SlideShare a Scribd company logo
Numerical Methods
Ordinary Differential Equations - 1
Dr. N. B. Vyas
Department of Mathematics,
Atmiya Institute of Technology & Science,
Rajkot (Gujarat) - INDIA
niravbvyas@gmail.com
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Ordinary Differential Equations
Taylor’s Series Method:
Consider the first order Differential Equation
dy
dx
= f(x, y), y(x0) = y0
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Ordinary Differential Equations
Taylor’s Series Method:
Consider the first order Differential Equation
dy
dx
= f(x, y), y(x0) = y0
The Taylor’s series is
y(x) = y(x0) +
(x − x0)
1!
y (x0) +
(x − x0)2
2!
y (x0) + . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Ex:1
Solve y = x + y, y(0) = 1 by Taylor’s series
method. Hence find values of y at x = 0.1 and
x = 0.2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
y = x + y
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
y = x + y ⇒ y (0) = 1
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
y = x + y ⇒ y (0) = 1
y = 1 + y
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
y = x + y ⇒ y (0) = 1
y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
y = x + y ⇒ y (0) = 1
y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2
y = y
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
y = x + y ⇒ y (0) = 1
y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2
y = y ⇒ y (0) = y (0) = 2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
y = x + y ⇒ y (0) = 1
y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2
y = y ⇒ y (0) = y (0) = 2
yiv
= y
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
y = x + y ⇒ y (0) = 1
y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2
y = y ⇒ y (0) = y (0) = 2
yiv
= y ⇒ yiv
(0) = y (0) = 2 . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
y = x + y ⇒ y (0) = 1
y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2
y = y ⇒ y (0) = y (0) = 2
yiv
= y ⇒ yiv
(0) = y (0) = 2 . . .
Taylor’s series is
y(x) = y(x0)+
(x − x0)
1!
y (x0)+
(x − x0)2
2!
y (x0)+. . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
y(x) = 1 + xy (0) +
x2
2!
y (0) +
x3
3!
y (0) . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
y(x) = 1 + xy (0) +
x2
2!
y (0) +
x3
3!
y (0) . . .
= 1 + x(1) +
x2
2
(2) +
x3
6
(2) +
x4
24
(2) + . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
y(x) = 1 + xy (0) +
x2
2!
y (0) +
x3
3!
y (0) . . .
= 1 + x(1) +
x2
2
(2) +
x3
6
(2) +
x4
24
(2) + . . .
= 1 + x + x2
+
x3
3
+
x4
12
+ . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
y(x) = 1 + xy (0) +
x2
2!
y (0) +
x3
3!
y (0) . . .
= 1 + x(1) +
x2
2
(2) +
x3
6
(2) +
x4
24
(2) + . . .
= 1 + x + x2
+
x3
3
+
x4
12
+ . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
y(x) = 1 + xy (0) +
x2
2!
y (0) +
x3
3!
y (0) . . .
= 1 + x(1) +
x2
2
(2) +
x3
6
(2) +
x4
24
(2) + . . .
= 1 + x + x2
+
x3
3
+
x4
12
+ . . .
y(0.1) = 1 + (0.1) + (0.1)2
+
(0.1)3
3
+
(0.1)4
12
+ . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
y(x) = 1 + xy (0) +
x2
2!
y (0) +
x3
3!
y (0) . . .
= 1 + x(1) +
x2
2
(2) +
x3
6
(2) +
x4
24
(2) + . . .
= 1 + x + x2
+
x3
3
+
x4
12
+ . . .
y(0.1) = 1 + (0.1) + (0.1)2
+
(0.1)3
3
+
(0.1)4
12
+ . . .
= 1.1103
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
y(x) = 1 + xy (0) +
x2
2!
y (0) +
x3
3!
y (0) . . .
= 1 + x(1) +
x2
2
(2) +
x3
6
(2) +
x4
24
(2) + . . .
= 1 + x + x2
+
x3
3
+
x4
12
+ . . .
y(0.1) = 1 + (0.1) + (0.1)2
+
(0.1)3
3
+
(0.1)4
12
+ . . .
= 1.1103
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
y(x) = 1 + xy (0) +
x2
2!
y (0) +
x3
3!
y (0) . . .
= 1 + x(1) +
x2
2
(2) +
x3
6
(2) +
x4
24
(2) + . . .
= 1 + x + x2
+
x3
3
+
x4
12
+ . . .
y(0.1) = 1 + (0.1) + (0.1)2
+
(0.1)3
3
+
(0.1)4
12
+ . . .
= 1.1103
y(0.2) = 1 + (0.2) + (0.2)2
+
(0.2)3
3
+
(0.2)4
12
+ . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
y(x) = 1 + xy (0) +
x2
2!
y (0) +
x3
3!
y (0) . . .
= 1 + x(1) +
x2
2
(2) +
x3
6
(2) +
x4
24
(2) + . . .
= 1 + x + x2
+
x3
3
+
x4
12
+ . . .
y(0.1) = 1 + (0.1) + (0.1)2
+
(0.1)3
3
+
(0.1)4
12
+ . . .
= 1.1103
y(0.2) = 1 + (0.2) + (0.2)2
+
(0.2)3
3
+
(0.2)4
12
+ . . .
= 1.2428
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Ex Using Taylor’s series method, obtain the solution
of
dy
dx
= 3x + y2
, given that y(0) = 1. Find the
value of y for x = 0.1
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
y = 3 + 2yy
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5
y = 2(y )2
+ 2yy
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5
y = 2(y )2
+ 2yy ⇒ y (x0) = 2(1)2
+ 2(5) = 12
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5
y = 2(y )2
+ 2yy ⇒ y (x0) = 2(1)2
+ 2(5) = 12
By Taylor’s series,
y(x) = y0+(x−x0)y (x0)+
(x − x0)2
2!
y (x0)+
(x − x0)3
3!
y (x0)+. . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5
y = 2(y )2
+ 2yy ⇒ y (x0) = 2(1)2
+ 2(5) = 12
By Taylor’s series,
y(x) = y0+(x−x0)y (x0)+
(x − x0)2
2!
y (x0)+
(x − x0)3
3!
y (x0)+. . .
= 1 + x +
x2
2!
(5) +
x3
3!
(12) + . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5
y = 2(y )2
+ 2yy ⇒ y (x0) = 2(1)2
+ 2(5) = 12
By Taylor’s series,
y(x) = y0+(x−x0)y (x0)+
(x − x0)2
2!
y (x0)+
(x − x0)3
3!
y (x0)+. . .
= 1 + x +
x2
2!
(5) +
x3
3!
(12) + . . .
= 1 + x +
5x2
2!
+ 2x3
+ . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5
y = 2(y )2
+ 2yy ⇒ y (x0) = 2(1)2
+ 2(5) = 12
By Taylor’s series,
y(x) = y0+(x−x0)y (x0)+
(x − x0)2
2!
y (x0)+
(x − x0)3
3!
y (x0)+. . .
= 1 + x +
x2
2!
(5) +
x3
3!
(12) + . . .
= 1 + x +
5x2
2!
+ 2x3
+ . . .
y(0.1) =
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5
y = 2(y )2
+ 2yy ⇒ y (x0) = 2(1)2
+ 2(5) = 12
By Taylor’s series,
y(x) = y0+(x−x0)y (x0)+
(x − x0)2
2!
y (x0)+
(x − x0)3
3!
y (x0)+. . .
= 1 + x +
x2
2!
(5) +
x3
3!
(12) + . . .
= 1 + x +
5x2
2!
+ 2x3
+ . . .
y(0.1) =
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Ex Using Taylor’s series method, find the solution of
dy
dx
= 2y + 3ex
, y(0) = 0,at x = 0.2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
y = 2y + 3ex
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
y = 2y + 3ex
⇒ y (x0) = 2(y0 ) + 3ex0
= 2(9) + 3e0
= 21
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
y = 2y + 3ex
⇒ y (x0) = 2(y0 ) + 3ex0
= 2(9) + 3e0
= 21
yiv
= 2y + 3ex
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
y = 2y + 3ex
⇒ y (x0) = 2(y0 ) + 3ex0
= 2(9) + 3e0
= 21
yiv
= 2y + 3ex
⇒ yiv
(x0) = 45
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
y = 2y + 3ex
⇒ y (x0) = 2(y0 ) + 3ex0
= 2(9) + 3e0
= 21
yiv
= 2y + 3ex
⇒ yiv
(x0) = 45
By Taylor’s series,
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
y = 2y + 3ex
⇒ y (x0) = 2(y0 ) + 3ex0
= 2(9) + 3e0
= 21
yiv
= 2y + 3ex
⇒ yiv
(x0) = 45
By Taylor’s series,
y(x) = y0+(x−x0)y (x0)+
(x − x0)2
2!
y (x0)+
(x − x0)3
3!
y (x0)+. . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
y = 2y + 3ex
⇒ y (x0) = 2(y0 ) + 3ex0
= 2(9) + 3e0
= 21
yiv
= 2y + 3ex
⇒ yiv
(x0) = 45
By Taylor’s series,
y(x) = y0+(x−x0)y (x0)+
(x − x0)2
2!
y (x0)+
(x − x0)3
3!
y (x0)+. . .
= 0 + x(3) +
x2
2!
(9) +
x3
3!
(21) +
x4
4!
(45) + . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
y = 2y + 3ex
⇒ y (x0) = 2(y0 ) + 3ex0
= 2(9) + 3e0
= 21
yiv
= 2y + 3ex
⇒ yiv
(x0) = 45
By Taylor’s series,
y(x) = y0+(x−x0)y (x0)+
(x − x0)2
2!
y (x0)+
(x − x0)3
3!
y (x0)+. . .
= 0 + x(3) +
x2
2!
(9) +
x3
3!
(21) +
x4
4!
(45) + . . .
= 3x +
9x2
2
+
7x3
2
+
15x4
8
+ . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
y = 2y + 3ex
⇒ y (x0) = 2(y0 ) + 3ex0
= 2(9) + 3e0
= 21
yiv
= 2y + 3ex
⇒ yiv
(x0) = 45
By Taylor’s series,
y(x) = y0+(x−x0)y (x0)+
(x − x0)2
2!
y (x0)+
(x − x0)3
3!
y (x0)+. . .
= 0 + x(3) +
x2
2!
(9) +
x3
3!
(21) +
x4
4!
(45) + . . .
= 3x +
9x2
2
+
7x3
2
+
15x4
8
+ . . .
y(0.2) =
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Ex:
Use Taylor’s series method to solve
dy
dx
= x2
+ y2
,
y(0) = 1. Find y(0.1) correct up to 4 decimal
places.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Ex:
Use Taylor’s series method to solve
dy
dx
= x2
y − 1,
y(0) = 1. Find y(0.03).
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Picard’s Method:
Consider the first order differential equation.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Picard’s Method:
Consider the first order differential equation.
dy
dx
= f(x, y) − − − (1)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Picard’s Method:
Consider the first order differential equation.
dy
dx
= f(x, y) − − − (1)
subject to y(x0) = y0
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Picard’s Method:
Consider the first order differential equation.
dy
dx
= f(x, y) − − − (1)
subject to y(x0) = y0
The equation (1) can be written as
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Picard’s Method:
Consider the first order differential equation.
dy
dx
= f(x, y) − − − (1)
subject to y(x0) = y0
The equation (1) can be written as
dy = f(x, y)dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Picard’s Method:
Consider the first order differential equation.
dy
dx
= f(x, y) − − − (1)
subject to y(x0) = y0
The equation (1) can be written as
dy = f(x, y)dx
Integrating between the limits for x and y, we get
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Picard’s Method:
Consider the first order differential equation.
dy
dx
= f(x, y) − − − (1)
subject to y(x0) = y0
The equation (1) can be written as
dy = f(x, y)dx
Integrating between the limits for x and y, we get
y
y0
dy =
x
x0
f(x, y)dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Picard’s Method:
Consider the first order differential equation.
dy
dx
= f(x, y) − − − (1)
subject to y(x0) = y0
The equation (1) can be written as
dy = f(x, y)dx
Integrating between the limits for x and y, we get
y
y0
dy =
x
x0
f(x, y)dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
(y − y0) =
x
x0
f(x, y)dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
(y − y0) =
x
x0
f(x, y)dx
y = y0 +
x
x0
f(x, y)dx − − − (2)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
(y − y0) =
x
x0
f(x, y)dx
y = y0 +
x
x0
f(x, y)dx − − − (2)
Equation (2) is known as integral equation and
can be solved by successive approximation or
iteration.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
(y − y0) =
x
x0
f(x, y)dx
y = y0 +
x
x0
f(x, y)dx − − − (2)
Equation (2) is known as integral equation and
can be solved by successive approximation or
iteration.
Now by Picard’s method, for 1st
approximation
y1
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
(y − y0) =
x
x0
f(x, y)dx
y = y0 +
x
x0
f(x, y)dx − − − (2)
Equation (2) is known as integral equation and
can be solved by successive approximation or
iteration.
Now by Picard’s method, for 1st
approximation
y1
we replace y by y0 in f(x, y) in R.H.S of eq. (2),
we get
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
(y − y0) =
x
x0
f(x, y)dx
y = y0 +
x
x0
f(x, y)dx − − − (2)
Equation (2) is known as integral equation and
can be solved by successive approximation or
iteration.
Now by Picard’s method, for 1st
approximation
y1
we replace y by y0 in f(x, y) in R.H.S of eq. (2),
we get
y1 = y0 +
x
x0
f(x, y0)dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
For 2nd
approximation y2,
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
For 2nd
approximation y2,
we replace y by y1 in f(x, y) in R.H.S of eq. (2),
we get
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
For 2nd
approximation y2,
we replace y by y1 in f(x, y) in R.H.S of eq. (2),
we get
y2 = y0 +
x
x0
f(x, y1)dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
For 2nd
approximation y2,
we replace y by y1 in f(x, y) in R.H.S of eq. (2),
we get
y2 = y0 +
x
x0
f(x, y1)dx
In general,
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
For 2nd
approximation y2,
we replace y by y1 in f(x, y) in R.H.S of eq. (2),
we get
y2 = y0 +
x
x0
f(x, y1)dx
In general,
yn+1 = y0 +
x
x0
f(x, yn)dx for n = 0, 1, 2, . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
For 2nd
approximation y2,
we replace y by y1 in f(x, y) in R.H.S of eq. (2),
we get
y2 = y0 +
x
x0
f(x, y1)dx
In general,
yn+1 = y0 +
x
x0
f(x, yn)dx for n = 0, 1, 2, . . .
stop the process when the two consecutive values
of y are same up to desired accuracy.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Note:
This method is applicable to a limited class of
equations in which the successive integration can
be performed easily.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Ex Using Picard’s method solve
dy
dx
= 3 + 2xy where y(0) = 1 for x = 0.1.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method yn+1 = y0 +
x
x0
f(x, yn) dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method yn+1 = y0 +
x
x0
f(x, yn) dx
Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method yn+1 = y0 +
x
x0
f(x, yn) dx
Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy
1st
approximation:
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method yn+1 = y0 +
x
x0
f(x, yn) dx
Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy
1st
approximation:
put n = 0 and y0 = 1 in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method yn+1 = y0 +
x
x0
f(x, yn) dx
Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy
1st
approximation:
put n = 0 and y0 = 1 in f(x, y)
y1 = 1 +
x
0
(3 + 2x) dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method yn+1 = y0 +
x
x0
f(x, yn) dx
Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy
1st
approximation:
put n = 0 and y0 = 1 in f(x, y)
y1 = 1 +
x
0
(3 + 2x) dx
∴ y1 = 1 + 3x + x2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put n = 1 and y1 = 1 + 3x + x2
in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put n = 1 and y1 = 1 + 3x + x2
in f(x, y)
y2 = 1 +
x
0
3 + 2x(1 + 3x + x2
) dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put n = 1 and y1 = 1 + 3x + x2
in f(x, y)
y2 = 1 +
x
0
3 + 2x(1 + 3x + x2
) dx
= 1 +
x
0
3 + 2x + 6x2
+ 2x3
) dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put n = 1 and y1 = 1 + 3x + x2
in f(x, y)
y2 = 1 +
x
0
3 + 2x(1 + 3x + x2
) dx
= 1 +
x
0
3 + 2x + 6x2
+ 2x3
) dx
∴ y2 = 1 + 3x + x2
+ 2x3
+
x4
2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put n = 1 and y1 = 1 + 3x + x2
in f(x, y)
y2 = 1 +
x
0
3 + 2x(1 + 3x + x2
) dx
= 1 +
x
0
3 + 2x + 6x2
+ 2x3
) dx
∴ y2 = 1 + 3x + x2
+ 2x3
+
x4
2
which is approximate solution, putting x = 0.1
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put n = 1 and y1 = 1 + 3x + x2
in f(x, y)
y2 = 1 +
x
0
3 + 2x(1 + 3x + x2
) dx
= 1 +
x
0
3 + 2x + 6x2
+ 2x3
) dx
∴ y2 = 1 + 3x + x2
+ 2x3
+
x4
2
which is approximate solution, putting x = 0.1
y(0.1) =
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put n = 1 and y1 = 1 + 3x + x2
in f(x, y)
y2 = 1 +
x
0
3 + 2x(1 + 3x + x2
) dx
= 1 +
x
0
3 + 2x + 6x2
+ 2x3
) dx
∴ y2 = 1 + 3x + x2
+ 2x3
+
x4
2
which is approximate solution, putting x = 0.1
y(0.1) = 1.31205
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Ex:
Using Picard’s method, obtain a solution upto
4th
approx of the equation
dy
dx
= y + x, y(0) = 1.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 1, f(x, y) = x + y
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 1, f(x, y) = x + y
1st
approximation: put y = y0 = 1 in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 1, f(x, y) = x + y
1st
approximation: put y = y0 = 1 in f(x, y)
‘y1 = 1 +
x
0
(1 + x) dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 1, f(x, y) = x + y
1st
approximation: put y = y0 = 1 in f(x, y)
‘y1 = 1 +
x
0
(1 + x) dx
∴ y1 = 1 + x +
x2
2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 = 1 + x +
x2
2
in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 = 1 + x +
x2
2
in f(x, y)
‘y2 = 1 +
x
0
1 + 2x +
x2
2
dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 = 1 + x +
x2
2
in f(x, y)
‘y2 = 1 +
x
0
1 + 2x +
x2
2
dx
∴ y2 = 1 + x + x2
+
x3
6
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
3rd
approximation:
put y = 1 + x + x2
+
x3
6
in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
3rd
approximation:
put y = 1 + x + x2
+
x3
6
in f(x, y)
‘y3 = 1 +
x
0
1 + 2x + x2
+
x3
6
dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
3rd
approximation:
put y = 1 + x + x2
+
x3
6
in f(x, y)
‘y3 = 1 +
x
0
1 + 2x + x2
+
x3
6
dx
∴ y3 = 1 + x + x2
+
x3
3
+
x4
24
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
4th
approximation:
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
4th
approximation:
put y = 1 + x + x2
+
x3
3
+
x4
24
in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
4th
approximation:
put y = 1 + x + x2
+
x3
3
+
x4
24
in f(x, y)
‘y4 = 1 +
x
0
1 + 2x + x2
+
x3
3
+
x4
24
dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
4th
approximation:
put y = 1 + x + x2
+
x3
3
+
x4
24
in f(x, y)
‘y4 = 1 +
x
0
1 + 2x + x2
+
x3
3
+
x4
24
dx
∴ y4 = 1 + x + x2
+
x3
3
+
x4
12
+
x5
120
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Ex:
Using Picard’s 2nd
approx. solution of the initial
value problem
dy
dx
= x2
+ y2
,for x = 0.4 correct to
4 decimal places given that y(0) = 0.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 0, f(x, y) = x2
+ y2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 0, f(x, y) = x2
+ y2
1st
approximation: put y = y0 = 0 in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 0, f(x, y) = x2
+ y2
1st
approximation: put y = y0 = 0 in f(x, y)
‘y1 = 0 +
x
0
(x2
+ 0) dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 0, f(x, y) = x2
+ y2
1st
approximation: put y = y0 = 0 in f(x, y)
‘y1 = 0 +
x
0
(x2
+ 0) dx
∴ y1 =
x3
3
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 =
x3
3
in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 =
x3
3
in f(x, y)
‘y2 = y0 +
x
0
x2
+
x3
3
2
dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 =
x3
3
in f(x, y)
‘y2 = y0 +
x
0
x2
+
x3
3
2
dx
∴ y2 =
x3
3
+
x7
63
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 =
x3
3
in f(x, y)
‘y2 = y0 +
x
0
x2
+
x3
3
2
dx
∴ y2 =
x3
3
+
x7
63
y(0.4) =
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Ex:
Find the value of y for x = 0.1 by Picard’s
method given that
dy
dx
=
y − x
y + x
,y(0) = 1.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 1, f(x, y) =
y − x
y + x
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 1, f(x, y) =
y − x
y + x
1st
approximation: put y = y0 = 1 in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 1, f(x, y) =
y − x
y + x
1st
approximation: put y = y0 = 1 in f(x, y)
y1 = 1 +
x
0
1 − x
1 + x
dx = 1 +
x
0
2 − (1 + x)
1 + x
dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 1, f(x, y) =
y − x
y + x
1st
approximation: put y = y0 = 1 in f(x, y)
y1 = 1 +
x
0
1 − x
1 + x
dx = 1 +
x
0
2 − (1 + x)
1 + x
dx
= 1 +
x
0
2
1 + x
− 1 dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 1, f(x, y) =
y − x
y + x
1st
approximation: put y = y0 = 1 in f(x, y)
y1 = 1 +
x
0
1 − x
1 + x
dx = 1 +
x
0
2 − (1 + x)
1 + x
dx
= 1 +
x
0
2
1 + x
− 1 dx
∴ y1 = 1 − x + 2log(1 + x)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 = 1 + 2log(1 + x) − x in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 = 1 + 2log(1 + x) − x in f(x, y)
y2 = 1 +
x
0
1 − x + 2log(1 + x) − x
1 − x + 2log(1 + x) + x
dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 = 1 + 2log(1 + x) − x in f(x, y)
y2 = 1 +
x
0
1 − x + 2log(1 + x) − x
1 − x + 2log(1 + x) + x
dx
= 1 +
x
0
1 − 2x + 2log(1 + x)
1 + 2log(1 + x)
dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 = 1 + 2log(1 + x) − x in f(x, y)
y2 = 1 +
x
0
1 − x + 2log(1 + x) − x
1 − x + 2log(1 + x) + x
dx
= 1 +
x
0
1 − 2x + 2log(1 + x)
1 + 2log(1 + x)
dx
= 1 +
x
0
1 −
2x
1 + 2log(1 + x)
dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
= 1 + x −
x
0
2x
1 + 2log(1 + x)
dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
= 1 + x −
x
0
2x
1 + 2log(1 + x)
dx
which is difficult to integrate therefore using 1st
approximation.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
= 1 + x −
x
0
2x
1 + 2log(1 + x)
dx
which is difficult to integrate therefore using 1st
approximation.
y(0.1) =
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -

More Related Content

What's hot

APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJAPPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
Zuhair Bin Jawaid
 
Vector calculus
Vector calculusVector calculus
Vector calculusraghu ram
 
Application of-differential-equation-in-real-life
Application of-differential-equation-in-real-lifeApplication of-differential-equation-in-real-life
Application of-differential-equation-in-real-life
Razwanul Ghani
 
Laplace transform
Laplace  transform   Laplace  transform
Laplace transform
001Abhishek1
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
Chandra Kundu
 
Differential equations
Differential equationsDifferential equations
Differential equations
Muhammad Ali Bhalli Zada
 
Applications of differential equations
Applications of differential equationsApplications of differential equations
Applications of differential equations
Sohag Babu
 
Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODE
kishor pokar
 
presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve
Mukuldev Khunte
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
Dr. Nirav Vyas
 
first order ode with its application
 first order ode with its application first order ode with its application
first order ode with its application
Krishna Peshivadiya
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
aman1894
 
Newton's forward difference
Newton's forward differenceNewton's forward difference
Newton's forward difference
Raj Parekh
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
Uzair Saiyed
 
Runge kutta
Runge kuttaRunge kutta
Runge kutta
Shubham Tomar
 
Taylors series
Taylors series Taylors series
Taylors series
DN Vaisnavi
 
Differential equations
Differential equationsDifferential equations
Differential equationsCharan Kumar
 
Lecture 2 transfer-function
Lecture 2 transfer-functionLecture 2 transfer-function
Lecture 2 transfer-functionSaifullah Memon
 

What's hot (20)

APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJAPPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Application of-differential-equation-in-real-life
Application of-differential-equation-in-real-lifeApplication of-differential-equation-in-real-life
Application of-differential-equation-in-real-life
 
Laplace transform
Laplace  transform   Laplace  transform
Laplace transform
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Applications of differential equations
Applications of differential equationsApplications of differential equations
Applications of differential equations
 
Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODE
 
presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
first order ode with its application
 first order ode with its application first order ode with its application
first order ode with its application
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Newton's forward difference
Newton's forward differenceNewton's forward difference
Newton's forward difference
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
 
Runge kutta
Runge kuttaRunge kutta
Runge kutta
 
Taylors series
Taylors series Taylors series
Taylors series
 
newton raphson method
newton raphson methodnewton raphson method
newton raphson method
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Unit step function
Unit step functionUnit step function
Unit step function
 
Lecture 2 transfer-function
Lecture 2 transfer-functionLecture 2 transfer-function
Lecture 2 transfer-function
 

Viewers also liked

Unit1 vrs
Unit1 vrsUnit1 vrs
Numerical integration
Numerical integrationNumerical integration
Numerical integration
Mohammed_AQ
 
Introduction to material and energy balance
Introduction to material and energy balanceIntroduction to material and energy balance
Introduction to material and energy balance
MagnusMG
 
Material balance Equation
  Material balance Equation  Material balance Equation
Material balance Equation
Ashfaq Ahmad
 
Process Instrumentation & Control
Process Instrumentation & ControlProcess Instrumentation & Control
Process Instrumentation & Control
Zin Eddine Dadach
 
08 basic material balance eqns
08 basic material balance eqns08 basic material balance eqns
08 basic material balance eqnsMohzez Genesis
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3
Dr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2
Dr. Nirav Vyas
 
Introduction to Reservoir Engineering
Introduction to Reservoir EngineeringIntroduction to Reservoir Engineering
Introduction to Reservoir Engineering
MikeEllingham
 
Numerical Methods 1
Numerical Methods 1Numerical Methods 1
Numerical Methods 1
Dr. Nirav Vyas
 
Introduction of process control
Introduction of process controlIntroduction of process control
Introduction of process control
chemical ppt
 
An Introduction to the Finite Element Method
An Introduction to the Finite Element MethodAn Introduction to the Finite Element Method
An Introduction to the Finite Element MethodMohammad Tawfik
 
partial diffrentialequations
partial diffrentialequationspartial diffrentialequations
partial diffrentialequations8laddu8
 
Industrial process control
Industrial process controlIndustrial process control
Industrial process control
Mohamed A Hakim
 
Mass transfer dr auroba
Mass transfer dr aurobaMass transfer dr auroba
Mass transfer dr auroba
cbhattr
 

Viewers also liked (15)

Unit1 vrs
Unit1 vrsUnit1 vrs
Unit1 vrs
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Introduction to material and energy balance
Introduction to material and energy balanceIntroduction to material and energy balance
Introduction to material and energy balance
 
Material balance Equation
  Material balance Equation  Material balance Equation
Material balance Equation
 
Process Instrumentation & Control
Process Instrumentation & ControlProcess Instrumentation & Control
Process Instrumentation & Control
 
08 basic material balance eqns
08 basic material balance eqns08 basic material balance eqns
08 basic material balance eqns
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3
 
Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2
 
Introduction to Reservoir Engineering
Introduction to Reservoir EngineeringIntroduction to Reservoir Engineering
Introduction to Reservoir Engineering
 
Numerical Methods 1
Numerical Methods 1Numerical Methods 1
Numerical Methods 1
 
Introduction of process control
Introduction of process controlIntroduction of process control
Introduction of process control
 
An Introduction to the Finite Element Method
An Introduction to the Finite Element MethodAn Introduction to the Finite Element Method
An Introduction to the Finite Element Method
 
partial diffrentialequations
partial diffrentialequationspartial diffrentialequations
partial diffrentialequations
 
Industrial process control
Industrial process controlIndustrial process control
Industrial process control
 
Mass transfer dr auroba
Mass transfer dr aurobaMass transfer dr auroba
Mass transfer dr auroba
 

Similar to Numerical Methods - Oridnary Differential Equations - 1

Introduction to Differential Equations
Introduction to Differential EquationsIntroduction to Differential Equations
Introduction to Differential Equations
Vishvaraj Chauhan
 
Study Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential EquationsStudy Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential Equations
Meenakshisundaram N
 
Integrated Math 2 Section 8-3
Integrated Math 2 Section 8-3Integrated Math 2 Section 8-3
Integrated Math 2 Section 8-3
Jimbo Lamb
 
Power series
Power series Power series
Power series
Pranav Veerani
 
Chapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin seriesChapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin series
Irfaan Bahadoor
 
lec12.pdf
lec12.pdflec12.pdf
lec12.pdf
JacksonMtonga1
 
Introduction to Numerical Methods for Differential Equations
Introduction to Numerical Methods for Differential EquationsIntroduction to Numerical Methods for Differential Equations
Introduction to Numerical Methods for Differential Equationsmatthew_henderson
 
1.  Which of the following is the correct matrix representation .docx
1.  Which of the following is the correct matrix representation .docx1.  Which of the following is the correct matrix representation .docx
1.  Which of the following is the correct matrix representation .docx
jackiewalcutt
 
Linear equations in Two variables
Linear equations in Two variablesLinear equations in Two variables
Linear equations in Two variables
Shruti Bhatnagar Dasgupta
 
derivatives part 1.pptx
derivatives part 1.pptxderivatives part 1.pptx
derivatives part 1.pptx
KulsumPaleja1
 
Ml lesson 4 4
Ml lesson 4 4Ml lesson 4 4
Ml lesson 4 4
marc_whitaker
 
Euler's Method.pdf
Euler's Method.pdfEuler's Method.pdf
Euler's Method.pdf
AliHussienAlasadi
 
Euler's Method.pdf
Euler's Method.pdfEuler's Method.pdf
Euler's Method.pdf
AliHussienAlasadi
 
Lecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxLecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptx
Pratik P Chougule
 
C2 st lecture 3 handout
C2 st lecture 3 handoutC2 st lecture 3 handout
C2 st lecture 3 handoutfatima d
 
Math1000 section1.2
Math1000 section1.2Math1000 section1.2
Math1000 section1.2
StuartJones92
 

Similar to Numerical Methods - Oridnary Differential Equations - 1 (20)

Introduction to Differential Equations
Introduction to Differential EquationsIntroduction to Differential Equations
Introduction to Differential Equations
 
Study Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential EquationsStudy Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential Equations
 
Integrated Math 2 Section 8-3
Integrated Math 2 Section 8-3Integrated Math 2 Section 8-3
Integrated Math 2 Section 8-3
 
Power series
Power series Power series
Power series
 
Chapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin seriesChapter 6 taylor and maclaurin series
Chapter 6 taylor and maclaurin series
 
lec12.pdf
lec12.pdflec12.pdf
lec12.pdf
 
Introduction to Numerical Methods for Differential Equations
Introduction to Numerical Methods for Differential EquationsIntroduction to Numerical Methods for Differential Equations
Introduction to Numerical Methods for Differential Equations
 
1.  Which of the following is the correct matrix representation .docx
1.  Which of the following is the correct matrix representation .docx1.  Which of the following is the correct matrix representation .docx
1.  Which of the following is the correct matrix representation .docx
 
Linear equations in Two variables
Linear equations in Two variablesLinear equations in Two variables
Linear equations in Two variables
 
Sect1 1
Sect1 1Sect1 1
Sect1 1
 
derivatives part 1.pptx
derivatives part 1.pptxderivatives part 1.pptx
derivatives part 1.pptx
 
Ml lesson 4 4
Ml lesson 4 4Ml lesson 4 4
Ml lesson 4 4
 
Euler's Method.pdf
Euler's Method.pdfEuler's Method.pdf
Euler's Method.pdf
 
Euler's Method.pdf
Euler's Method.pdfEuler's Method.pdf
Euler's Method.pdf
 
0309 ch 3 day 9
0309 ch 3 day 90309 ch 3 day 9
0309 ch 3 day 9
 
Lecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxLecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptx
 
Alg2 lesson 8-7
Alg2 lesson 8-7Alg2 lesson 8-7
Alg2 lesson 8-7
 
C2 st lecture 3 handout
C2 st lecture 3 handoutC2 st lecture 3 handout
C2 st lecture 3 handout
 
Math1000 section1.2
Math1000 section1.2Math1000 section1.2
Math1000 section1.2
 
Tut 1
Tut 1Tut 1
Tut 1
 

More from Dr. Nirav Vyas

Reduction forumla
Reduction forumlaReduction forumla
Reduction forumla
Dr. Nirav Vyas
 
Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic Mean
Dr. Nirav Vyas
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressions
Dr. Nirav Vyas
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressions
Dr. Nirav Vyas
 
Combinations
CombinationsCombinations
Combinations
Dr. Nirav Vyas
 
Permutation
PermutationPermutation
Permutation
Dr. Nirav Vyas
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture Notes
Dr. Nirav Vyas
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture Notes
Dr. Nirav Vyas
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture Notes
Dr. Nirav Vyas
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen values
Dr. Nirav Vyas
 
Special functions
Special functionsSpecial functions
Special functions
Dr. Nirav Vyas
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
Dr. Nirav Vyas
 
Numerical Methods 3
Numerical Methods 3Numerical Methods 3
Numerical Methods 3
Dr. Nirav Vyas
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
Dr. Nirav Vyas
 
Interpolation with unequal interval
Interpolation with unequal intervalInterpolation with unequal interval
Interpolation with unequal interval
Dr. Nirav Vyas
 
Power series
Power seriesPower series
Power series
Dr. Nirav Vyas
 

More from Dr. Nirav Vyas (20)

Reduction forumla
Reduction forumlaReduction forumla
Reduction forumla
 
Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic Mean
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressions
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressions
 
Combinations
CombinationsCombinations
Combinations
 
Permutation
PermutationPermutation
Permutation
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture Notes
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture Notes
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture Notes
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen values
 
Special functions
Special functionsSpecial functions
Special functions
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
 
Laplace Transforms
Laplace TransformsLaplace Transforms
Laplace Transforms
 
Fourier series 3
Fourier series 3Fourier series 3
Fourier series 3
 
Fourier series 2
Fourier series 2Fourier series 2
Fourier series 2
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 
Numerical Methods 3
Numerical Methods 3Numerical Methods 3
Numerical Methods 3
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
 
Interpolation with unequal interval
Interpolation with unequal intervalInterpolation with unequal interval
Interpolation with unequal interval
 
Power series
Power seriesPower series
Power series
 

Recently uploaded

Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Po-Chuan Chen
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
Peter Windle
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 

Recently uploaded (20)

Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 

Numerical Methods - Oridnary Differential Equations - 1

  • 1. Numerical Methods Ordinary Differential Equations - 1 Dr. N. B. Vyas Department of Mathematics, Atmiya Institute of Technology & Science, Rajkot (Gujarat) - INDIA niravbvyas@gmail.com Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 2. Ordinary Differential Equations Taylor’s Series Method: Consider the first order Differential Equation dy dx = f(x, y), y(x0) = y0 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 3. Ordinary Differential Equations Taylor’s Series Method: Consider the first order Differential Equation dy dx = f(x, y), y(x0) = y0 The Taylor’s series is y(x) = y(x0) + (x − x0) 1! y (x0) + (x − x0)2 2! y (x0) + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 4. Taylor’s Series Method Ex:1 Solve y = x + y, y(0) = 1 by Taylor’s series method. Hence find values of y at x = 0.1 and x = 0.2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 5. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 6. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 y = x + y Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 7. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 y = x + y ⇒ y (0) = 1 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 8. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 y = x + y ⇒ y (0) = 1 y = 1 + y Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 9. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 y = x + y ⇒ y (0) = 1 y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 10. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 y = x + y ⇒ y (0) = 1 y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2 y = y Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 11. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 y = x + y ⇒ y (0) = 1 y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2 y = y ⇒ y (0) = y (0) = 2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 12. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 y = x + y ⇒ y (0) = 1 y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2 y = y ⇒ y (0) = y (0) = 2 yiv = y Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 13. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 y = x + y ⇒ y (0) = 1 y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2 y = y ⇒ y (0) = y (0) = 2 yiv = y ⇒ yiv (0) = y (0) = 2 . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 14. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 y = x + y ⇒ y (0) = 1 y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2 y = y ⇒ y (0) = y (0) = 2 yiv = y ⇒ yiv (0) = y (0) = 2 . . . Taylor’s series is y(x) = y(x0)+ (x − x0) 1! y (x0)+ (x − x0)2 2! y (x0)+. . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 15. Taylor’s Series Method y(x) = 1 + xy (0) + x2 2! y (0) + x3 3! y (0) . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 16. Taylor’s Series Method y(x) = 1 + xy (0) + x2 2! y (0) + x3 3! y (0) . . . = 1 + x(1) + x2 2 (2) + x3 6 (2) + x4 24 (2) + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 17. Taylor’s Series Method y(x) = 1 + xy (0) + x2 2! y (0) + x3 3! y (0) . . . = 1 + x(1) + x2 2 (2) + x3 6 (2) + x4 24 (2) + . . . = 1 + x + x2 + x3 3 + x4 12 + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 18. Taylor’s Series Method y(x) = 1 + xy (0) + x2 2! y (0) + x3 3! y (0) . . . = 1 + x(1) + x2 2 (2) + x3 6 (2) + x4 24 (2) + . . . = 1 + x + x2 + x3 3 + x4 12 + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 19. Taylor’s Series Method y(x) = 1 + xy (0) + x2 2! y (0) + x3 3! y (0) . . . = 1 + x(1) + x2 2 (2) + x3 6 (2) + x4 24 (2) + . . . = 1 + x + x2 + x3 3 + x4 12 + . . . y(0.1) = 1 + (0.1) + (0.1)2 + (0.1)3 3 + (0.1)4 12 + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 20. Taylor’s Series Method y(x) = 1 + xy (0) + x2 2! y (0) + x3 3! y (0) . . . = 1 + x(1) + x2 2 (2) + x3 6 (2) + x4 24 (2) + . . . = 1 + x + x2 + x3 3 + x4 12 + . . . y(0.1) = 1 + (0.1) + (0.1)2 + (0.1)3 3 + (0.1)4 12 + . . . = 1.1103 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 21. Taylor’s Series Method y(x) = 1 + xy (0) + x2 2! y (0) + x3 3! y (0) . . . = 1 + x(1) + x2 2 (2) + x3 6 (2) + x4 24 (2) + . . . = 1 + x + x2 + x3 3 + x4 12 + . . . y(0.1) = 1 + (0.1) + (0.1)2 + (0.1)3 3 + (0.1)4 12 + . . . = 1.1103 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 22. Taylor’s Series Method y(x) = 1 + xy (0) + x2 2! y (0) + x3 3! y (0) . . . = 1 + x(1) + x2 2 (2) + x3 6 (2) + x4 24 (2) + . . . = 1 + x + x2 + x3 3 + x4 12 + . . . y(0.1) = 1 + (0.1) + (0.1)2 + (0.1)3 3 + (0.1)4 12 + . . . = 1.1103 y(0.2) = 1 + (0.2) + (0.2)2 + (0.2)3 3 + (0.2)4 12 + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 23. Taylor’s Series Method y(x) = 1 + xy (0) + x2 2! y (0) + x3 3! y (0) . . . = 1 + x(1) + x2 2 (2) + x3 6 (2) + x4 24 (2) + . . . = 1 + x + x2 + x3 3 + x4 12 + . . . y(0.1) = 1 + (0.1) + (0.1)2 + (0.1)3 3 + (0.1)4 12 + . . . = 1.1103 y(0.2) = 1 + (0.2) + (0.2)2 + (0.2)3 3 + (0.2)4 12 + . . . = 1.2428 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 24. Taylor’s Series Ex Using Taylor’s series method, obtain the solution of dy dx = 3x + y2 , given that y(0) = 1. Find the value of y for x = 0.1 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 25. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 26. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 27. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 28. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 y = 3 + 2yy Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 29. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 30. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5 y = 2(y )2 + 2yy Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 31. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5 y = 2(y )2 + 2yy ⇒ y (x0) = 2(1)2 + 2(5) = 12 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 32. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5 y = 2(y )2 + 2yy ⇒ y (x0) = 2(1)2 + 2(5) = 12 By Taylor’s series, y(x) = y0+(x−x0)y (x0)+ (x − x0)2 2! y (x0)+ (x − x0)3 3! y (x0)+. . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 33. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5 y = 2(y )2 + 2yy ⇒ y (x0) = 2(1)2 + 2(5) = 12 By Taylor’s series, y(x) = y0+(x−x0)y (x0)+ (x − x0)2 2! y (x0)+ (x − x0)3 3! y (x0)+. . . = 1 + x + x2 2! (5) + x3 3! (12) + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 34. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5 y = 2(y )2 + 2yy ⇒ y (x0) = 2(1)2 + 2(5) = 12 By Taylor’s series, y(x) = y0+(x−x0)y (x0)+ (x − x0)2 2! y (x0)+ (x − x0)3 3! y (x0)+. . . = 1 + x + x2 2! (5) + x3 3! (12) + . . . = 1 + x + 5x2 2! + 2x3 + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 35. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5 y = 2(y )2 + 2yy ⇒ y (x0) = 2(1)2 + 2(5) = 12 By Taylor’s series, y(x) = y0+(x−x0)y (x0)+ (x − x0)2 2! y (x0)+ (x − x0)3 3! y (x0)+. . . = 1 + x + x2 2! (5) + x3 3! (12) + . . . = 1 + x + 5x2 2! + 2x3 + . . . y(0.1) = Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 36. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5 y = 2(y )2 + 2yy ⇒ y (x0) = 2(1)2 + 2(5) = 12 By Taylor’s series, y(x) = y0+(x−x0)y (x0)+ (x − x0)2 2! y (x0)+ (x − x0)3 3! y (x0)+. . . = 1 + x + x2 2! (5) + x3 3! (12) + . . . = 1 + x + 5x2 2! + 2x3 + . . . y(0.1) = Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 37. Taylor’s Series Ex Using Taylor’s series method, find the solution of dy dx = 2y + 3ex , y(0) = 0,at x = 0.2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 38. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 39. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 40. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 41. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 42. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 43. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 y = 2y + 3ex Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 44. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 y = 2y + 3ex ⇒ y (x0) = 2(y0 ) + 3ex0 = 2(9) + 3e0 = 21 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 45. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 y = 2y + 3ex ⇒ y (x0) = 2(y0 ) + 3ex0 = 2(9) + 3e0 = 21 yiv = 2y + 3ex Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 46. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 y = 2y + 3ex ⇒ y (x0) = 2(y0 ) + 3ex0 = 2(9) + 3e0 = 21 yiv = 2y + 3ex ⇒ yiv (x0) = 45 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 47. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 y = 2y + 3ex ⇒ y (x0) = 2(y0 ) + 3ex0 = 2(9) + 3e0 = 21 yiv = 2y + 3ex ⇒ yiv (x0) = 45 By Taylor’s series, Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 48. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 y = 2y + 3ex ⇒ y (x0) = 2(y0 ) + 3ex0 = 2(9) + 3e0 = 21 yiv = 2y + 3ex ⇒ yiv (x0) = 45 By Taylor’s series, y(x) = y0+(x−x0)y (x0)+ (x − x0)2 2! y (x0)+ (x − x0)3 3! y (x0)+. . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 49. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 y = 2y + 3ex ⇒ y (x0) = 2(y0 ) + 3ex0 = 2(9) + 3e0 = 21 yiv = 2y + 3ex ⇒ yiv (x0) = 45 By Taylor’s series, y(x) = y0+(x−x0)y (x0)+ (x − x0)2 2! y (x0)+ (x − x0)3 3! y (x0)+. . . = 0 + x(3) + x2 2! (9) + x3 3! (21) + x4 4! (45) + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 50. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 y = 2y + 3ex ⇒ y (x0) = 2(y0 ) + 3ex0 = 2(9) + 3e0 = 21 yiv = 2y + 3ex ⇒ yiv (x0) = 45 By Taylor’s series, y(x) = y0+(x−x0)y (x0)+ (x − x0)2 2! y (x0)+ (x − x0)3 3! y (x0)+. . . = 0 + x(3) + x2 2! (9) + x3 3! (21) + x4 4! (45) + . . . = 3x + 9x2 2 + 7x3 2 + 15x4 8 + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 51. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 y = 2y + 3ex ⇒ y (x0) = 2(y0 ) + 3ex0 = 2(9) + 3e0 = 21 yiv = 2y + 3ex ⇒ yiv (x0) = 45 By Taylor’s series, y(x) = y0+(x−x0)y (x0)+ (x − x0)2 2! y (x0)+ (x − x0)3 3! y (x0)+. . . = 0 + x(3) + x2 2! (9) + x3 3! (21) + x4 4! (45) + . . . = 3x + 9x2 2 + 7x3 2 + 15x4 8 + . . . y(0.2) = Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 52. Taylor’s Series Method Ex: Use Taylor’s series method to solve dy dx = x2 + y2 , y(0) = 1. Find y(0.1) correct up to 4 decimal places. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 53. Taylor’s Series Method Ex: Use Taylor’s series method to solve dy dx = x2 y − 1, y(0) = 1. Find y(0.03). Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 54. Picard’s Method Picard’s Method: Consider the first order differential equation. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 55. Picard’s Method Picard’s Method: Consider the first order differential equation. dy dx = f(x, y) − − − (1) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 56. Picard’s Method Picard’s Method: Consider the first order differential equation. dy dx = f(x, y) − − − (1) subject to y(x0) = y0 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 57. Picard’s Method Picard’s Method: Consider the first order differential equation. dy dx = f(x, y) − − − (1) subject to y(x0) = y0 The equation (1) can be written as Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 58. Picard’s Method Picard’s Method: Consider the first order differential equation. dy dx = f(x, y) − − − (1) subject to y(x0) = y0 The equation (1) can be written as dy = f(x, y)dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 59. Picard’s Method Picard’s Method: Consider the first order differential equation. dy dx = f(x, y) − − − (1) subject to y(x0) = y0 The equation (1) can be written as dy = f(x, y)dx Integrating between the limits for x and y, we get Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 60. Picard’s Method Picard’s Method: Consider the first order differential equation. dy dx = f(x, y) − − − (1) subject to y(x0) = y0 The equation (1) can be written as dy = f(x, y)dx Integrating between the limits for x and y, we get y y0 dy = x x0 f(x, y)dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 61. Picard’s Method Picard’s Method: Consider the first order differential equation. dy dx = f(x, y) − − − (1) subject to y(x0) = y0 The equation (1) can be written as dy = f(x, y)dx Integrating between the limits for x and y, we get y y0 dy = x x0 f(x, y)dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 62. Picard’s Method (y − y0) = x x0 f(x, y)dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 63. Picard’s Method (y − y0) = x x0 f(x, y)dx y = y0 + x x0 f(x, y)dx − − − (2) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 64. Picard’s Method (y − y0) = x x0 f(x, y)dx y = y0 + x x0 f(x, y)dx − − − (2) Equation (2) is known as integral equation and can be solved by successive approximation or iteration. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 65. Picard’s Method (y − y0) = x x0 f(x, y)dx y = y0 + x x0 f(x, y)dx − − − (2) Equation (2) is known as integral equation and can be solved by successive approximation or iteration. Now by Picard’s method, for 1st approximation y1 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 66. Picard’s Method (y − y0) = x x0 f(x, y)dx y = y0 + x x0 f(x, y)dx − − − (2) Equation (2) is known as integral equation and can be solved by successive approximation or iteration. Now by Picard’s method, for 1st approximation y1 we replace y by y0 in f(x, y) in R.H.S of eq. (2), we get Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 67. Picard’s Method (y − y0) = x x0 f(x, y)dx y = y0 + x x0 f(x, y)dx − − − (2) Equation (2) is known as integral equation and can be solved by successive approximation or iteration. Now by Picard’s method, for 1st approximation y1 we replace y by y0 in f(x, y) in R.H.S of eq. (2), we get y1 = y0 + x x0 f(x, y0)dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 68. Picard’s Method For 2nd approximation y2, Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 69. Picard’s Method For 2nd approximation y2, we replace y by y1 in f(x, y) in R.H.S of eq. (2), we get Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 70. Picard’s Method For 2nd approximation y2, we replace y by y1 in f(x, y) in R.H.S of eq. (2), we get y2 = y0 + x x0 f(x, y1)dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 71. Picard’s Method For 2nd approximation y2, we replace y by y1 in f(x, y) in R.H.S of eq. (2), we get y2 = y0 + x x0 f(x, y1)dx In general, Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 72. Picard’s Method For 2nd approximation y2, we replace y by y1 in f(x, y) in R.H.S of eq. (2), we get y2 = y0 + x x0 f(x, y1)dx In general, yn+1 = y0 + x x0 f(x, yn)dx for n = 0, 1, 2, . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 73. Picard’s Method For 2nd approximation y2, we replace y by y1 in f(x, y) in R.H.S of eq. (2), we get y2 = y0 + x x0 f(x, y1)dx In general, yn+1 = y0 + x x0 f(x, yn)dx for n = 0, 1, 2, . . . stop the process when the two consecutive values of y are same up to desired accuracy. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 74. Picard’s Method Note: This method is applicable to a limited class of equations in which the successive integration can be performed easily. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 75. Picard’s Method Ex Using Picard’s method solve dy dx = 3 + 2xy where y(0) = 1 for x = 0.1. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 76. Picard’s Method Sol.: By Picard’s method yn+1 = y0 + x x0 f(x, yn) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 77. Picard’s Method Sol.: By Picard’s method yn+1 = y0 + x x0 f(x, yn) dx Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 78. Picard’s Method Sol.: By Picard’s method yn+1 = y0 + x x0 f(x, yn) dx Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy 1st approximation: Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 79. Picard’s Method Sol.: By Picard’s method yn+1 = y0 + x x0 f(x, yn) dx Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy 1st approximation: put n = 0 and y0 = 1 in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 80. Picard’s Method Sol.: By Picard’s method yn+1 = y0 + x x0 f(x, yn) dx Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy 1st approximation: put n = 0 and y0 = 1 in f(x, y) y1 = 1 + x 0 (3 + 2x) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 81. Picard’s Method Sol.: By Picard’s method yn+1 = y0 + x x0 f(x, yn) dx Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy 1st approximation: put n = 0 and y0 = 1 in f(x, y) y1 = 1 + x 0 (3 + 2x) dx ∴ y1 = 1 + 3x + x2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 82. Picard’s Method 2nd approximation: Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 83. Picard’s Method 2nd approximation: put n = 1 and y1 = 1 + 3x + x2 in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 84. Picard’s Method 2nd approximation: put n = 1 and y1 = 1 + 3x + x2 in f(x, y) y2 = 1 + x 0 3 + 2x(1 + 3x + x2 ) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 85. Picard’s Method 2nd approximation: put n = 1 and y1 = 1 + 3x + x2 in f(x, y) y2 = 1 + x 0 3 + 2x(1 + 3x + x2 ) dx = 1 + x 0 3 + 2x + 6x2 + 2x3 ) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 86. Picard’s Method 2nd approximation: put n = 1 and y1 = 1 + 3x + x2 in f(x, y) y2 = 1 + x 0 3 + 2x(1 + 3x + x2 ) dx = 1 + x 0 3 + 2x + 6x2 + 2x3 ) dx ∴ y2 = 1 + 3x + x2 + 2x3 + x4 2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 87. Picard’s Method 2nd approximation: put n = 1 and y1 = 1 + 3x + x2 in f(x, y) y2 = 1 + x 0 3 + 2x(1 + 3x + x2 ) dx = 1 + x 0 3 + 2x + 6x2 + 2x3 ) dx ∴ y2 = 1 + 3x + x2 + 2x3 + x4 2 which is approximate solution, putting x = 0.1 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 88. Picard’s Method 2nd approximation: put n = 1 and y1 = 1 + 3x + x2 in f(x, y) y2 = 1 + x 0 3 + 2x(1 + 3x + x2 ) dx = 1 + x 0 3 + 2x + 6x2 + 2x3 ) dx ∴ y2 = 1 + 3x + x2 + 2x3 + x4 2 which is approximate solution, putting x = 0.1 y(0.1) = Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 89. Picard’s Method 2nd approximation: put n = 1 and y1 = 1 + 3x + x2 in f(x, y) y2 = 1 + x 0 3 + 2x(1 + 3x + x2 ) dx = 1 + x 0 3 + 2x + 6x2 + 2x3 ) dx ∴ y2 = 1 + 3x + x2 + 2x3 + x4 2 which is approximate solution, putting x = 0.1 y(0.1) = 1.31205 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 90. Picard’s Method Ex: Using Picard’s method, obtain a solution upto 4th approx of the equation dy dx = y + x, y(0) = 1. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 91. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 92. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 1, f(x, y) = x + y Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 93. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 1, f(x, y) = x + y 1st approximation: put y = y0 = 1 in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 94. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 1, f(x, y) = x + y 1st approximation: put y = y0 = 1 in f(x, y) ‘y1 = 1 + x 0 (1 + x) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 95. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 1, f(x, y) = x + y 1st approximation: put y = y0 = 1 in f(x, y) ‘y1 = 1 + x 0 (1 + x) dx ∴ y1 = 1 + x + x2 2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 96. Picard’s Method 2nd approximation: Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 97. Picard’s Method 2nd approximation: put y = y1 = 1 + x + x2 2 in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 98. Picard’s Method 2nd approximation: put y = y1 = 1 + x + x2 2 in f(x, y) ‘y2 = 1 + x 0 1 + 2x + x2 2 dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 99. Picard’s Method 2nd approximation: put y = y1 = 1 + x + x2 2 in f(x, y) ‘y2 = 1 + x 0 1 + 2x + x2 2 dx ∴ y2 = 1 + x + x2 + x3 6 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 100. Picard’s Method 3rd approximation: put y = 1 + x + x2 + x3 6 in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 101. Picard’s Method 3rd approximation: put y = 1 + x + x2 + x3 6 in f(x, y) ‘y3 = 1 + x 0 1 + 2x + x2 + x3 6 dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 102. Picard’s Method 3rd approximation: put y = 1 + x + x2 + x3 6 in f(x, y) ‘y3 = 1 + x 0 1 + 2x + x2 + x3 6 dx ∴ y3 = 1 + x + x2 + x3 3 + x4 24 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 103. Picard’s Method 4th approximation: Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 104. Picard’s Method 4th approximation: put y = 1 + x + x2 + x3 3 + x4 24 in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 105. Picard’s Method 4th approximation: put y = 1 + x + x2 + x3 3 + x4 24 in f(x, y) ‘y4 = 1 + x 0 1 + 2x + x2 + x3 3 + x4 24 dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 106. Picard’s Method 4th approximation: put y = 1 + x + x2 + x3 3 + x4 24 in f(x, y) ‘y4 = 1 + x 0 1 + 2x + x2 + x3 3 + x4 24 dx ∴ y4 = 1 + x + x2 + x3 3 + x4 12 + x5 120 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 107. Picard’s Method Ex: Using Picard’s 2nd approx. solution of the initial value problem dy dx = x2 + y2 ,for x = 0.4 correct to 4 decimal places given that y(0) = 0. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 108. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 109. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 0, f(x, y) = x2 + y2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 110. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 0, f(x, y) = x2 + y2 1st approximation: put y = y0 = 0 in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 111. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 0, f(x, y) = x2 + y2 1st approximation: put y = y0 = 0 in f(x, y) ‘y1 = 0 + x 0 (x2 + 0) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 112. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 0, f(x, y) = x2 + y2 1st approximation: put y = y0 = 0 in f(x, y) ‘y1 = 0 + x 0 (x2 + 0) dx ∴ y1 = x3 3 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 113. Picard’s Method 2nd approximation: Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 114. Picard’s Method 2nd approximation: put y = y1 = x3 3 in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 115. Picard’s Method 2nd approximation: put y = y1 = x3 3 in f(x, y) ‘y2 = y0 + x 0 x2 + x3 3 2 dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 116. Picard’s Method 2nd approximation: put y = y1 = x3 3 in f(x, y) ‘y2 = y0 + x 0 x2 + x3 3 2 dx ∴ y2 = x3 3 + x7 63 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 117. Picard’s Method 2nd approximation: put y = y1 = x3 3 in f(x, y) ‘y2 = y0 + x 0 x2 + x3 3 2 dx ∴ y2 = x3 3 + x7 63 y(0.4) = Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 118. Picard’s Method Ex: Find the value of y for x = 0.1 by Picard’s method given that dy dx = y − x y + x ,y(0) = 1. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 119. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 120. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 1, f(x, y) = y − x y + x Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 121. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 1, f(x, y) = y − x y + x 1st approximation: put y = y0 = 1 in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 122. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 1, f(x, y) = y − x y + x 1st approximation: put y = y0 = 1 in f(x, y) y1 = 1 + x 0 1 − x 1 + x dx = 1 + x 0 2 − (1 + x) 1 + x dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 123. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 1, f(x, y) = y − x y + x 1st approximation: put y = y0 = 1 in f(x, y) y1 = 1 + x 0 1 − x 1 + x dx = 1 + x 0 2 − (1 + x) 1 + x dx = 1 + x 0 2 1 + x − 1 dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 124. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 1, f(x, y) = y − x y + x 1st approximation: put y = y0 = 1 in f(x, y) y1 = 1 + x 0 1 − x 1 + x dx = 1 + x 0 2 − (1 + x) 1 + x dx = 1 + x 0 2 1 + x − 1 dx ∴ y1 = 1 − x + 2log(1 + x) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 125. Picard’s Method 2nd approximation: Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 126. Picard’s Method 2nd approximation: put y = y1 = 1 + 2log(1 + x) − x in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 127. Picard’s Method 2nd approximation: put y = y1 = 1 + 2log(1 + x) − x in f(x, y) y2 = 1 + x 0 1 − x + 2log(1 + x) − x 1 − x + 2log(1 + x) + x dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 128. Picard’s Method 2nd approximation: put y = y1 = 1 + 2log(1 + x) − x in f(x, y) y2 = 1 + x 0 1 − x + 2log(1 + x) − x 1 − x + 2log(1 + x) + x dx = 1 + x 0 1 − 2x + 2log(1 + x) 1 + 2log(1 + x) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 129. Picard’s Method 2nd approximation: put y = y1 = 1 + 2log(1 + x) − x in f(x, y) y2 = 1 + x 0 1 − x + 2log(1 + x) − x 1 − x + 2log(1 + x) + x dx = 1 + x 0 1 − 2x + 2log(1 + x) 1 + 2log(1 + x) dx = 1 + x 0 1 − 2x 1 + 2log(1 + x) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 130. Picard’s Method = 1 + x − x 0 2x 1 + 2log(1 + x) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 131. Picard’s Method = 1 + x − x 0 2x 1 + 2log(1 + x) dx which is difficult to integrate therefore using 1st approximation. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 132. Picard’s Method = 1 + x − x 0 2x 1 + 2log(1 + x) dx which is difficult to integrate therefore using 1st approximation. y(0.1) = Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -