SlideShare a Scribd company logo
BJT Biasing & re model
Unit II :
Bipolar Junction Transistor: Transistor Construction, Operation, Amplification action.
Common Base, Common Emitter, Common Collector Configuration DC Biasing BJTs:
Operating Point, Fixed-Bias, Emitter Bias, Voltage-Divider Bias Configuration. Collector
Feedback, Emitter-Follower Configuration. Bias Stabilization. CE, CB, CC amplifiers and AC
analysis of single stage CE amplifier (re Model ). Field Effect Transistor: Construction and
Characteristic of JFETs. AC analysis of CS amplifier, MOSFET (Depletion and
Enhancement)Type, Transfer Characteristic
11/10/2017 1
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
BJT: DC Biasing BJTs: Operating Point
11/10/2017 2
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
Transistor operates in three regions. Junctions biasing in different
regions of operation as below
• Active (Linear)-region :
▪ BE junction forward-biased
▪ CB junction reverse-biased
• Cutoff-region : Both BE & CB junction reverse-biased
• Saturation-region : Both BE & CB junction forward-biased
Biasing: dc biasing establish a fixed level of output current and
voltage that sets a operating or quiescent point (Q-point) on the
characteristics. Quiescent means quiet, still or inactive.
If not properly biased a transistor amplifier may go into cutoff /
saturation when ac input is applied
BJT: DC Biasing BJTs: Operating Point
11/10/2017 3
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
Point B: allows variation of output,
but limited by VCE=0 V & IC=0 mA
Point C: allows output variation in
response to, +ve/-ve swing of input
Point D: D is near maximum power
level. Output swing in the +ve
direction is limited
Point E & F: device in cut-off region
& saturation region respectively
VCE(V)
IB =0 A
10 A
20 A
40 A
50 A
IC (mA) 60 A
Saturationregion
VCE Saturation
0 5 10 15 20
6
5
4
3
2
1
30 A
Cutoff region
VCE max
Pmax
A
B
C
D
E
F
Operating point is fixed point on output characteristics (by VCE & IC)
Point A: the device is fully off ie. VCE=0 V & IC=0 mA (no bias)
Point C is suitable Q point for amplification
BJT: DC Biasing BJTs: Operating Point
•increase in ac power (amplification) occurs due to transfer of energy
from dc supplies.
•So analysis/design of a transistor amplifier requires knowing both the
dc and the ac response of the system.
•To find Q point, output voltage & output current due to dc biasing has
to be known. (for CE configuration, IC , VCE and IB )
•To do dc bias analysis first remove ac input/output and open circuit
blocking/ bypass capacitor.
•Each configuration is analysed by recurring use of following equations
11/10/2017 4
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
BC
CBE
BE
II
III
V





and
)1(
7.0
BJT: Fixed-Bias
11/10/2017 5
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
Fixed bias DC equivalent of Fixed bias
 
B
BECC
C
R
VV
I



E
C
B
VCC
IC
Q
VBE
RCRB
+
-
IB
Input ac
signal
Output
ac signal
C1
C2
VCE
E
C
B
VCC
IC
Q
VBE
RCRB
+
-
IB
VCC
VCE
VVII BEBC 7.0and  
CCCCCE RIVV 
• VCC bias collector and base through RC and
RB respectively while emitter is grounded.
• Fixed bias is common in switching circuits.
• Disadvantage is its  dependency ( varies
with temperature)
B
BECC
B
R
VV
I


BJT: Emitter Bias
11/10/2017 6
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
• Emitter bias provides improved bias stability with
respect to  ( or temperature).
• It uses a emitter resistance RE. which acts as a feedback
B
EBBECC
B
EBEEE
B
EBECC
B
R
RIVV
I
RIRIV
R
VVV
I
)1(
so
)1(as,







,as
7.0and
CE
EECCCCECCCCCE
BEBC
II
RIRIVVRIVV
VVII


 
 
EB
BECC
C
)R(βR
VVβ
I
1


 ECCCCCE RRIVV 
E
C
B
VCC
IC
Q
VBE
RCRB
+
-
IB
Input ac
signal
Output
ac signal
C1
C2
VCE
IE
RE
Emitter bias
 
EB
BECC
B
)R(βR
VV
I
1


BJT: Voltage-Divider Bias Configuration
11/10/2017 7
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
 
getwesolvingandVngsubstituti
1again
where,
B
21
21
121
21
EBBEEEBEB
BCCBBCC
B
RIVRIVV
RR
RR
R
R
V
R
V
R
V
R
VV
III








 ECCCCCE RRIVV 
  E
BECC
B
RR
V
R
R
V
I
1
1





CEEECCCCCE
BEBC
IIRIRIVV
VVII


as,again
7.0and
Voltage divider bias
E
C
B
VCC
IC
Q
VBE
RCR1
+
-
IBInput ac
signal
Output
ac signal
C1
C2
VCE
IE
RE
R2
I1
I2
• Voltage divider bias provides excellent bias stability with
respect to  or temperature changes
• Base bias is provided using a voltage divider circuit while
feedback resistance RE is used
  E
BECC
C
RR
V
R
R
V
I
1
1













BJT: Collector Feedback
11/10/2017 8
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
Collector feedback bias
E
C
B
VCC
IC
Q
VBE
RC
RF
+
-
IBInput ac
signal
Output
ac signal
C1
C2
VCE
IE
RE
 
VVII
R
RRI
R
VV
I
R
RIVRIV
I
BEBC
F
ECC
F
BECC
B
F
EEBECECC
B
7.0and 







 ECCCCCE RRIVV 
 
 ECF
BECC
C
RRR
VV
I





CEEECCCCCE IIRIRIVV  as,again
• Maintain relative bias stability with respect to  or temperature changes
• base resistor RB is connected to the collector rather than to VCC
 ECF
BECC
B
RRR
VV
I




BJT: Emitter-Follower Configuration
11/10/2017 9
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
E
C
B
-VEE
Q
VBE
RB
+
-
IBInput ac
signal
Output
ac signal
C1
C2
VCE
IE
RE
 
B
EBBEEE
B
B
EEBEEE
B
R
RIVV
I
R
RIVV
I
1




EEEECE RIVV 
  EB
BEEE
B
RR
VV
I
1



• Collector is grounded, base is connected to collector through RB and emitter is baised
• Biasing stability similar to emitter bias
  
  EB
BEEE
E
RR
VV
I
1
1





BJT: Common base Configuration bias
11/10/2017 10
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
E
BEEE
E
R
VV
I


CCCCCB RIVV 
 
CE
EEEECCCCECCE
II
VRIRIVVVV


as
RE
E C
B
VEE VCC
IE IC
IB
Q
VBE VCB
Output
ac signal
C2
Input ac
signal
C1
RC
VCE
 ECCEECCCE RRIVVV 
 
E
BEEE
C
R
VV
I



BJT: Biasing Example
11/10/2017 11
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
For the circuit in figure, Find out ICQ and VCEQ
E
C
B
20 V
I
C
=90
20 K
IBac
i/p
ac
o/p
10 F
5 K
2 K
1 K
10 F
20 F
E
C
B
VCC =20 V
IC
=90
20 K
IB
5 K
2 K
1 K




 K
x
RR
RR
R 4
520
520
21
21

 
Vx
RRIVV ECCCCCEQ
61.10313.320 

mAII BCQ 13.3 
   
mAmAA
xx
x
RR
V
R
R
xV
I
E
BECC
E 0347.0
95
3.3
101914
7.0
20
4
20
1 3
1









BJT: biasing summary
11/10/2017 12
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
B
BECC
B
R
VV
I


CCCCCE RIVV 
EB
BECC
B
)R(βR
VV
I
1


 ECCCCCE RRIVV   ECCCCCE RRIVV 
  E
BECC
B
RR
V
R
R
V
I
1
1





BJT: biasing summary
11/10/2017 13
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
 ECF
BECC
B
RRR
VV
I




 ECCCCCE RRIVV 
  EB
BEEE
B
RR
VV
I
1



EEEECE RIVV 
E
BEEE
E
R
VV
I


CCCCCB RIVV 
 ECCEECCCE RRIVVV 
BJT: Bias Stabilization.
Bias stability is a measure of the sensitivity of network to parameter
variations. In BJT amplifier circuits, collector current IC is sensitive to
each of the following parameters:
• : increases with increase in temperature
• VBE: decreases about 2.5 mV /°C with increase in temperature
• ICO : doubles in value for every 10°C increase in temperature
Any or all factors can cause the designed Q-point to drift
Stability factor S is defined for each parameter affecting bias stability
11/10/2017 14
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
CO
C
CO
I
I
IS


)(
BE
C
BE
V
I
VS


)(




 CI
S )(
  )()()(currentcollectorinchangeTotal SVVSIISI BEBECOCOC
BJT: bias stability summary
11/10/2017 15
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
Fixed bias Emitter bias Voltage divider bias Collector feedback bias
)( COIS
E
B
E
B
CO
R
R
R
R
IS










 1
)(
E
E
CO
R
R
R
R
IS












 1
)(
C
F
C
F
CO
R
R
R
R
IS










 1
)(
1
1
)(

 CI
S 















E
B
E
B
C
R
R
R
R
I
S
21
1 1
)(

















E
E
C
R
R
R
R
I
S


21
1 1
)(


 
 CF
CFC
RR
RRI
S
21
1
)(














C
F
C
BE
R
R
R
VS


)(









E
E
BE
R
R
R
VS



)(
B
BE
R
VS

)(









E
B
E
BE
R
R
R
VS


)(
The ratio RB/RE or R /RE or RF /RC should be small for better bias stability
BJT: Transistor modelling
The key to small-signal analysis is use of equivalent circuits (models)
A model is a equivalent circuit, that best approximates ac behaviour
of the transistor
There are two models commonly used in small signal AC analysis of a
transistor: re model Hybrid equivalent model
11/10/2017 16
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
SystemZi ZO
Ii
IO+
Vi
-
+
VO
-
To make ac equivalent model
• replace dc supplies by zero (short circuit)
• Replace Coupling and bypass capacitor
by short circuit
• Remove elements bypassed by short
circuit
• define the parameters Zi, ZO, Ii, and IO
BJT: re Model for CE
11/10/2017 17
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
E
IE
IC
IB

VBE
C
B
E
IE
IC
IB
IB
+
VBE
-
C
B
+
VCE
-
CE configuration CE Equivalent circuit
 

















B
C
i
O
i
e
L
eB
LB
ii
LC
i
O
V
O
CQA
CQ
A
C
CE
OO
E
BE
e
e
E
BE
B
BE
i
BCOBi
I
I
I
I
A
r
R
rI
RI
ZI
RI
V
V
A
r
IV
I
V
I
V
rZ
I
V
r
r
I
V
I
V
Z
IIIII
gainCurrent
gainVoltage
regionactiveincurveoutputofslopeis/1
currentcollectorpointQage,Early volt
diode)ofresistance(forwardas
1
and,
Ii=IB
IO=IC+
Vi
-
+
VO
-
B
E
C
E
re rO
re model for CE configuration including rO
IB
RL
BJT: re Model for CB
11/10/2017 18
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
re model for CB configuration
B
IE
ICIE
IE
-
VBE
+
CE
+
VCB
-
CB configuration CB Equivalent circuit
1gainCurrent
gainVoltage
highor very
regionactiveincurveoutputofslopeis/1
and,



















E
C
i
O
i
e
L
eE
LC
i
O
V
O
O
C
CB
OO
e
E
BE
i
ECOEi
I
I
I
I
A
r
R
rI
RI
V
V
A
r
r
I
V
rZ
r
I
V
Z
IIIII
EIE
IC

VBE
C
B
Ii=-IE
IO=IC
+
Vi
-
+
VO
-
E
B
C
B
re rOIE RL
BJT: re Model for CC
11/10/2017 19
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
   
 
























B
E
i
O
i
eL
L
eLB
LE
i
O
V
O
CQ
A
C
CE
E
E
OO
E
BE
e
eL
E
BEE
B
BEE
B
B
i
BEOBi
I
I
I
I
A
rR
R
rRI
RI
V
V
A
r
I
V
I
V
I
V
rZ
I
V
r
rR
I
VV
I
VV
I
V
Z
IIIII
gainCurrent
gainVoltage
regionactiveincurveoutputofslopeis/1
diode)ofresistance(forwardas
and,
CC configuration
C
E
B
IC
IE
IB

VBE
CC configuration
E
C
B
IC
IEIB

VBE
RL
Ii=IB
IO=-IE+
Vi
-
+
VO
-
B
C
E
(RL+re) rO
re model for CC configuration including rO
IB
RL
RL
BJT: ac modelling Example
11/10/2017 20
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
For the circuit in figure, Find out re , Zi , ZO , AV , Ai
E
C
B
20 V
IC
=90
20 K
IBac
i/p
ac
o/p
10 F
5 K
2 K
1 K
10 F
20 F
E
C
B
IC
=90
20 K
IBac i/p
ac o/p
5 K
2 K
re model for voltage divider CE configuration including rO
IB
IO=IC
+
Vi
-
+
VO
-
B
E
C
re rO
IB
RCR2R1
Ii
BJT: ac modelling Example
11/10/2017 21
REC 101 Unit II by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
re computation
 
 
 














23.8
16.3
26
16.3
95
3.300
101914
7.0
20
4
20
91
1
1
4
520
520
3
1
21
21
e
E
T
e
E
BECC
E
r
mA
mV
I
V
r
mAmA
A
xx
x
x
RR
V
R
R
xV
I
K
x
RR
RR
R





Zi computation


 624
7.7404000
7.7404000x
rR
I
V
Z e
i
i
i 
ZO computation (assume ro=)
2  KrR
I
V
Z OC
O
O
O
AV computation
243
23.8
2000



e
C
eB
CC
i
O
V
r
R
rI
RI
V
V
A

Ai computation
82.75
2000
624
243 

 x
Z
Z
A
Z
V
Z
V
I
I
A
O
i
V
i
i
O
O
i
O
i

More Related Content

What's hot

Diode circuits
Diode circuitsDiode circuits
Diode circuits
Prof. Dr. K. Adisesha
 
Field Effect Biasing - Part 1
Field Effect Biasing - Part 1Field Effect Biasing - Part 1
Field Effect Biasing - Part 1
Jess Rangcasajo
 
Clipper and clampers
Clipper and clampersClipper and clampers
Clipper and clampers
Akanksha arora
 
Two port network
Two port networkTwo port network
Two port network
Rajput Manthan
 
L08 power amplifier (class a)
L08 power amplifier (class a)L08 power amplifier (class a)
L08 power amplifier (class a)hasanen22
 
Unit 4 twoportnetwork
Unit 4 twoportnetworkUnit 4 twoportnetwork
Unit 4 twoportnetwork
ACE ENGINEERING COLLEGE
 
Basics of JFET
Basics of JFETBasics of JFET
Basics of JFET
ssuser4b487e1
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-4
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-4Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-4
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-4Shiwam Isrie
 
BJT Biasing for B.Tech Ist Year Engineering
BJT Biasing for B.Tech Ist Year EngineeringBJT Biasing for B.Tech Ist Year Engineering
BJT Biasing for B.Tech Ist Year Engineering
Raghav Bansal
 
FET Biasing
FET BiasingFET Biasing
FET Biasing
PRAVEENA N G
 
Stabilisation
StabilisationStabilisation
Stabilisation
AJAL A J
 
EC8452 Electronic Circuits II - UJT Relaxation Oscillator
EC8452 Electronic Circuits II - UJT Relaxation OscillatorEC8452 Electronic Circuits II - UJT Relaxation Oscillator
EC8452 Electronic Circuits II - UJT Relaxation Oscillator
chitrarengasamy
 
Reflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission lineReflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission line
RCC Institute of Information Technology
 
Eeg381 electronics iii chapter 2 - feedback amplifiers
Eeg381 electronics iii   chapter 2 - feedback amplifiersEeg381 electronics iii   chapter 2 - feedback amplifiers
Eeg381 electronics iii chapter 2 - feedback amplifiersFiaz Khan
 
Basic op amp circuits
Basic op amp circuitsBasic op amp circuits
Basic op amp circuits
Jamil Ahmed
 
Semiconductor diode
Semiconductor diodeSemiconductor diode
Semiconductor diode
RAMPRAKASHT1
 
Power amplifiers
Power amplifiersPower amplifiers
Power amplifiers
mofassair
 
CMOS
CMOS CMOS
Field-Effect Transistors
Field-Effect TransistorsField-Effect Transistors
Field-Effect Transistors
guest3b5d8a
 

What's hot (20)

Diode circuits
Diode circuitsDiode circuits
Diode circuits
 
Field Effect Biasing - Part 1
Field Effect Biasing - Part 1Field Effect Biasing - Part 1
Field Effect Biasing - Part 1
 
Clipper and clampers
Clipper and clampersClipper and clampers
Clipper and clampers
 
Two port network
Two port networkTwo port network
Two port network
 
L08 power amplifier (class a)
L08 power amplifier (class a)L08 power amplifier (class a)
L08 power amplifier (class a)
 
Unit 4 twoportnetwork
Unit 4 twoportnetworkUnit 4 twoportnetwork
Unit 4 twoportnetwork
 
Basics of JFET
Basics of JFETBasics of JFET
Basics of JFET
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-4
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-4Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-4
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-4
 
BJT Biasing for B.Tech Ist Year Engineering
BJT Biasing for B.Tech Ist Year EngineeringBJT Biasing for B.Tech Ist Year Engineering
BJT Biasing for B.Tech Ist Year Engineering
 
FET Biasing
FET BiasingFET Biasing
FET Biasing
 
Stabilisation
StabilisationStabilisation
Stabilisation
 
EC8452 Electronic Circuits II - UJT Relaxation Oscillator
EC8452 Electronic Circuits II - UJT Relaxation OscillatorEC8452 Electronic Circuits II - UJT Relaxation Oscillator
EC8452 Electronic Circuits II - UJT Relaxation Oscillator
 
Reflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission lineReflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission line
 
Eeg381 electronics iii chapter 2 - feedback amplifiers
Eeg381 electronics iii   chapter 2 - feedback amplifiersEeg381 electronics iii   chapter 2 - feedback amplifiers
Eeg381 electronics iii chapter 2 - feedback amplifiers
 
Basic op amp circuits
Basic op amp circuitsBasic op amp circuits
Basic op amp circuits
 
Semiconductor diode
Semiconductor diodeSemiconductor diode
Semiconductor diode
 
M Tech 2nd Semester (CMOS VLSI) Question papers
M Tech 2nd Semester (CMOS VLSI) Question papers M Tech 2nd Semester (CMOS VLSI) Question papers
M Tech 2nd Semester (CMOS VLSI) Question papers
 
Power amplifiers
Power amplifiersPower amplifiers
Power amplifiers
 
CMOS
CMOS CMOS
CMOS
 
Field-Effect Transistors
Field-Effect TransistorsField-Effect Transistors
Field-Effect Transistors
 

Viewers also liked

Rec101 unit iii operational amplifier
Rec101 unit iii operational amplifierRec101 unit iii operational amplifier
Rec101 unit iii operational amplifier
Dr Naim R Kidwai
 
Amplifier report
Amplifier reportAmplifier report
Amplifier report
Abdul Sattar
 
Group 1 Audio Amplifier Final Presentation
Group 1 Audio Amplifier Final PresentationGroup 1 Audio Amplifier Final Presentation
Group 1 Audio Amplifier Final PresentationDan Greenwood
 
DIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFETDIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFET
Praveen Kumar
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCE
nandivashishth
 
Op amp-electronics
Op amp-electronicsOp amp-electronics
Op amp-electronics
humakhan1357
 
OP AMP Applications
OP AMP ApplicationsOP AMP Applications
OP AMP Applications
aroosa khan
 
Ajal op amp
Ajal op ampAjal op amp
Ajal op amp
AJAL A J
 
Op-Amp Basics Part I
Op-Amp Basics Part IOp-Amp Basics Part I
Op-Amp Basics Part I
Premier Farnell
 
Op amp basics
Op amp basicsOp amp basics
Op amp basics
anju_karsh
 
2 op-amp concepts
2 op-amp concepts2 op-amp concepts
2 op-amp concepts
MaYaNkShArMa846
 
Op-Amp Fundamental
Op-Amp FundamentalOp-Amp Fundamental
Op-Amp FundamentalGaensan
 
Operational Amplifier Part 1
Operational Amplifier Part 1Operational Amplifier Part 1
Operational Amplifier Part 1
Mukesh Tekwani
 
Operational Amplifier (OpAmp)
Operational Amplifier (OpAmp)Operational Amplifier (OpAmp)
Operational Amplifier (OpAmp)
Mohammed Bamatraf
 
Op amp(operational amplifier)
Op amp(operational amplifier)Op amp(operational amplifier)
Op amp(operational amplifier)
Kausik das
 

Viewers also liked (17)

Rec101 unit iii operational amplifier
Rec101 unit iii operational amplifierRec101 unit iii operational amplifier
Rec101 unit iii operational amplifier
 
Amplifier report
Amplifier reportAmplifier report
Amplifier report
 
Group 1 Audio Amplifier Final Presentation
Group 1 Audio Amplifier Final PresentationGroup 1 Audio Amplifier Final Presentation
Group 1 Audio Amplifier Final Presentation
 
DIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFETDIFFERENTIAL AMPLIFIER using MOSFET
DIFFERENTIAL AMPLIFIER using MOSFET
 
Operational amplifier
Operational amplifierOperational amplifier
Operational amplifier
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCE
 
Op amp-electronics
Op amp-electronicsOp amp-electronics
Op amp-electronics
 
OP AMP Applications
OP AMP ApplicationsOP AMP Applications
OP AMP Applications
 
Ajal op amp
Ajal op ampAjal op amp
Ajal op amp
 
Op-Amp Basics Part I
Op-Amp Basics Part IOp-Amp Basics Part I
Op-Amp Basics Part I
 
Op amp basics
Op amp basicsOp amp basics
Op amp basics
 
2 op-amp concepts
2 op-amp concepts2 op-amp concepts
2 op-amp concepts
 
Op-Amp Fundamental
Op-Amp FundamentalOp-Amp Fundamental
Op-Amp Fundamental
 
Operational Amplifier Part 1
Operational Amplifier Part 1Operational Amplifier Part 1
Operational Amplifier Part 1
 
Operational Amplifier (OpAmp)
Operational Amplifier (OpAmp)Operational Amplifier (OpAmp)
Operational Amplifier (OpAmp)
 
Op amp(operational amplifier)
Op amp(operational amplifier)Op amp(operational amplifier)
Op amp(operational amplifier)
 
Slideshare ppt
Slideshare pptSlideshare ppt
Slideshare ppt
 

Similar to Rec101 unit ii (part 2) bjt biasing and re model

Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristics
Dr Naim R Kidwai
 
Analog & Digital Electronics
Analog & Digital ElectronicsAnalog & Digital Electronics
Analog & Digital Electronics
Praveen Vadlamudi
 
Various configurations in BJT
Various configurations in BJTVarious configurations in BJT
Various configurations in BJT
RCC Institute of Information Technology
 
BJT AC Analisi 5
BJT AC Analisi 5 BJT AC Analisi 5
BJT AC Analisi 5
Ahmad Al-Jmal
 
Mba admssion in india
Mba admssion in indiaMba admssion in india
Mba admssion in india
Edhole.com
 
dc biasing
dc biasingdc biasing
dc biasing
Ahmad Al-Jmal
 
13 bjt
13 bjt13 bjt
13 bjt
kashif_1
 
Edc unit 4
Edc unit 4Edc unit 4
Edc unit 4
Mukund Gandrakota
 
Bjts
BjtsBjts
Bjts
Bjts Bjts
99992505.pdf
99992505.pdf99992505.pdf
99992505.pdf
NurHuda254477
 
BJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdfBJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdf
GunaG14
 
Lecture trans bias_1
Lecture trans bias_1Lecture trans bias_1
Lecture trans bias_1Napex Terra
 
Phy 4240 lec (9) and (10)
Phy 4240 lec (9) and (10)Phy 4240 lec (9) and (10)
Phy 4240 lec (9) and (10)
Dr. Abeer Kamal
 
dc biasing of bjt
dc biasing of bjtdc biasing of bjt
dc biasing of bjt
abhinavmj
 
bjt ppt project.ppt
bjt ppt  project.pptbjt ppt  project.ppt
bjt ppt project.ppt
SURYAKANTASWAIN26
 
Lecture 06 transistorremodel
Lecture 06 transistorremodelLecture 06 transistorremodel
Lecture 06 transistorremodel
Ismael Cayo Apaza
 

Similar to Rec101 unit ii (part 2) bjt biasing and re model (20)

Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristics
 
Analog & Digital Electronics
Analog & Digital ElectronicsAnalog & Digital Electronics
Analog & Digital Electronics
 
Lec-7.pdf
Lec-7.pdfLec-7.pdf
Lec-7.pdf
 
Various configurations in BJT
Various configurations in BJTVarious configurations in BJT
Various configurations in BJT
 
BJT AC Analisi 5
BJT AC Analisi 5 BJT AC Analisi 5
BJT AC Analisi 5
 
Edcqnaunit 4
Edcqnaunit 4Edcqnaunit 4
Edcqnaunit 4
 
Mba admssion in india
Mba admssion in indiaMba admssion in india
Mba admssion in india
 
dc biasing
dc biasingdc biasing
dc biasing
 
13 bjt
13 bjt13 bjt
13 bjt
 
Edc unit 4
Edc unit 4Edc unit 4
Edc unit 4
 
Bjts
BjtsBjts
Bjts
 
Bjts
Bjts Bjts
Bjts
 
99992505.pdf
99992505.pdf99992505.pdf
99992505.pdf
 
BJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdfBJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdf
 
Lecture trans bias_1
Lecture trans bias_1Lecture trans bias_1
Lecture trans bias_1
 
Phy 4240 lec (9) and (10)
Phy 4240 lec (9) and (10)Phy 4240 lec (9) and (10)
Phy 4240 lec (9) and (10)
 
dc biasing of bjt
dc biasing of bjtdc biasing of bjt
dc biasing of bjt
 
bjt ppt project.ppt
bjt ppt  project.pptbjt ppt  project.ppt
bjt ppt project.ppt
 
Lecture 06 transistorremodel
Lecture 06 transistorremodelLecture 06 transistorremodel
Lecture 06 transistorremodel
 
Chp1 1 bjt [read only]
Chp1 1 bjt [read only]Chp1 1 bjt [read only]
Chp1 1 bjt [read only]
 

More from Dr Naim R Kidwai

Asynchronous sequential circuit analysis
Asynchronous sequential circuit analysisAsynchronous sequential circuit analysis
Asynchronous sequential circuit analysis
Dr Naim R Kidwai
 
synchronous Sequential circuit counters and registers
synchronous Sequential circuit counters and registerssynchronous Sequential circuit counters and registers
synchronous Sequential circuit counters and registers
Dr Naim R Kidwai
 
Clocked Sequential circuit analysis and design
Clocked Sequential circuit analysis and designClocked Sequential circuit analysis and design
Clocked Sequential circuit analysis and design
Dr Naim R Kidwai
 
Sequential circuit-flip flops
Sequential circuit-flip flopsSequential circuit-flip flops
Sequential circuit-flip flops
Dr Naim R Kidwai
 
Sampling Theorem
Sampling TheoremSampling Theorem
Sampling Theorem
Dr Naim R Kidwai
 
Moodle introduction
Moodle introductionMoodle introduction
Moodle introduction
Dr Naim R Kidwai
 
Project financial feasibility
Project financial feasibilityProject financial feasibility
Project financial feasibility
Dr Naim R Kidwai
 
financing infrastructure projects
financing infrastructure projectsfinancing infrastructure projects
financing infrastructure projects
Dr Naim R Kidwai
 
financing projects
financing projectsfinancing projects
financing projects
Dr Naim R Kidwai
 
multiple projects and constraints
multiple projects and constraintsmultiple projects and constraints
multiple projects and constraints
Dr Naim R Kidwai
 
project risk analysis
project risk analysisproject risk analysis
project risk analysis
Dr Naim R Kidwai
 
Nec 602 unit ii Random Variables and Random process
Nec 602 unit ii Random Variables and Random processNec 602 unit ii Random Variables and Random process
Nec 602 unit ii Random Variables and Random process
Dr Naim R Kidwai
 
spread spectrum communication
spread spectrum communicationspread spectrum communication
spread spectrum communication
Dr Naim R Kidwai
 
Error Control coding
Error Control codingError Control coding
Error Control coding
Dr Naim R Kidwai
 
information theory
information theoryinformation theory
information theory
Dr Naim R Kidwai
 
Rec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistorRec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistor
Dr Naim R Kidwai
 
Rec101 unit v communication engg
Rec101 unit v communication enggRec101 unit v communication engg
Rec101 unit v communication engg
Dr Naim R Kidwai
 
Rec101 unit iv emi
Rec101 unit iv emiRec101 unit iv emi
Rec101 unit iv emi
Dr Naim R Kidwai
 
Rec101 unit 1 (part iii) diode applications
Rec101 unit 1 (part iii) diode applicationsRec101 unit 1 (part iii) diode applications
Rec101 unit 1 (part iii) diode applications
Dr Naim R Kidwai
 
Rec101 unit 1 (part ii) pn junction diode
Rec101 unit 1 (part ii)  pn junction diodeRec101 unit 1 (part ii)  pn junction diode
Rec101 unit 1 (part ii) pn junction diode
Dr Naim R Kidwai
 

More from Dr Naim R Kidwai (20)

Asynchronous sequential circuit analysis
Asynchronous sequential circuit analysisAsynchronous sequential circuit analysis
Asynchronous sequential circuit analysis
 
synchronous Sequential circuit counters and registers
synchronous Sequential circuit counters and registerssynchronous Sequential circuit counters and registers
synchronous Sequential circuit counters and registers
 
Clocked Sequential circuit analysis and design
Clocked Sequential circuit analysis and designClocked Sequential circuit analysis and design
Clocked Sequential circuit analysis and design
 
Sequential circuit-flip flops
Sequential circuit-flip flopsSequential circuit-flip flops
Sequential circuit-flip flops
 
Sampling Theorem
Sampling TheoremSampling Theorem
Sampling Theorem
 
Moodle introduction
Moodle introductionMoodle introduction
Moodle introduction
 
Project financial feasibility
Project financial feasibilityProject financial feasibility
Project financial feasibility
 
financing infrastructure projects
financing infrastructure projectsfinancing infrastructure projects
financing infrastructure projects
 
financing projects
financing projectsfinancing projects
financing projects
 
multiple projects and constraints
multiple projects and constraintsmultiple projects and constraints
multiple projects and constraints
 
project risk analysis
project risk analysisproject risk analysis
project risk analysis
 
Nec 602 unit ii Random Variables and Random process
Nec 602 unit ii Random Variables and Random processNec 602 unit ii Random Variables and Random process
Nec 602 unit ii Random Variables and Random process
 
spread spectrum communication
spread spectrum communicationspread spectrum communication
spread spectrum communication
 
Error Control coding
Error Control codingError Control coding
Error Control coding
 
information theory
information theoryinformation theory
information theory
 
Rec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistorRec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistor
 
Rec101 unit v communication engg
Rec101 unit v communication enggRec101 unit v communication engg
Rec101 unit v communication engg
 
Rec101 unit iv emi
Rec101 unit iv emiRec101 unit iv emi
Rec101 unit iv emi
 
Rec101 unit 1 (part iii) diode applications
Rec101 unit 1 (part iii) diode applicationsRec101 unit 1 (part iii) diode applications
Rec101 unit 1 (part iii) diode applications
 
Rec101 unit 1 (part ii) pn junction diode
Rec101 unit 1 (part ii)  pn junction diodeRec101 unit 1 (part ii)  pn junction diode
Rec101 unit 1 (part ii) pn junction diode
 

Recently uploaded

ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 

Recently uploaded (20)

ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 

Rec101 unit ii (part 2) bjt biasing and re model

  • 1. BJT Biasing & re model Unit II : Bipolar Junction Transistor: Transistor Construction, Operation, Amplification action. Common Base, Common Emitter, Common Collector Configuration DC Biasing BJTs: Operating Point, Fixed-Bias, Emitter Bias, Voltage-Divider Bias Configuration. Collector Feedback, Emitter-Follower Configuration. Bias Stabilization. CE, CB, CC amplifiers and AC analysis of single stage CE amplifier (re Model ). Field Effect Transistor: Construction and Characteristic of JFETs. AC analysis of CS amplifier, MOSFET (Depletion and Enhancement)Type, Transfer Characteristic 11/10/2017 1 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad
  • 2. BJT: DC Biasing BJTs: Operating Point 11/10/2017 2 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad Transistor operates in three regions. Junctions biasing in different regions of operation as below • Active (Linear)-region : ▪ BE junction forward-biased ▪ CB junction reverse-biased • Cutoff-region : Both BE & CB junction reverse-biased • Saturation-region : Both BE & CB junction forward-biased Biasing: dc biasing establish a fixed level of output current and voltage that sets a operating or quiescent point (Q-point) on the characteristics. Quiescent means quiet, still or inactive. If not properly biased a transistor amplifier may go into cutoff / saturation when ac input is applied
  • 3. BJT: DC Biasing BJTs: Operating Point 11/10/2017 3 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad Point B: allows variation of output, but limited by VCE=0 V & IC=0 mA Point C: allows output variation in response to, +ve/-ve swing of input Point D: D is near maximum power level. Output swing in the +ve direction is limited Point E & F: device in cut-off region & saturation region respectively VCE(V) IB =0 A 10 A 20 A 40 A 50 A IC (mA) 60 A Saturationregion VCE Saturation 0 5 10 15 20 6 5 4 3 2 1 30 A Cutoff region VCE max Pmax A B C D E F Operating point is fixed point on output characteristics (by VCE & IC) Point A: the device is fully off ie. VCE=0 V & IC=0 mA (no bias) Point C is suitable Q point for amplification
  • 4. BJT: DC Biasing BJTs: Operating Point •increase in ac power (amplification) occurs due to transfer of energy from dc supplies. •So analysis/design of a transistor amplifier requires knowing both the dc and the ac response of the system. •To find Q point, output voltage & output current due to dc biasing has to be known. (for CE configuration, IC , VCE and IB ) •To do dc bias analysis first remove ac input/output and open circuit blocking/ bypass capacitor. •Each configuration is analysed by recurring use of following equations 11/10/2017 4 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad BC CBE BE II III V      and )1( 7.0
  • 5. BJT: Fixed-Bias 11/10/2017 5 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad Fixed bias DC equivalent of Fixed bias   B BECC C R VV I    E C B VCC IC Q VBE RCRB + - IB Input ac signal Output ac signal C1 C2 VCE E C B VCC IC Q VBE RCRB + - IB VCC VCE VVII BEBC 7.0and   CCCCCE RIVV  • VCC bias collector and base through RC and RB respectively while emitter is grounded. • Fixed bias is common in switching circuits. • Disadvantage is its  dependency ( varies with temperature) B BECC B R VV I  
  • 6. BJT: Emitter Bias 11/10/2017 6 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad • Emitter bias provides improved bias stability with respect to  ( or temperature). • It uses a emitter resistance RE. which acts as a feedback B EBBECC B EBEEE B EBECC B R RIVV I RIRIV R VVV I )1( so )1(as,        ,as 7.0and CE EECCCCECCCCCE BEBC II RIRIVVRIVV VVII       EB BECC C )R(βR VVβ I 1    ECCCCCE RRIVV  E C B VCC IC Q VBE RCRB + - IB Input ac signal Output ac signal C1 C2 VCE IE RE Emitter bias   EB BECC B )R(βR VV I 1  
  • 7. BJT: Voltage-Divider Bias Configuration 11/10/2017 7 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad   getwesolvingandVngsubstituti 1again where, B 21 21 121 21 EBBEEEBEB BCCBBCC B RIVRIVV RR RR R R V R V R V R VV III          ECCCCCE RRIVV    E BECC B RR V R R V I 1 1      CEEECCCCCE BEBC IIRIRIVV VVII   as,again 7.0and Voltage divider bias E C B VCC IC Q VBE RCR1 + - IBInput ac signal Output ac signal C1 C2 VCE IE RE R2 I1 I2 • Voltage divider bias provides excellent bias stability with respect to  or temperature changes • Base bias is provided using a voltage divider circuit while feedback resistance RE is used   E BECC C RR V R R V I 1 1             
  • 8. BJT: Collector Feedback 11/10/2017 8 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad Collector feedback bias E C B VCC IC Q VBE RC RF + - IBInput ac signal Output ac signal C1 C2 VCE IE RE   VVII R RRI R VV I R RIVRIV I BEBC F ECC F BECC B F EEBECECC B 7.0and          ECCCCCE RRIVV     ECF BECC C RRR VV I      CEEECCCCCE IIRIRIVV  as,again • Maintain relative bias stability with respect to  or temperature changes • base resistor RB is connected to the collector rather than to VCC  ECF BECC B RRR VV I    
  • 9. BJT: Emitter-Follower Configuration 11/10/2017 9 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad E C B -VEE Q VBE RB + - IBInput ac signal Output ac signal C1 C2 VCE IE RE   B EBBEEE B B EEBEEE B R RIVV I R RIVV I 1     EEEECE RIVV    EB BEEE B RR VV I 1    • Collector is grounded, base is connected to collector through RB and emitter is baised • Biasing stability similar to emitter bias      EB BEEE E RR VV I 1 1     
  • 10. BJT: Common base Configuration bias 11/10/2017 10 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad E BEEE E R VV I   CCCCCB RIVV    CE EEEECCCCECCE II VRIRIVVVV   as RE E C B VEE VCC IE IC IB Q VBE VCB Output ac signal C2 Input ac signal C1 RC VCE  ECCEECCCE RRIVVV    E BEEE C R VV I   
  • 11. BJT: Biasing Example 11/10/2017 11 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad For the circuit in figure, Find out ICQ and VCEQ E C B 20 V I C =90 20 K IBac i/p ac o/p 10 F 5 K 2 K 1 K 10 F 20 F E C B VCC =20 V IC =90 20 K IB 5 K 2 K 1 K      K x RR RR R 4 520 520 21 21    Vx RRIVV ECCCCCEQ 61.10313.320   mAII BCQ 13.3      mAmAA xx x RR V R R xV I E BECC E 0347.0 95 3.3 101914 7.0 20 4 20 1 3 1         
  • 12. BJT: biasing summary 11/10/2017 12 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad B BECC B R VV I   CCCCCE RIVV  EB BECC B )R(βR VV I 1    ECCCCCE RRIVV   ECCCCCE RRIVV    E BECC B RR V R R V I 1 1     
  • 13. BJT: biasing summary 11/10/2017 13 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad  ECF BECC B RRR VV I      ECCCCCE RRIVV    EB BEEE B RR VV I 1    EEEECE RIVV  E BEEE E R VV I   CCCCCB RIVV   ECCEECCCE RRIVVV 
  • 14. BJT: Bias Stabilization. Bias stability is a measure of the sensitivity of network to parameter variations. In BJT amplifier circuits, collector current IC is sensitive to each of the following parameters: • : increases with increase in temperature • VBE: decreases about 2.5 mV /°C with increase in temperature • ICO : doubles in value for every 10°C increase in temperature Any or all factors can cause the designed Q-point to drift Stability factor S is defined for each parameter affecting bias stability 11/10/2017 14 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad CO C CO I I IS   )( BE C BE V I VS   )(      CI S )(   )()()(currentcollectorinchangeTotal SVVSIISI BEBECOCOC
  • 15. BJT: bias stability summary 11/10/2017 15 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad Fixed bias Emitter bias Voltage divider bias Collector feedback bias )( COIS E B E B CO R R R R IS            1 )( E E CO R R R R IS              1 )( C F C F CO R R R R IS            1 )( 1 1 )(   CI S                 E B E B C R R R R I S 21 1 1 )(                  E E C R R R R I S   21 1 1 )(      CF CFC RR RRI S 21 1 )(               C F C BE R R R VS   )(          E E BE R R R VS    )( B BE R VS  )(          E B E BE R R R VS   )( The ratio RB/RE or R /RE or RF /RC should be small for better bias stability
  • 16. BJT: Transistor modelling The key to small-signal analysis is use of equivalent circuits (models) A model is a equivalent circuit, that best approximates ac behaviour of the transistor There are two models commonly used in small signal AC analysis of a transistor: re model Hybrid equivalent model 11/10/2017 16 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad SystemZi ZO Ii IO+ Vi - + VO - To make ac equivalent model • replace dc supplies by zero (short circuit) • Replace Coupling and bypass capacitor by short circuit • Remove elements bypassed by short circuit • define the parameters Zi, ZO, Ii, and IO
  • 17. BJT: re Model for CE 11/10/2017 17 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad E IE IC IB  VBE C B E IE IC IB IB + VBE - C B + VCE - CE configuration CE Equivalent circuit                    B C i O i e L eB LB ii LC i O V O CQA CQ A C CE OO E BE e e E BE B BE i BCOBi I I I I A r R rI RI ZI RI V V A r IV I V I V rZ I V r r I V I V Z IIIII gainCurrent gainVoltage regionactiveincurveoutputofslopeis/1 currentcollectorpointQage,Early volt diode)ofresistance(forwardas 1 and, Ii=IB IO=IC+ Vi - + VO - B E C E re rO re model for CE configuration including rO IB RL
  • 18. BJT: re Model for CB 11/10/2017 18 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad re model for CB configuration B IE ICIE IE - VBE + CE + VCB - CB configuration CB Equivalent circuit 1gainCurrent gainVoltage highor very regionactiveincurveoutputofslopeis/1 and,                    E C i O i e L eE LC i O V O O C CB OO e E BE i ECOEi I I I I A r R rI RI V V A r r I V rZ r I V Z IIIII EIE IC  VBE C B Ii=-IE IO=IC + Vi - + VO - E B C B re rOIE RL
  • 19. BJT: re Model for CC 11/10/2017 19 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad                               B E i O i eL L eLB LE i O V O CQ A C CE E E OO E BE e eL E BEE B BEE B B i BEOBi I I I I A rR R rRI RI V V A r I V I V I V rZ I V r rR I VV I VV I V Z IIIII gainCurrent gainVoltage regionactiveincurveoutputofslopeis/1 diode)ofresistance(forwardas and, CC configuration C E B IC IE IB  VBE CC configuration E C B IC IEIB  VBE RL Ii=IB IO=-IE+ Vi - + VO - B C E (RL+re) rO re model for CC configuration including rO IB RL RL
  • 20. BJT: ac modelling Example 11/10/2017 20 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad For the circuit in figure, Find out re , Zi , ZO , AV , Ai E C B 20 V IC =90 20 K IBac i/p ac o/p 10 F 5 K 2 K 1 K 10 F 20 F E C B IC =90 20 K IBac i/p ac o/p 5 K 2 K re model for voltage divider CE configuration including rO IB IO=IC + Vi - + VO - B E C re rO IB RCR2R1 Ii
  • 21. BJT: ac modelling Example 11/10/2017 21 REC 101 Unit II by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad re computation                     23.8 16.3 26 16.3 95 3.300 101914 7.0 20 4 20 91 1 1 4 520 520 3 1 21 21 e E T e E BECC E r mA mV I V r mAmA A xx x x RR V R R xV I K x RR RR R      Zi computation    624 7.7404000 7.7404000x rR I V Z e i i i  ZO computation (assume ro=) 2  KrR I V Z OC O O O AV computation 243 23.8 2000    e C eB CC i O V r R rI RI V V A  Ai computation 82.75 2000 624 243    x Z Z A Z V Z V I I A O i V i i O O i O i