (x) sin nx dx
                         π   0
             2π
    1
  =               x sin x sin nx dx
    π    0
                 2π
     1
  =                   x (2sin nx sin x) dx
    2π       0




                                  N. B. Vyas    Fourier Series
Example



                                 2π
                         1
  Step 4. bn =                        f (x) sin nx dx
                         π   0
             2π
    1
  =               x sin x sin nx dx
    π    0
                 2π
     1
  =                   x (2sin nx sin x) dx
    2π       0
                 2π
     1
  =                   x (−cos (n + 1)x + cos (n − 1)x) dx
    2π       0




                                  N. B. Vyas    Fourier Series
Example



                  2π
          1
  bn =                 x (−cos (n + 1)x + cos (n − 1)x) dx
         2π   0




                            N. B. Vyas   Fourier Series
Example



                 2π
         1
  bn =                x (−cos (n + 1)x + cos (n − 1)x) dx
        2π   0
  If n = 1




                           N. B. Vyas   Fourier Series
Example



                 2π
         1
  bn =                x (−cos (n + 1)x + cos (n − 1)x) dx
        2π   0
  If n = 1
                      2π                                 2π
            1                                  1
  ∴ b1 =                   (−x cos 2x) dx +                   x dx
           2π     0                           2π     0




                              N. B. Vyas   Fourier Series
Example



                 2π
         1
  bn =                x (−cos (n + 1)x + cos (n − 1)x) dx
        2π   0
  If n = 1
                      2π                                 2π
            1                                  1
  ∴ b1 =                   (−x cos 2x) dx +                   x dx
           2π     0                           2π     0
                                                     2π
       1     sin 2x                 cos 2x x2
  =      x −                    −         +
      2π       2                      4     2        0




                              N. B. Vyas   Fourier Series
Example



                 2π
         1
  bn =                x (−cos (n + 1)x + cos (n − 1)x) dx
        2π   0
  If n = 1
                      2π                                 2π
            1                                  1
  ∴ b1 =                   (−x cos 2x) dx +                   x dx
           2π     0                           2π     0
                                                     2π
      1      sin 2x                 cos 2x x2
  =      x −                    −         +
     2π        2                      4     2        0
  b1 = π




                              N. B. Vyas   Fourier Series
Example



                  2π
          1
  bn =                 x (−cos (n + 1)x + cos (n − 1)x) dx
         2π   0




                            N. B. Vyas   Fourier Series
Example



                 2π
         1
  bn =                x (−cos (n + 1)x + cos (n − 1)x) dx
        2π   0
  If n = 1




                           N. B. Vyas   Fourier Series
Example



                 2π
         1
  bn =                x (−cos (n + 1)x + cos (n − 1)x) dx
        2π   0
  If n = 1
                                                                2π
            1     sin (n + 1)x                   cos (n + 1)x
  ∴ bn =      x −                         −
           2π        n+1                           (n + 1)2     0




                           N. B. Vyas   Fourier Series
Example



                 2π
         1
  bn =                x (−cos (n + 1)x + cos (n − 1)x) dx
        2π   0
  If n = 1
                                                                 2π
            1     sin (n + 1)x                    cos (n + 1)x
  ∴ bn =      x −                          −
           2π        n+1                            (n + 1)2     0
                                                          2π
       1     sin (n − 1)x               cos (n − 1)x
  +      x                        +
      2π        n−1                       (n − 1)2        0




                           N. B. Vyas    Fourier Series
Example



                 2π
         1
  bn =                x (−cos (n + 1)x + cos (n − 1)x) dx
        2π   0
  If n = 1
                                                                 2π
            1     sin (n + 1)x                    cos (n + 1)x
  ∴ bn =      x −                          −
           2π        n+1                            (n + 1)2     0
                                                          2π
    1        sin (n − 1)x               cos (n − 1)x
  +   x                           +
   2π           n−1                       (n − 1)2        0
  =0




                           N. B. Vyas    Fourier Series
Example




  Step 5. Substituting values of a0 , a1 , an (n > 1), b1 and
  bn (n > 1) in (1), we get the required Fourier series of f (x) in
  the interval [0, 2π]




                      N. B. Vyas   Fourier Series
Example




  Step 5. Substituting values of a0 , a1 , an (n > 1), b1 and
  bn (n > 1) in (1), we get the required Fourier series of f (x) in
  the interval [0, 2π]
                 ∞
          −2
  f (x) =    +     (an cos nx + bn sin nx)
           2   n=1




                      N. B. Vyas   Fourier Series
Example




  Step 5. Substituting values of a0 , a1 , an (n > 1), b1 and
  bn (n > 1) in (1), we get the required Fourier series of f (x) in
  the interval [0, 2π]
                 ∞
          −2
  f (x) =    +     (an cos nx + bn sin nx)
           2   n=1




                      N. B. Vyas   Fourier Series
Example




Ex. Find the Fourier series for the periodic function
    f (x)= −π; −π < x < 0
         = x; 0 < x < π




                    N. B. Vyas   Fourier Series
Example




Ex. Find the Fourier series for the periodic function
    f (x)= −π; −π < x < 0
         = x; 0 < x < π




                    N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                   ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                     ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                         π
                 1
    where a0 =               f (x) dx
                 π   −π




                             N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                        ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                            π
                    1
    where a0 =                  f (x) dx
                    π   −π
               π
           1
    an =            f (x) cos nx dx
           π   −π




                                N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                       ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                           π
                   1
    where a0 =                 f (x) dx
                   π   −π
               π
         1
    an =           f (x) cos nx dx
         π    −π
               π
         1
    bn =           f (x) sin nx dx
         π   −π




                               N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                       ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                           π
                   1
    where a0 =                 f (x) dx
                   π   −π
               π
         1
    an =           f (x) cos nx dx
         π    −π
               π
         1
    bn =           f (x) sin nx dx
         π   −π




                               N. B. Vyas   Fourier Series
Example



                          π
                     1
  Step 2. Now a0 =            f (x) dx
                     π   −π




                     N. B. Vyas    Fourier Series
Example



                                π
                        1
  Step 2. Now a0 =                  f (x) dx
                        π   −π
          0                 π
      1
  =            f (x) dx +           f (x) dx
      π   −π                0




                        N. B. Vyas        Fourier Series
Example



                               π
                       1
  Step 2. Now a0 =                 f (x) dx
                       π   −π
          0                π
    1
  =           f (x) dx +           f (x) dx
    π   −π                 0
         0                     π
    1
  =           (−π) dx +            x dx
    π   −π                 0




                       N. B. Vyas         Fourier Series
Example



                                  π
                          1
  Step 2. Now a0 =                    f (x) dx
                          π   −π
            0                 π
    1
  =              f (x) dx +           f (x) dx
    π       −π                0
             0                    π
    1
  =              (−π) dx +            x dx
    π       −π                0
        π
  =−
        2




                          N. B. Vyas         Fourier Series
Example



                                  π
                          1
  Step 2. Now a0 =                    f (x) dx
                          π   −π
            0                 π
    1
  =              f (x) dx +           f (x) dx
    π       −π                0
             0                    π
    1
  =              (−π) dx +            x dx
    π       −π                0
        π
  =−
        2




                          N. B. Vyas         Fourier Series
Example



                   0                                π
               1
  Step 3. an =          f (x) cos nx dx +               f (x) cos nx dx
               π   −π                           0




                       N. B. Vyas   Fourier Series
Example



               1 0                           π
  Step 3. an =        f (x) cos nx dx +        f (x) cos nx dx
               π −π                        0
          0                       π
     1
  =         (−π) cos nx dx +        x cos nx dx
    π −π                        0




                      N. B. Vyas   Fourier Series
Example



               1 0                           π
  Step 3. an =        f (x) cos nx dx +        f (x) cos nx dx
               π −π                        0
          0                       π
     1
  =         (−π) cos nx dx +        x cos nx dx
    π −π                        0
                      0
      1    sin nx
  =     −π                 +
      π      n        −π




                      N. B. Vyas   Fourier Series
Example



               1 0                           π
  Step 3. an =        f (x) cos nx dx +        f (x) cos nx dx
               π −π                        0
          0                       π
     1
  =         (−π) cos nx dx +        x cos nx dx
    π −π                        0
                      0                                           π
      1    sin nx                  sin nx                cos nx
  =     −π                 + x                 − (1) −
      π      n        −π             n                     n2     0




                      N. B. Vyas   Fourier Series
Example



               1 0                           π
  Step 3. an =        f (x) cos nx dx +        f (x) cos nx dx
               π −π                        0
          0                       π
     1
  =         (−π) cos nx dx +        x cos nx dx
    π −π                        0
                      0                                           π
      1    sin nx                  sin nx                cos nx
  =     −π                 + x                 − (1) −
      π      n        −π             n                     n2     0
          n
      (−1) − 1
  =
        πn2




                      N. B. Vyas   Fourier Series
Example



                   0                                  π
               1
  Step 4. bn =          f (x) sin nx dx +                 f (x) sin nx dx
               π   −π                             0




                   N. B. Vyas    Fourier Series
Example



                     0                        π
               1
  Step 4. bn =         f (x) sin nx dx +        f (x) sin nx dx
               π −π                         0
          0                       π
     1
  =         (−π) sin nx dx +        x sin nx dx
    π −π                        0




                      N. B. Vyas   Fourier Series
Example



                     0                        π
               1
  Step 4. bn =         f (x) sin nx dx +        f (x) sin nx dx
               π −π                         0
          0                       π
     1
  =         (−π) sin nx dx +        x sin nx dx
    π −π                        0
                        0
      1    −cosnx
  =     −π                   +
      π      n          −π




                      N. B. Vyas   Fourier Series
Example



                     0                        π
               1
  Step 4. bn =         f (x) sin nx dx +        f (x) sin nx dx
               π −π                         0
          0                       π
     1
  =         (−π) sin nx dx +        x sin nx dx
    π −π                        0
                        0                                         π
      1    −cosnx                  −cos nx              −sin nx
  =     −π                   + x                    −
      π      n          −π           n                    n2      0




                      N. B. Vyas   Fourier Series
Example



                     0                        π
               1
  Step 4. bn =         f (x) sin nx dx +        f (x) sin nx dx
               π −π                         0
          0                       π
     1
  =         (−π) sin nx dx +        x sin nx dx
    π −π                        0
                        0                                         π
      1    −cosnx                  −cos nx              −sin nx
  =     −π                   + x                    −
      π      n          −π           n                    n2      0
               n
      1 − 2(−1)
  =
           n




                      N. B. Vyas   Fourier Series
Example




  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (−π, π)




                     N. B. Vyas   Fourier Series
Example




  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (−π, π)
                 ∞
          −π
  f (x) =    +     (an cos nx + bn sin nx)
           4   n=1




                     N. B. Vyas   Fourier Series
Example




  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (−π, π)
                 ∞
          −π
  f (x) =    +     (an cos nx + bn sin nx)
           4   n=1
           ∞                                  ∞
    −π          (−1)n − 1                             1 − 2(−1)n
  =    +                          cos nx +                         sin nx
     4   n=1
                  πn2                        n=1
                                                           n




                     N. B. Vyas      Fourier Series
Example




  Step 5. Substituting values of a0 , an and bn in (1), we get the
  required Fourier series of f (x) in the interval (−π, π)
                 ∞
          −π
  f (x) =    +     (an cos nx + bn sin nx)
           4   n=1
           ∞                                  ∞
    −π          (−1)n − 1                             1 − 2(−1)n
  =    +                          cos nx +                         sin nx
     4   n=1
                  πn2                        n=1
                                                           n




                     N. B. Vyas      Fourier Series
Example




Ex. Find the Fourier series for the periodic function
    f (x)= 2; −π < x < 0
         = 1; 0 < x < π




                    N. B. Vyas   Fourier Series
Example




Ex. Find the Fourier series for the periodic function
    f (x)= 2; −π < x < 0
         = 1; 0 < x < π




                    N. B. Vyas   Fourier Series
Example




Ex. Find the Fourier series for the periodic function
    f (x)= −k; −π < x < 0
         = k; 0 < x < π




                    N. B. Vyas   Fourier Series
Example




Ex. Find the Fourier series for the periodic function
    f (x)= −k; −π < x < 0
         = k; 0 < x < π
                            1 1 1               π
    Hence deduce that 1 − + − + . . . =
                            3 5 7               4




                    N. B. Vyas   Fourier Series
Example




Ex. Find the Fourier series of the function
    f (x)= x; 0 ≤ x < π
         = 2π ; x = π
         = 2π − x ; π < x < 2π
                        3π 2    1    1    1
    Hence deduce that        = 2 + 2 + 2 + ...
                         8      1    3    5




                  N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                   ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1




                        N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                     ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                         2π
                 1
    where a0 =                f (x) dx
                 π   0




                              N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                           ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                               2π
                       1
    where a0 =                      f (x) dx
                       π   0
                   π
           1
    an =               f (x) cos nx dx
           π   0




                                    N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                         ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                             2π
                     1
    where a0 =                    f (x) dx
                     π   0
                 π
         1
    an =             f (x) cos nx dx
         π    0
               2π
         1
    bn =             f (x) sin nx dx
         π   0




                                  N. B. Vyas   Fourier Series
Example



Sol. Step 1. The Fourier series of f (x) is given by
                         ∞
            a0
    f (x) =    +     (an cos nx + bn sin nx) . . . (1)
            2    n=1
                             2π
                     1
    where a0 =                    f (x) dx
                     π   0
                 π
         1
    an =             f (x) cos nx dx
         π    0
               2π
         1
    bn =             f (x) sin nx dx
         π   0




                                  N. B. Vyas   Fourier Series
Example



                           2π
                   1
  Step 2. Now a0 =              f (x) dx
                   π   0




                   N. B. Vyas        Fourier Series
Example



                    1 2π
  Step 2. Now a0 =          f (x) dx
                    π 0
          π          2π
     1
  =         x dx +      (2π − x) dx
    π 0            π




                     N. B. Vyas   Fourier Series
Example



                    1 2π
  Step 2. Now a0 =          f (x) dx
                    π 0
          π          2π
     1
  =         x dx +      (2π − x) dx
    π 0            π
               π                   2π
    1     x2               x2
  =                + 2πx −
    π     2    0           2       π




                      N. B. Vyas       Fourier Series
Example



                    1 2π
  Step 2. Now a0 =          f (x) dx
                    π 0
          π          2π
     1
  =         x dx +      (2π − x) dx
    π 0            π
               π                   2π
    1     x2               x2
  =                + 2πx −
    π     2    0           2       π
  =π




                      N. B. Vyas       Fourier Series
Example
                         π                             2π
                 1
  Step 3. an =               f (x) cos nx dx +              f (x) cos nx dx
                 π   0                             π




                     N. B. Vyas       Fourier Series
Example
                            π                                   2π
                   1
  Step 3. an =                  f (x) cos nx dx +                    f (x) cos nx dx
                   π    0                                   π
            π                           2π
    1
  =             x cos nx dx +                (2π − x) cos nx dx
    π   0                           π




                         N. B. Vyas            Fourier Series
Example
                         π                             2π
                 1
  Step 3. an =               f (x) cos nx dx +              f (x) cos nx dx
                 π   0                             π
        π                  2π
    1
  =       x cos nx dx +       (2π − x) cos nx dx
    π 0                  π
                                       π
    1     sin nx             cos nx
  =   x            − (1) −
    π        n                  n2     0




                     N. B. Vyas       Fourier Series
Example
                           π                             2π
                 1
  Step 3. an =                 f (x) cos nx dx +              f (x) cos nx dx
                 π     0                             π
        π                  2π
    1
  =       x cos nx dx +       (2π − x) cos nx dx
    π 0                  π
                                       π
    1     sin nx             cos nx
  =   x            − (1) −
    π        n                  n2     0
                                                                2π
   1                 sin nx                 cos nx
  + (2π − x)                       − (−1) −
   π                   n                      n2                π




                       N. B. Vyas       Fourier Series
Example
                         π                             2π
                 1
  Step 3. an =               f (x) cos nx dx +              f (x) cos nx dx
                 π   0                             π
        π                  2π
    1
  =       x cos nx dx +       (2π − x) cos nx dx
    π 0                  π
                                       π
    1     sin nx             cos nx
  =   x            − (1) −
    π        n                  n2     0
                                                              2π
    1               sin nx            cos nx
  + (2π − x)               − (−1) −
    π                 n                 n2                    π
     1        cos nπ          1
  =       0+      2
                        − 0+ 2
     π          n             n
    1         cos 2nπ          cos nπ
  +       0−      2
                         − 0−
    π           n                n2
     2 [(−1)n − 1]
  =
          πn2
                     N. B. Vyas       Fourier Series
Example


                       2π
               1
  Step 4. bn =              f (x) sin nx dx
               π   0




                        N. B. Vyas    Fourier Series
Example



                1 2π
  Step 4. bn =         f (x) sin nx dx
                π 0
          π                   2π
     1
  =         x sin nx dx +        (2π − x) sin nx dx
    π 0                     π




                      N. B. Vyas   Fourier Series
Example



                1 2π
  Step 4. bn =         f (x) sin nx dx
                π 0
          π                   2π
     1
  =         x sin nx dx +        (2π − x) sin nx dx
    π 0                     π
                                            π
     1       cos nx               sin nx
  =     x −           − (1) −
    π           n                   n2      0




                      N. B. Vyas   Fourier Series
Example



                1 2π
  Step 4. bn =         f (x) sin nx dx
                π 0
          π                   2π
     1
  =         x sin nx dx +        (2π − x) sin nx dx
    π 0                     π
                                            π
     1       cos nx               sin nx
  =     x −           − (1) −
    π           n                   n2      0
                                                      2π
   1           cos nx          sin nx
  + (2π − x) −        − (−1) −
   π             n               n2                   π




                      N. B. Vyas   Fourier Series
Example



                1 2π
  Step 4. bn =         f (x) sin nx dx
                π 0
          π                   2π
     1
  =         x sin nx dx +        (2π − x) sin nx dx
    π 0                     π
                                            π
     1       cos nx               sin nx
  =     x −           − (1) −
    π           n                   n2      0
                                                      2π
   1           cos nx          sin nx
  + (2π − x) −        − (−1) −
   π             n               n2                   π
  =0




                      N. B. Vyas   Fourier Series
Example




Ex. Find the Fourier series of
    f (x)= −1; −π < x < − π 2
         = 0 ; −π < x < π
                 2       2
         = 1; π < x < π
               2




                    N. B. Vyas   Fourier Series

Fourier series 1

  • 1.
    Fourier Series N. B. Vyas Department of Mathematics, Atmiya Institute of Tech. and Science, Rajkot (Guj.) - INDIA N. B. Vyas Fourier Series
  • 2.
    Periodic Function A function f (x) which satisfies the relation f (x) = f (x + T ) for all real x and some fixed T is called Periodic function. N. B. Vyas Fourier Series
  • 3.
    Periodic Function A function f (x) which satisfies the relation f (x) = f (x + T ) for all real x and some fixed T is called Periodic function. The smallest positive number T , for which this relation holds, is called the period of f (x). N. B. Vyas Fourier Series
  • 4.
    Periodic Function A function f (x) which satisfies the relation f (x) = f (x + T ) for all real x and some fixed T is called Periodic function. The smallest positive number T , for which this relation holds, is called the period of f (x). If T is the period of f (x) then N. B. Vyas Fourier Series
  • 5.
    Periodic Function A function f (x) which satisfies the relation f (x) = f (x + T ) for all real x and some fixed T is called Periodic function. The smallest positive number T , for which this relation holds, is called the period of f (x). If T is the period of f (x) then f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT ) N. B. Vyas Fourier Series
  • 6.
    Periodic Function A function f (x) which satisfies the relation f (x) = f (x + T ) for all real x and some fixed T is called Periodic function. The smallest positive number T , for which this relation holds, is called the period of f (x). If T is the period of f (x) then f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT ) f (x) = f (x − T ) = f (x − 2T ) = . . . = f (x − nT ) N. B. Vyas Fourier Series
  • 7.
    Periodic Function A function f (x) which satisfies the relation f (x) = f (x + T ) for all real x and some fixed T is called Periodic function. The smallest positive number T , for which this relation holds, is called the period of f (x). If T is the period of f (x) then f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT ) f (x) = f (x − T ) = f (x − 2T ) = . . . = f (x − nT ) ∴ f (x) = f (x ± nT ), where n is a positive integer N. B. Vyas Fourier Series
  • 8.
    Periodic Function A function f (x) which satisfies the relation f (x) = f (x + T ) for all real x and some fixed T is called Periodic function. The smallest positive number T , for which this relation holds, is called the period of f (x). If T is the period of f (x) then f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT ) f (x) = f (x − T ) = f (x − 2T ) = . . . = f (x − nT ) ∴ f (x) = f (x ± nT ), where n is a positive integer Eg. Sinx, Cosx, Secx and Cosecx are periodic functions with period 2π N. B. Vyas Fourier Series
  • 9.
    Periodic Function A function f (x) which satisfies the relation f (x) = f (x + T ) for all real x and some fixed T is called Periodic function. The smallest positive number T , for which this relation holds, is called the period of f (x). If T is the period of f (x) then f (x) = f (x + T ) = f (x + 2T ) = . . . = f (x + nT ) f (x) = f (x − T ) = f (x − 2T ) = . . . = f (x − nT ) ∴ f (x) = f (x ± nT ), where n is a positive integer Eg. Sinx, Cosx, Secx and Cosecx are periodic functions with period 2π tanx and cotx are periodic functions with period π. N. B. Vyas Fourier Series
  • 10.
    Even & Oddfunctions A function f (x) is said to be even if f (−x) = f (x). N. B. Vyas Fourier Series
  • 11.
    Even & Oddfunctions A function f (x) is said to be even if f (−x) = f (x). Eg. x2 and cosx are even function. N. B. Vyas Fourier Series
  • 12.
    Even & Oddfunctions A function f (x) is said to be even if f (−x) = f (x). Eg. x2 and cosx are even function. c c f (x)dx = 2 f (x)dx ; if f (x) is an even function. −c 0 N. B. Vyas Fourier Series
  • 13.
    Even & Oddfunctions A function f (x) is said to be even if f (−x) = f (x). Eg. x2 and cosx are even function. c c f (x)dx = 2 f (x)dx ; if f (x) is an even function. −c 0 A function f (x) is said to be odd if f (−x) = −f (x). N. B. Vyas Fourier Series
  • 14.
    Even & Oddfunctions A function f (x) is said to be even if f (−x) = f (x). Eg. x2 and cosx are even function. c c f (x)dx = 2 f (x)dx ; if f (x) is an even function. −c 0 A function f (x) is said to be odd if f (−x) = −f (x). Eg. x3 and sinx are odd function. N. B. Vyas Fourier Series
  • 15.
    Even & Oddfunctions A function f (x) is said to be even if f (−x) = f (x). Eg. x2 and cosx are even function. c c f (x)dx = 2 f (x)dx ; if f (x) is an even function. −c 0 A function f (x) is said to be odd if f (−x) = −f (x). Eg. x3 and sinx are odd function. c f (x)dx = 0 ; if f (x) is an odd function. −c N. B. Vyas Fourier Series
  • 16.
    Some Important Formula eax eax sin bx dx = (a sin bx − b cos bx) + c a2 + b 2 N. B. Vyas Fourier Series
  • 17.
    Some Important Formula eax eax sin bx dx = (a sin bx − b cos bx) + c a2 + b 2 eax eax cos bx dx = 2 (a cosbx + b sinbx) + c a + b2 N. B. Vyas Fourier Series
  • 18.
    Some Important Formula eax eax sin bx dx = (a sin bx − b cos bx) + c a2 + b 2 eax eax cos bx dx = 2 (a cosbx + b sinbx) + c a + b2 c+2π cos nx c+2π sin nx dx = − = 0, n = 0 c n c N. B. Vyas Fourier Series
  • 19.
    Some Important Formula eax eax sin bx dx = (a sin bx − b cos bx) + c a2 + b 2 eax eax cos bx dx = 2 (a cosbx + b sinbx) + c a + b2 c+2π cos nx c+2π sin nx dx = − = 0, n = 0 c n c c+2π c+2π sin nx cos nx dx = = 0, n = 0 c n c N. B. Vyas Fourier Series
  • 20.
    Some Important Formula eax eax sin bx dx = (a sin bx − b cos bx) + c a2 + b 2 eax eax cos bx dx = 2 (a cosbx + b sinbx) + c a + b2 c+2π cos nx c+2π sin nx dx = − = 0, n = 0 c n c c+2π c+2π sin nx cos nx dx = = 0, n = 0 c n c c+2π 1 c+2π sin mx cos nx dx = 2sin mx cos nx dx c 2 c N. B. Vyas Fourier Series
  • 21.
    Some Important Formula eax eax sin bx dx = (a sin bx − b cos bx) + c a2 + b 2 eax eax cos bx dx = 2 (a cosbx + b sinbx) + c a + b2 c+2π cos nx c+2π sin nx dx = − = 0, n = 0 c n c c+2π c+2π sin nx cos nx dx = = 0, n = 0 c n c c+2π 1 c+2π sin mx cos nx dx = 2sin mx cos nx dx c 2 c 1 c+2π = [sin (m + n)x + sin (m − n)x] dx 2 c N. B. Vyas Fourier Series
  • 22.
    Some Important Formula eax eax sin bx dx = (a sin bx − b cos bx) + c a2 + b 2 eax eax cos bx dx = 2 (a cosbx + b sinbx) + c a + b2 c+2π cos nx c+2π sin nx dx = − = 0, n = 0 c n c c+2π c+2π sin nx cos nx dx = = 0, n = 0 c n c c+2π 1 c+2π sin mx cos nx dx = 2sin mx cos nx dx c 2 c 1 c+2π = [sin (m + n)x + sin (m − n)x] dx 2 c c+2π 1 cos (m + n)x cos (m − n)x =− + = 0, n = 0 2 m+n m−n c N. B. Vyas Fourier Series
  • 23.
    Some Important Formula c+2π c+2π 1 cos mx cos nx dx = 2 2cos mx cos nx dx c c N. B. Vyas Fourier Series
  • 24.
    Some Important Formula c+2π c+2π 1 cos mx cos nx dx = 2 2cos mx cos nx dx c c c+2π 1 = 2 [cos (m + n)x + cos (m − n)x] dx c N. B. Vyas Fourier Series
  • 25.
    Some Important Formula c+2π c+2π 1 cos mx cos nx dx = 2 2cos mx cos nx dx c c c+2π 1 = 2 [cos (m + n)x + cos (m − n)x] dx c c+2π 1 sin (m + n)x sin (m − n)x = 2 + = 0, m = n m+n m−n c c+2π sin mx sin nx dx c N. B. Vyas Fourier Series
  • 26.
    Some Important Formula c+2π c+2π 1 cos mx cos nx dx = 2 2cos mx cos nx dx c c c+2π 1 = 2 [cos (m + n)x + cos (m − n)x] dx c c+2π 1 sin (m + n)x sin (m − n)x = 2 + = 0, m = n m+n m−n c c+2π sin mx sin nx dx = 0 c c+2π sin nx cos nx dx c N. B. Vyas Fourier Series
  • 27.
    Some Important Formula c+2π c+2π 1 cos mx cos nx dx = 2 2cos mx cos nx dx c c c+2π 1 = 2 [cos (m + n)x + cos (m − n)x] dx c c+2π 1 sin (m + n)x sin (m − n)x = 2 + = 0, m = n m+n m−n c c+2π sin mx sin nx dx = 0 c c+2π sin nx cos nx dx = 0, n = 0 c N. B. Vyas Fourier Series
  • 28.
    Some Important Formula c+2π c+2π 1 cos mx cos nx dx = 2 2cos mx cos nx dx c c c+2π 1 = 2 [cos (m + n)x + cos (m − n)x] dx c c+2π 1 sin (m + n)x sin (m − n)x = 2 + = 0, m = n m+n m−n c c+2π sin mx sin nx dx = 0 c c+2π sin nx cos nx dx = 0, n = 0 c c+2π cos2 nx dx c N. B. Vyas Fourier Series
  • 29.
    Some Important Formula c+2π c+2π 1 cos mx cos nx dx = 2 2cos mx cos nx dx c c c+2π 1 = 2 [cos (m + n)x + cos (m − n)x] dx c c+2π 1 sin (m + n)x sin (m − n)x = 2 + = 0, m = n m+n m−n c c+2π sin mx sin nx dx = 0 c c+2π sin nx cos nx dx = 0, n = 0 c c+2π cos2 nx dx = π c N. B. Vyas Fourier Series
  • 30.
    Some Important Formula c+2π c+2π 1 cos mx cos nx dx = 2 2cos mx cos nx dx c c c+2π 1 = 2 [cos (m + n)x + cos (m − n)x] dx c c+2π 1 sin (m + n)x sin (m − n)x = 2 + = 0, m = n m+n m−n c c+2π sin mx sin nx dx = 0 c c+2π sin nx cos nx dx = 0, n = 0 c c+2π cos2 nx dx = π c c+2π sin2 nx dx c N. B. Vyas Fourier Series
  • 31.
    Some Important Formula c+2π c+2π 1 cos mx cos nx dx = 2 2cos mx cos nx dx c c c+2π 1 = 2 [cos (m + n)x + cos (m − n)x] dx c c+2π 1 sin (m + n)x sin (m − n)x = 2 + = 0, m = n m+n m−n c c+2π sin mx sin nx dx = 0 c c+2π sin nx cos nx dx = 0, n = 0 c c+2π cos2 nx dx = π c c+2π sin2 nx dx = π c N. B. Vyas Fourier Series
  • 32.
    Some Important Formula (Leibnitz’s Rule)To integrate the product of two functions, one of which is power of x . We apply the generalized rule of integration by parts u vdx = u v1 − u v2 + u v3 − u v4 + . . . N. B. Vyas Fourier Series
  • 33.
    Some Important Formula (Leibnitz’s Rule)To integrate the product of two functions, one of which is power of x . We apply the generalized rule of integration by parts u vdx = u v1 − u v2 + u v3 − u v4 + . . . Eg. x3 e−2x dx N. B. Vyas Fourier Series
  • 34.
    Some Important Formula (Leibnitz’s Rule)To integrate the product of two functions, one of which is power of x . We apply the generalized rule of integration by parts u vdx = u v1 − u v2 + u v3 − u v4 + . . . Eg. x3 e−2x dx e−2x e−2x e−2x e−2x = x3 − 3x2 + 6x −6 −2 (−2)2 (−2)3 (−2)4 N. B. Vyas Fourier Series
  • 35.
    Some Important Formula (Leibnitz’s Rule)To integrate the product of two functions, one of which is power of x . We apply the generalized rule of integration by parts u vdx = u v1 − u v2 + u v3 − u v4 + . . . Eg. x3 e−2x dx e−2x e−2x e−2x e−2x = x3 − 3x2 + 6x −6 −2 (−2)2 (−2)3 (−2)4 1 = − e−2x (4x3 + 6x2 + 6x + 3) 8 N. B. Vyas Fourier Series
  • 36.
    Some Important Formula (Leibnitz’s Rule)To integrate the product of two functions, one of which is power of x . We apply the generalized rule of integration by parts u vdx = u v1 − u v2 + u v3 − u v4 + . . . Eg. x3 e−2x dx e−2x e−2x e−2x e−2x = x3 − 3x2 + 6x −6 −2 (−2)2 (−2)3 (−2)4 1 = − e−2x (4x3 + 6x2 + 6x + 3) 8 sin nπ = 0 N. B. Vyas Fourier Series
  • 37.
    Some Important Formula (Leibnitz’s Rule)To integrate the product of two functions, one of which is power of x . We apply the generalized rule of integration by parts u vdx = u v1 − u v2 + u v3 − u v4 + . . . Eg. x3 e−2x dx e−2x e−2x e−2x e−2x = x3 − 3x2 + 6x −6 −2 (−2)2 (−2)3 (−2)4 1 = − e−2x (4x3 + 6x2 + 6x + 3) 8 sin nπ = 0 and cos nπ = (−1)n N. B. Vyas Fourier Series
  • 38.
    Some Important Formula (Leibnitz’s Rule)To integrate the product of two functions, one of which is power of x . We apply the generalized rule of integration by parts u vdx = u v1 − u v2 + u v3 − u v4 + . . . Eg. x3 e−2x dx e−2x e−2x e−2x e−2x = x3 − 3x2 + 6x −6 −2 (−2)2 (−2)3 (−2)4 1 = − e−2x (4x3 + 6x2 + 6x + 3) 8 sin nπ = 0 and cos nπ = (−1)n sin n + 1 π = (−1)n 2 N. B. Vyas Fourier Series
  • 39.
    Some Important Formula (Leibnitz’s Rule)To integrate the product of two functions, one of which is power of x . We apply the generalized rule of integration by parts u vdx = u v1 − u v2 + u v3 − u v4 + . . . Eg. x3 e−2x dx e−2x e−2x e−2x e−2x = x3 − 3x2 + 6x −6 −2 (−2)2 (−2)3 (−2)4 1 = − e−2x (4x3 + 6x2 + 6x + 3) 8 sin nπ = 0 and cos nπ = (−1)n sin n + 1 π = (−1)n and cos n + 2 1 2 π=0 N. B. Vyas Fourier Series
  • 40.
    Some Important Formula (Leibnitz’s Rule)To integrate the product of two functions, one of which is power of x . We apply the generalized rule of integration by parts u vdx = u v1 − u v2 + u v3 − u v4 + . . . Eg. x3 e−2x dx e−2x e−2x e−2x e−2x = x3 − 3x2 + 6x −6 −2 (−2)2 (−2)3 (−2)4 1 = − e−2x (4x3 + 6x2 + 6x + 3) 8 sin nπ = 0 and cos nπ = (−1)n sin n + 1 π = (−1)n and cos n + 2 1 2 π=0 where n is integer. N. B. Vyas Fourier Series
  • 41.
    Fourier Series The Fourier series for the function f (x) in the interval c < x < c + 2π is given by N. B. Vyas Fourier Series
  • 42.
    Fourier Series The Fourier series for the function f (x) in the interval c < x < c + 2π is given by ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 N. B. Vyas Fourier Series
  • 43.
    Fourier Series The Fourier series for the function f (x) in the interval c < x < c + 2π is given by ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 c+2π 1 where a0 = f (x) dx π c N. B. Vyas Fourier Series
  • 44.
    Fourier Series The Fourier series for the function f (x) in the interval c < x < c + 2π is given by ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 c+2π 1 where a0 = f (x) dx π c c+2π 1 an = f (x) cos nx dx π c N. B. Vyas Fourier Series
  • 45.
    Fourier Series The Fourier series for the function f (x) in the interval c < x < c + 2π is given by ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 c+2π 1 where a0 = f (x) dx π c c+2π 1 an = f (x) cos nx dx π c c+2π 1 bn = f (x) sin nx dx π c N. B. Vyas Fourier Series
  • 46.
    Fourier Series Corollary 1: If c = 0, the interval becomes 0 < x < 2π N. B. Vyas Fourier Series
  • 47.
    Fourier Series Corollary 1: If c = 0, the interval becomes 0 < x < 2π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 N. B. Vyas Fourier Series
  • 48.
    Fourier Series Corollary 1: If c = 0, the interval becomes 0 < x < 2π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 2π 1 where a0 = f (x) dx π 0 N. B. Vyas Fourier Series
  • 49.
    Fourier Series Corollary 1: If c = 0, the interval becomes 0 < x < 2π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 N. B. Vyas Fourier Series
  • 50.
    Fourier Series Corollary 1: If c = 0, the interval becomes 0 < x < 2π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 2π 1 bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 51.
    Fourier Series Corollary 2: If c = −π, the interval becomes −π << π N. B. Vyas Fourier Series
  • 52.
    Fourier Series Corollary 2: If c = −π, the interval becomes −π << π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 N. B. Vyas Fourier Series
  • 53.
    Fourier Series Corollary 2: If c = −π, the interval becomes −π << π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 π 1 where a0 = f (x) dx π −π N. B. Vyas Fourier Series
  • 54.
    Fourier Series Corollary 2: If c = −π, the interval becomes −π << π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 π 1 where a0 = f (x) dx π −π π 1 an = f (x) cos nx dx π −π N. B. Vyas Fourier Series
  • 55.
    Fourier Series Corollary 2: If c = −π, the interval becomes −π << π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 π 1 where a0 = f (x) dx π −π π 1 an = f (x) cos nx dx π −π π 1 bn = f (x) sin nx dx π −π N. B. Vyas Fourier Series
  • 56.
    Fourier Series Special Case 1: If the interval is −c < x < c and f (x) is an odd function i.e. f (−x) = −f (x). Let C = π N. B. Vyas Fourier Series
  • 57.
    Fourier Series Special Case 1: If the interval is −c < x < c and f (x) is an odd function i.e. f (−x) = −f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 N. B. Vyas Fourier Series
  • 58.
    Fourier Series Special Case 1: If the interval is −c < x < c and f (x) is an odd function i.e. f (−x) = −f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 π 1 where a0 = f (x) dx = 0 π −π N. B. Vyas Fourier Series
  • 59.
    Fourier Series Special Case 1: If the interval is −c < x < c and f (x) is an odd function i.e. f (−x) = −f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 1 π where a0 = f (x) dx = 0 π −π 1 π an = f (x) cos nx dx = 0 π −π N. B. Vyas Fourier Series
  • 60.
    Fourier Series Special Case 1: If the interval is −c < x < c and f (x) is an odd function i.e. f (−x) = −f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 1 π where a0 = f (x) dx = 0 π −π 1 π an = f (x) cos nx dx = 0 π −π because cos nx is an even function , f (x)cos nx is an odd function N. B. Vyas Fourier Series
  • 61.
    Fourier Series Special Case 1: If the interval is −c < x < c and f (x) is an odd function i.e. f (−x) = −f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 1 π where a0 = f (x) dx = 0 π −π 1 π an = f (x) cos nx dx = 0 π −π because cos nx is an even function , f (x)cos nx is an odd function 1 π 2 π bn = f (x) sin nx dx = f (x) sin nx dx π −π π 0 N. B. Vyas Fourier Series
  • 62.
    Fourier Series Special Case 1: If the interval is −c < x < c and f (x) is an odd function i.e. f (−x) = −f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 1 π where a0 = f (x) dx = 0 π −π 1 π an = f (x) cos nx dx = 0 π −π because cos nx is an even function , f (x)cos nx is an odd function 1 π 2 π bn = f (x) sin nx dx = f (x) sin nx dx π −π π 0 because sin nx is an odd function , f (x)sin nx is an even function N. B. Vyas Fourier Series
  • 63.
    Fourier Series Special Case 2: If the interval is −c < x < c and f (x) is an even function i.e. f (−x) = f (x). Let C = π N. B. Vyas Fourier Series
  • 64.
    Fourier Series Special Case 2: If the interval is −c < x < c and f (x) is an even function i.e. f (−x) = f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 N. B. Vyas Fourier Series
  • 65.
    Fourier Series Special Case 2: If the interval is −c < x < c and f (x) is an even function i.e. f (−x) = f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 π π 1 2 where a0 = f (x) dx = f (x) dx π −π π 0 N. B. Vyas Fourier Series
  • 66.
    Fourier Series Special Case 2: If the interval is −c < x < c and f (x) is an even function i.e. f (−x) = f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 1 π 2 π where a0 = f (x) dx = f (x) dx π −π π 0 1 π 2 π an = f (x) cos nx dx = f (x) cos nx dx π −π π 0 N. B. Vyas Fourier Series
  • 67.
    Fourier Series Special Case 2: If the interval is −c < x < c and f (x) is an even function i.e. f (−x) = f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 1 π 2 π where a0 = f (x) dx = f (x) dx π −π π 0 1 π 2 π an = f (x) cos nx dx = f (x) cos nx dx π −π π 0 because cos nx is an even function , f (x)cos nx is an even function N. B. Vyas Fourier Series
  • 68.
    Fourier Series Special Case 2: If the interval is −c < x < c and f (x) is an even function i.e. f (−x) = f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 1 π 2 π where a0 = f (x) dx = f (x) dx π −π π 0 1 π 2 π an = f (x) cos nx dx = f (x) cos nx dx π −π π 0 because cos nx is an even function , f (x)cos nx is an even function 1 π bn = f (x) sin nx dx = 0 π −π N. B. Vyas Fourier Series
  • 69.
    Fourier Series Special Case 2: If the interval is −c < x < c and f (x) is an even function i.e. f (−x) = f (x). Let C = π ∞ ∞ a0 f (x) = + an cos nx + bn sin nx 2 n=1 n=1 1 π 2 π where a0 = f (x) dx = f (x) dx π −π π 0 1 π 2 π an = f (x) cos nx dx = f (x) cos nx dx π −π π 0 because cos nx is an even function , f (x)cos nx is an even function 1 π bn = f (x) sin nx dx = 0 π −π because sin nx is an odd function , f (x)sin nx is an odd function N. B. Vyas Fourier Series
  • 70.
    Example 2 π−x Ex. Obtain Fourier series of f (x) = in the 2 interval 0 ≤ x ≤ 2π. Hence deduce that π2 1 1 1 = 2 − 2 + 2 − ... 12 1 2 3 N. B. Vyas Fourier Series
  • 71.
    Example 2 π−x Ex. Obtain Fourier series of f (x) = in the 2 interval 0 ≤ x ≤ 2π. Hence deduce that π2 1 1 1 = 2 − 2 + 2 − ... 12 1 2 3 N. B. Vyas Fourier Series
  • 72.
    Example Sol. Step 1.The Fourier series of f (x) is given by N. B. Vyas Fourier Series
  • 73.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 N. B. Vyas Fourier Series
  • 74.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 N. B. Vyas Fourier Series
  • 75.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 N. B. Vyas Fourier Series
  • 76.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 2π 1 bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 77.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 2π 1 bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 78.
    Example 2π 1 Step 2. Now a0 = f (x) dx π 0 N. B. Vyas Fourier Series
  • 79.
    Example 1 2π Step 2. Now a0 = f (x) dx π 0 2π 1 (π − x)2 a0 = dx π 0 4 N. B. Vyas Fourier Series
  • 80.
    Example 1 2π Step 2. Now a0 = f (x) dx π 0 2π 1 (π − x)2 a0 = dx π 0 4 2π 1 (π − x)3 1 = =− (−π 3 − π 3 ) 4π (−3) 0 12π N. B. Vyas Fourier Series
  • 81.
    Example 1 2π Step 2. Now a0 = f (x) dx π 0 2π 1 (π − x)2 a0 = dx π 0 4 2π 1 (π − x)3 1 = =− (−π 3 − π 3 ) 4π (−3) 0 12π 2 π = 6 N. B. Vyas Fourier Series
  • 82.
    Example 2π 1 Step 3. an = f (x) cos nx dx π 0 N. B. Vyas Fourier Series
  • 83.
    Example 1 2π Step 3. an = f (x) cos nx dx π 0 2π 1 (π − x)2 an = cos nx dx π 0 4 N. B. Vyas Fourier Series
  • 84.
    Example 1 2π Step 3. an = f (x) cos nx dx π 0 2π 1 (π − x)2 an = cos nx dx π 0 4 1 = 2 n N. B. Vyas Fourier Series
  • 85.
    Example 2π 1 Step 4. bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 86.
    Example 1 2π Step 4. bn = f (x) sin nx dx π 0 2π 1 (π − x)2 bn = sin nx dx π 0 4 N. B. Vyas Fourier Series
  • 87.
    Example 1 2π Step 4. bn = f (x) sin nx dx π 0 2π 1 (π − x)2 bn = sin nx dx π 0 4 =0 N. B. Vyas Fourier Series
  • 88.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] N. B. Vyas Fourier Series
  • 89.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] 2 ∞ π−x π2 1 = + cos nx 2 12 n=1 n2 N. B. Vyas Fourier Series
  • 90.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] 2 ∞ π−x π2 1 = + cos nx 2 12 n=1 n2 π2 1 1 1 = + 2 cos x + 2 cos 2x + 2 cos 3x + . . . 12 1 2 3 N. B. Vyas Fourier Series
  • 91.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] 2 ∞ π−x π2 1 = + cos nx 2 12 n=1 n2 π2 1 1 1 = + 2 cos x + 2 cos 2x + 2 cos 3x + . . . 12 1 2 3 Putting x = π, we get N. B. Vyas Fourier Series
  • 92.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] 2 ∞ π−x π2 1 = + cos nx 2 12 n=1 n2 π2 1 1 1 = + 2 cos x + 2 cos 2x + 2 cos 3x + . . . 12 1 2 3 Putting x = π, we get π2 1 1 1 1 0= − 2 + 2 − 2 + 2 − ... 12 1 2 3 4 N. B. Vyas Fourier Series
  • 93.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] 2 ∞ π−x π2 1 = + cos nx 2 12 n=1 n2 π2 1 1 1 = + 2 cos x + 2 cos 2x + 2 cos 3x + . . . 12 1 2 3 Putting x = π, we get π2 1 1 1 1 0= − 2 + 2 − 2 + 2 − ... 12 1 2 3 4 π2 1 1 1 1 = 2 − 2 + 2 − 2 + ... 12 1 2 3 4 N. B. Vyas Fourier Series
  • 94.
    Example Ex. Expand ina Fourier series the function f (x) = x in the interval 0 ≤ x ≤ 2π. N. B. Vyas Fourier Series
  • 95.
    Example Ex. Expand ina Fourier series the function f (x) = x in the interval 0 ≤ x ≤ 2π. N. B. Vyas Fourier Series
  • 96.
    Example Sol. Step 1.The Fourier series of f (x) is given by N. B. Vyas Fourier Series
  • 97.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 N. B. Vyas Fourier Series
  • 98.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 N. B. Vyas Fourier Series
  • 99.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 N. B. Vyas Fourier Series
  • 100.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 2π 1 bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 101.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 2π 1 bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 102.
    Example 2π 1 Step 2. Now a0 = f (x) dx π 0 N. B. Vyas Fourier Series
  • 103.
    Example 2π 1 Step 2. Now a0 = f (x) dx π 0 2π 1 a0 = x dx π 0 N. B. Vyas Fourier Series
  • 104.
    Example 2π 1 Step 2. Now a0 = f (x) dx π 0 2π 1 a0 = x dx π 0 2 2π 1 x = 4π 2 0 N. B. Vyas Fourier Series
  • 105.
    Example 2π 1 Step 2. Now a0 = f (x) dx π 0 2π 1 a0 = x dx π 0 2 2π 1 x = 4π 2 0 = 2π N. B. Vyas Fourier Series
  • 106.
    Example 2π 1 Step 3. an = f (x) cos nx dx π 0 N. B. Vyas Fourier Series
  • 107.
    Example 2π 1 Step 3. an = f (x) cos nx dx π 0 2π 1 an = x cos nx dx π 0 N. B. Vyas Fourier Series
  • 108.
    Example 2π 1 Step 3. an = f (x) cos nx dx π 0 1 2π an = x cos nx dx π 0 2π sin nx cos nx x − − n n 0 N. B. Vyas Fourier Series
  • 109.
    Example 2π 1 Step 3. an = f (x) cos nx dx π 0 1 2π an = x cos nx dx π 0 2π sin nx cos nx x − − n n 0 =0 N. B. Vyas Fourier Series
  • 110.
    Example 2π 1 Step 4. bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 111.
    Example 2π 1 Step 4. bn = f (x) sin nx dx π 0 2π 1 bn = x sin nx dx π 0 N. B. Vyas Fourier Series
  • 112.
    Example 2π 1 Step 4. bn = f (x) sin nx dx π 0 2π 1 bn = x sin nx dx π 0 −2 = n N. B. Vyas Fourier Series
  • 113.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] N. B. Vyas Fourier Series
  • 114.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] ∞ 2π −2 f (x) = +0+ sin nx 2 n=1 n N. B. Vyas Fourier Series
  • 115.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] ∞ 2π −2 f (x) = +0+ sin nx 2 n=1 n ∞ sin nx =π− n=1 n N. B. Vyas Fourier Series
  • 116.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval [0, 2π] ∞ 2π −2 f (x) = +0+ sin nx 2 n=1 n ∞ sin nx =π− n=1 n N. B. Vyas Fourier Series
  • 117.
    Example Ex. Determine theFourier series expansion of the function f (x) = xsin x in the interval 0 ≤ x ≤ 2π. N. B. Vyas Fourier Series
  • 118.
    Example Ex. Determine theFourier series expansion of the function f (x) = xsin x in the interval 0 ≤ x ≤ 2π. N. B. Vyas Fourier Series
  • 119.
    Example Sol. Step 1.The Fourier series of f (x) is given by N. B. Vyas Fourier Series
  • 120.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 N. B. Vyas Fourier Series
  • 121.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 N. B. Vyas Fourier Series
  • 122.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 N. B. Vyas Fourier Series
  • 123.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 2π 1 bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 124.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 2π 1 an = f (x) cos nx dx π 0 2π 1 bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 125.
    Example 2π 1 Step 2. Now a0 = f (x) dx π 0 N. B. Vyas Fourier Series
  • 126.
    Example 2π 1 Step 2. Now a0 = f (x) dx π 0 2π 1 a0 = x sin x dx π 0 N. B. Vyas Fourier Series
  • 127.
    Example 2π 1 Step 2. Now a0 = f (x) dx π 0 1 2π a0 = x sin x dx π 0 1 = [−x cos x + sin x]2π 0 π N. B. Vyas Fourier Series
  • 128.
    Example 2π 1 Step 2. Now a0 = f (x) dx π 0 1 2π a0 = x sin x dx π 0 1 = [−x cos x + sin x]2π 0 π 1 = (−2 π cos 2π + sin 2π − 0 + sin 0) π N. B. Vyas Fourier Series
  • 129.
    Example 2π 1 Step 2. Now a0 = f (x) dx π 0 1 2π a0 = x sin x dx π 0 1 = [−x cos x + sin x]2π 0 π 1 = (−2 π cos 2π + sin 2π − 0 + sin 0) π −2π a0 = = −2 π N. B. Vyas Fourier Series
  • 130.
    Example 2π 1 Step 3. an = f (x) cos nx dx π 0 N. B. Vyas Fourier Series
  • 131.
    Example 1 2π Step 3. an = f (x) cos nx dx π 0 1 2π an = x sin x cos nx dx π 0 N. B. Vyas Fourier Series
  • 132.
    Example 1 2π Step 3. an = f (x) cos nx dx π 0 1 2π an = x sin x cos nx dx π 0 2π 1 = x (2 sin x cos nx) dx 2π 0 N. B. Vyas Fourier Series
  • 133.
    Example 1 2π Step 3. an = f (x) cos nx dx π 0 1 2π an = x sin x cos nx dx π 0 2π 1 = x (2 sin x cos nx) dx 2π 0 2π 1 = x (sin (n + 1)x − sin (n − 1)x) dx 2π 0 N. B. Vyas Fourier Series
  • 134.
    Example 1 2π Step 3. an = f (x) cos nx dx π 0 1 2π an = x sin x cos nx dx π 0 2π 1 = x (2 sin x cos nx) dx 2π 0 2π 1 = x (sin (n + 1)x − sin (n − 1)x) dx 2π 0 2π 2π 1 1 = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 N. B. Vyas Fourier Series
  • 135.
    Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 N. B. Vyas Fourier Series
  • 136.
    Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 If n = 1 N. B. Vyas Fourier Series
  • 137.
    Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 If n = 1 2π 1 ∴ a1 = x sin 2x dx 2π 0 N. B. Vyas Fourier Series
  • 138.
    Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 If n = 1 2π 1 ∴ a1 = x sin 2x dx 2π 0 2π 1 cos 2x sin 2x = −x + 2π 2 4 0 N. B. Vyas Fourier Series
  • 139.
    Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 If n = 1 2π 1 ∴ a1 = x sin 2x dx 2π 0 2π 1 cos 2x sin 2x = −x + 2π 2 4 0 1 =− 2 N. B. Vyas Fourier Series
  • 140.
    Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 N. B. Vyas Fourier Series
  • 141.
    Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 If n = 1 N. B. Vyas Fourier Series
  • 142.
    Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 If n = 1 2π 1 cos (n + 1)x sin (n + 1)x ∴ an = x − − − 2π n+1 (n + 1)2 0 N. B. Vyas Fourier Series
  • 143.
    Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 If n = 1 2π 1 cos (n + 1)x sin (n + 1)x ∴ an = x − − − 2π n+1 (n + 1)2 0 2π 1 cos (n − 1)x sin (n − 1)x − x − − − 2π n−1 (n − 1)2 0 N. B. Vyas Fourier Series
  • 144.
    Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 If n = 1 2π 1 cos (n + 1)x sin (n + 1)x ∴ an = x − − − 2π n+1 (n + 1)2 0 2π 1 cos (n − 1)x sin (n − 1)x − x − − − 2π n−1 (n − 1)2 0 1 2π 2π = − +0+ −0 2π n+1 n−1 N. B. Vyas Fourier Series
  • 145.
    Example 2π 2π 1 1 an = x sin (n + 1)x dx − x sin (n − 1)x dx 2π 0 2π 0 If n = 1 2π 1 cos (n + 1)x sin (n + 1)x ∴ an = x − − − 2π n+1 (n + 1)2 0 2π 1 cos (n − 1)x sin (n − 1)x − x − − − 2π n−1 (n − 1)2 0 1 2π 2π = − +0+ −0 2π n+1 n−1 2 = 2 n −1 N. B. Vyas Fourier Series
  • 146.
    Example 2π 1 Step 4. bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 147.
    Example 2π 1 Step 4. bn = f (x) sin nx dx π 0 2π 1 = x sin x sin nx dx π 0 N. B. Vyas Fourier Series
  • 148.
    Example 2π 1 Step 4. bn = f (x) sin nx dx π 0 2π 1 = x sin x sin nx dx π 0 2π 1 = x (2sin nx sin x) dx 2π 0 N. B. Vyas Fourier Series
  • 149.
    Example 2π 1 Step 4. bn = f (x) sin nx dx π 0 2π 1 = x sin x sin nx dx π 0 2π 1 = x (2sin nx sin x) dx 2π 0 2π 1 = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 N. B. Vyas Fourier Series
  • 150.
    Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 N. B. Vyas Fourier Series
  • 151.
    Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 If n = 1 N. B. Vyas Fourier Series
  • 152.
    Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 If n = 1 2π 2π 1 1 ∴ b1 = (−x cos 2x) dx + x dx 2π 0 2π 0 N. B. Vyas Fourier Series
  • 153.
    Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 If n = 1 2π 2π 1 1 ∴ b1 = (−x cos 2x) dx + x dx 2π 0 2π 0 2π 1 sin 2x cos 2x x2 = x − − + 2π 2 4 2 0 N. B. Vyas Fourier Series
  • 154.
    Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 If n = 1 2π 2π 1 1 ∴ b1 = (−x cos 2x) dx + x dx 2π 0 2π 0 2π 1 sin 2x cos 2x x2 = x − − + 2π 2 4 2 0 b1 = π N. B. Vyas Fourier Series
  • 155.
    Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 N. B. Vyas Fourier Series
  • 156.
    Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 If n = 1 N. B. Vyas Fourier Series
  • 157.
    Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 If n = 1 2π 1 sin (n + 1)x cos (n + 1)x ∴ bn = x − − 2π n+1 (n + 1)2 0 N. B. Vyas Fourier Series
  • 158.
    Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 If n = 1 2π 1 sin (n + 1)x cos (n + 1)x ∴ bn = x − − 2π n+1 (n + 1)2 0 2π 1 sin (n − 1)x cos (n − 1)x + x + 2π n−1 (n − 1)2 0 N. B. Vyas Fourier Series
  • 159.
    Example 2π 1 bn = x (−cos (n + 1)x + cos (n − 1)x) dx 2π 0 If n = 1 2π 1 sin (n + 1)x cos (n + 1)x ∴ bn = x − − 2π n+1 (n + 1)2 0 2π 1 sin (n − 1)x cos (n − 1)x + x + 2π n−1 (n − 1)2 0 =0 N. B. Vyas Fourier Series
  • 160.
    Example Step5. Substituting values of a0 , a1 , an (n > 1), b1 and bn (n > 1) in (1), we get the required Fourier series of f (x) in the interval [0, 2π] N. B. Vyas Fourier Series
  • 161.
    Example Step5. Substituting values of a0 , a1 , an (n > 1), b1 and bn (n > 1) in (1), we get the required Fourier series of f (x) in the interval [0, 2π] ∞ −2 f (x) = + (an cos nx + bn sin nx) 2 n=1 N. B. Vyas Fourier Series
  • 162.
    Example Step5. Substituting values of a0 , a1 , an (n > 1), b1 and bn (n > 1) in (1), we get the required Fourier series of f (x) in the interval [0, 2π] ∞ −2 f (x) = + (an cos nx + bn sin nx) 2 n=1 N. B. Vyas Fourier Series
  • 163.
    Example Ex. Find theFourier series for the periodic function f (x)= −π; −π < x < 0 = x; 0 < x < π N. B. Vyas Fourier Series
  • 164.
    Example Ex. Find theFourier series for the periodic function f (x)= −π; −π < x < 0 = x; 0 < x < π N. B. Vyas Fourier Series
  • 165.
    Example Sol. Step 1.The Fourier series of f (x) is given by N. B. Vyas Fourier Series
  • 166.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 N. B. Vyas Fourier Series
  • 167.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 π 1 where a0 = f (x) dx π −π N. B. Vyas Fourier Series
  • 168.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 π 1 where a0 = f (x) dx π −π π 1 an = f (x) cos nx dx π −π N. B. Vyas Fourier Series
  • 169.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 π 1 where a0 = f (x) dx π −π π 1 an = f (x) cos nx dx π −π π 1 bn = f (x) sin nx dx π −π N. B. Vyas Fourier Series
  • 170.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 π 1 where a0 = f (x) dx π −π π 1 an = f (x) cos nx dx π −π π 1 bn = f (x) sin nx dx π −π N. B. Vyas Fourier Series
  • 171.
    Example π 1 Step 2. Now a0 = f (x) dx π −π N. B. Vyas Fourier Series
  • 172.
    Example π 1 Step 2. Now a0 = f (x) dx π −π 0 π 1 = f (x) dx + f (x) dx π −π 0 N. B. Vyas Fourier Series
  • 173.
    Example π 1 Step 2. Now a0 = f (x) dx π −π 0 π 1 = f (x) dx + f (x) dx π −π 0 0 π 1 = (−π) dx + x dx π −π 0 N. B. Vyas Fourier Series
  • 174.
    Example π 1 Step 2. Now a0 = f (x) dx π −π 0 π 1 = f (x) dx + f (x) dx π −π 0 0 π 1 = (−π) dx + x dx π −π 0 π =− 2 N. B. Vyas Fourier Series
  • 175.
    Example π 1 Step 2. Now a0 = f (x) dx π −π 0 π 1 = f (x) dx + f (x) dx π −π 0 0 π 1 = (−π) dx + x dx π −π 0 π =− 2 N. B. Vyas Fourier Series
  • 176.
    Example 0 π 1 Step 3. an = f (x) cos nx dx + f (x) cos nx dx π −π 0 N. B. Vyas Fourier Series
  • 177.
    Example 1 0 π Step 3. an = f (x) cos nx dx + f (x) cos nx dx π −π 0 0 π 1 = (−π) cos nx dx + x cos nx dx π −π 0 N. B. Vyas Fourier Series
  • 178.
    Example 1 0 π Step 3. an = f (x) cos nx dx + f (x) cos nx dx π −π 0 0 π 1 = (−π) cos nx dx + x cos nx dx π −π 0 0 1 sin nx = −π + π n −π N. B. Vyas Fourier Series
  • 179.
    Example 1 0 π Step 3. an = f (x) cos nx dx + f (x) cos nx dx π −π 0 0 π 1 = (−π) cos nx dx + x cos nx dx π −π 0 0 π 1 sin nx sin nx cos nx = −π + x − (1) − π n −π n n2 0 N. B. Vyas Fourier Series
  • 180.
    Example 1 0 π Step 3. an = f (x) cos nx dx + f (x) cos nx dx π −π 0 0 π 1 = (−π) cos nx dx + x cos nx dx π −π 0 0 π 1 sin nx sin nx cos nx = −π + x − (1) − π n −π n n2 0 n (−1) − 1 = πn2 N. B. Vyas Fourier Series
  • 181.
    Example 0 π 1 Step 4. bn = f (x) sin nx dx + f (x) sin nx dx π −π 0 N. B. Vyas Fourier Series
  • 182.
    Example 0 π 1 Step 4. bn = f (x) sin nx dx + f (x) sin nx dx π −π 0 0 π 1 = (−π) sin nx dx + x sin nx dx π −π 0 N. B. Vyas Fourier Series
  • 183.
    Example 0 π 1 Step 4. bn = f (x) sin nx dx + f (x) sin nx dx π −π 0 0 π 1 = (−π) sin nx dx + x sin nx dx π −π 0 0 1 −cosnx = −π + π n −π N. B. Vyas Fourier Series
  • 184.
    Example 0 π 1 Step 4. bn = f (x) sin nx dx + f (x) sin nx dx π −π 0 0 π 1 = (−π) sin nx dx + x sin nx dx π −π 0 0 π 1 −cosnx −cos nx −sin nx = −π + x − π n −π n n2 0 N. B. Vyas Fourier Series
  • 185.
    Example 0 π 1 Step 4. bn = f (x) sin nx dx + f (x) sin nx dx π −π 0 0 π 1 = (−π) sin nx dx + x sin nx dx π −π 0 0 π 1 −cosnx −cos nx −sin nx = −π + x − π n −π n n2 0 n 1 − 2(−1) = n N. B. Vyas Fourier Series
  • 186.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (−π, π) N. B. Vyas Fourier Series
  • 187.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (−π, π) ∞ −π f (x) = + (an cos nx + bn sin nx) 4 n=1 N. B. Vyas Fourier Series
  • 188.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (−π, π) ∞ −π f (x) = + (an cos nx + bn sin nx) 4 n=1 ∞ ∞ −π (−1)n − 1 1 − 2(−1)n = + cos nx + sin nx 4 n=1 πn2 n=1 n N. B. Vyas Fourier Series
  • 189.
    Example Step5. Substituting values of a0 , an and bn in (1), we get the required Fourier series of f (x) in the interval (−π, π) ∞ −π f (x) = + (an cos nx + bn sin nx) 4 n=1 ∞ ∞ −π (−1)n − 1 1 − 2(−1)n = + cos nx + sin nx 4 n=1 πn2 n=1 n N. B. Vyas Fourier Series
  • 190.
    Example Ex. Find theFourier series for the periodic function f (x)= 2; −π < x < 0 = 1; 0 < x < π N. B. Vyas Fourier Series
  • 191.
    Example Ex. Find theFourier series for the periodic function f (x)= 2; −π < x < 0 = 1; 0 < x < π N. B. Vyas Fourier Series
  • 192.
    Example Ex. Find theFourier series for the periodic function f (x)= −k; −π < x < 0 = k; 0 < x < π N. B. Vyas Fourier Series
  • 193.
    Example Ex. Find theFourier series for the periodic function f (x)= −k; −π < x < 0 = k; 0 < x < π 1 1 1 π Hence deduce that 1 − + − + . . . = 3 5 7 4 N. B. Vyas Fourier Series
  • 194.
    Example Ex. Find theFourier series of the function f (x)= x; 0 ≤ x < π = 2π ; x = π = 2π − x ; π < x < 2π 3π 2 1 1 1 Hence deduce that = 2 + 2 + 2 + ... 8 1 3 5 N. B. Vyas Fourier Series
  • 195.
    Example Sol. Step 1.The Fourier series of f (x) is given by N. B. Vyas Fourier Series
  • 196.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 N. B. Vyas Fourier Series
  • 197.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 N. B. Vyas Fourier Series
  • 198.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 π 1 an = f (x) cos nx dx π 0 N. B. Vyas Fourier Series
  • 199.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 π 1 an = f (x) cos nx dx π 0 2π 1 bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 200.
    Example Sol. Step 1.The Fourier series of f (x) is given by ∞ a0 f (x) = + (an cos nx + bn sin nx) . . . (1) 2 n=1 2π 1 where a0 = f (x) dx π 0 π 1 an = f (x) cos nx dx π 0 2π 1 bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 201.
    Example 2π 1 Step 2. Now a0 = f (x) dx π 0 N. B. Vyas Fourier Series
  • 202.
    Example 1 2π Step 2. Now a0 = f (x) dx π 0 π 2π 1 = x dx + (2π − x) dx π 0 π N. B. Vyas Fourier Series
  • 203.
    Example 1 2π Step 2. Now a0 = f (x) dx π 0 π 2π 1 = x dx + (2π − x) dx π 0 π π 2π 1 x2 x2 = + 2πx − π 2 0 2 π N. B. Vyas Fourier Series
  • 204.
    Example 1 2π Step 2. Now a0 = f (x) dx π 0 π 2π 1 = x dx + (2π − x) dx π 0 π π 2π 1 x2 x2 = + 2πx − π 2 0 2 π =π N. B. Vyas Fourier Series
  • 205.
    Example π 2π 1 Step 3. an = f (x) cos nx dx + f (x) cos nx dx π 0 π N. B. Vyas Fourier Series
  • 206.
    Example π 2π 1 Step 3. an = f (x) cos nx dx + f (x) cos nx dx π 0 π π 2π 1 = x cos nx dx + (2π − x) cos nx dx π 0 π N. B. Vyas Fourier Series
  • 207.
    Example π 2π 1 Step 3. an = f (x) cos nx dx + f (x) cos nx dx π 0 π π 2π 1 = x cos nx dx + (2π − x) cos nx dx π 0 π π 1 sin nx cos nx = x − (1) − π n n2 0 N. B. Vyas Fourier Series
  • 208.
    Example π 2π 1 Step 3. an = f (x) cos nx dx + f (x) cos nx dx π 0 π π 2π 1 = x cos nx dx + (2π − x) cos nx dx π 0 π π 1 sin nx cos nx = x − (1) − π n n2 0 2π 1 sin nx cos nx + (2π − x) − (−1) − π n n2 π N. B. Vyas Fourier Series
  • 209.
    Example π 2π 1 Step 3. an = f (x) cos nx dx + f (x) cos nx dx π 0 π π 2π 1 = x cos nx dx + (2π − x) cos nx dx π 0 π π 1 sin nx cos nx = x − (1) − π n n2 0 2π 1 sin nx cos nx + (2π − x) − (−1) − π n n2 π 1 cos nπ 1 = 0+ 2 − 0+ 2 π n n 1 cos 2nπ cos nπ + 0− 2 − 0− π n n2 2 [(−1)n − 1] = πn2 N. B. Vyas Fourier Series
  • 210.
    Example 2π 1 Step 4. bn = f (x) sin nx dx π 0 N. B. Vyas Fourier Series
  • 211.
    Example 1 2π Step 4. bn = f (x) sin nx dx π 0 π 2π 1 = x sin nx dx + (2π − x) sin nx dx π 0 π N. B. Vyas Fourier Series
  • 212.
    Example 1 2π Step 4. bn = f (x) sin nx dx π 0 π 2π 1 = x sin nx dx + (2π − x) sin nx dx π 0 π π 1 cos nx sin nx = x − − (1) − π n n2 0 N. B. Vyas Fourier Series
  • 213.
    Example 1 2π Step 4. bn = f (x) sin nx dx π 0 π 2π 1 = x sin nx dx + (2π − x) sin nx dx π 0 π π 1 cos nx sin nx = x − − (1) − π n n2 0 2π 1 cos nx sin nx + (2π − x) − − (−1) − π n n2 π N. B. Vyas Fourier Series
  • 214.
    Example 1 2π Step 4. bn = f (x) sin nx dx π 0 π 2π 1 = x sin nx dx + (2π − x) sin nx dx π 0 π π 1 cos nx sin nx = x − − (1) − π n n2 0 2π 1 cos nx sin nx + (2π − x) − − (−1) − π n n2 π =0 N. B. Vyas Fourier Series
  • 215.
    Example Ex. Find theFourier series of f (x)= −1; −π < x < − π 2 = 0 ; −π < x < π 2 2 = 1; π < x < π 2 N. B. Vyas Fourier Series