SlideShare a Scribd company logo
Kristin Ackerson, Virginia Tech EE
Spring 2002
B
C
E
The Bipolar Junction Transistor_______________________________slide 3
BJT Relationships – Equations________________________________slide 4
DC  and DC  _____________________________________________slides 5
BJT Example_______________________________________________slide 6
BJT Transconductance Curve_________________________________slide 7
Modes of Operation_________________________________________slide 8
Three Types of BJT Biasing__________________________________slide 9
Common Base______________________slide 10-11
Common Emitter_____________________slide 12
Common Collector___________________slide 13
Eber-Moll Model__________________________________________slides 14-15
Small Signal BJT Equivalent Circuit__________________________slides 16
The Early Effect___________________________________________slide 17
Early Effect Example_______________________________________slide 18
Breakdown Voltage________________________________________slide 19
Sources__________________________________________________slide 20
Table of Contents
Kristin Ackerson, Virginia Tech EE
Spring 2002
The BJT – Bipolar Junction Transistor
Kristin Ackerson, Virginia Tech EE
Spring 2002
 Note: It will be very helpful to go through the Analog Electronics
Diodes Tutorial to get information on doping, n-type and p-type materials.
The Two Types of BJT Transistors:
npn pnp
n p nE
B
C p n pE
B
C
Cross Section Cross Section
B
C
E
Schematic
Symbol
B
C
E
Schematic
Symbol
• Collector doping is usually ~ 106
• Base doping is slightly higher ~ 107 – 108
• Emitter doping is much higher ~ 1015
BJT Relationships - Equations
Kristin Ackerson, Virginia Tech EE
Spring 2002
B
CE
IE IC
IB
-
+
VBE VBC
+
-
+- VCE
B
CE
IE IC
IB
-
+
VEB VCB
+
-
+ -VEC
npn
IE = IB + IC
VCE = -VBC + VBE
pnp
IE = IB + IC
VEC = VEB - VCB
Note: The equations seen above are for the
transistor, not the circuit.
DC  and DC 
Kristin Ackerson, Virginia Tech EE
Spring 2002
 = Common-emitter current gain
 = Common-base current gain
 = IC  = IC
IB IE
The relationships between the two parameters are:
 =   = 
 + 1 1 - 
Note:  and  are sometimes referred to as dc and dc
because the relationships being dealt with in the BJT
are DC.
BJT Example
Kristin Ackerson, Virginia Tech EE
Spring 2002
Using Common-Base NPN Circuit Configuration
+
_
+
_
Given: IB = 50  A , IC = 1 mA
Find: IE ,  , and 
Solution:
IE = IB + IC = 0.05 mA + 1 mA = 1.05 mA
 = IC / IB = 1 mA / 0.05 mA = 20
 = IC / IE = 1 mA / 1.05 mA = 0.95238
 could also be calculated using the value of
 with the formula from the previous slide.
 =  = 20 = 0.95238
 + 1 21
IC
IE
IB
VCB
VBE
E
C
B
BJT Transconductance Curve
Kristin Ackerson, Virginia Tech EE
Spring 2002
Typical NPN Transistor 1
VBE
IC
2 mA
4 mA
6 mA
8 mA
0.7 V
Collector Current:
IC =  IES eVBE/VT
Transconductance:
(slope of the curve)
gm =  IC /  VBE
IES = The reverse saturation current
of the B-E Junction.
VT = kT/q = 26 mV (@ T=300K)
 = the emission coefficient and is
usually ~1
Modes of Operation
Kristin Ackerson, Virginia Tech EE
Spring 2002
• Most important mode of operation
• Central to amplifier operation
• The region where current curves are practically flat
Active:
Saturation: • Barrier potential of the junctions cancel each other out
causing a virtual short
Cutoff: • Current reduced to zero
• Ideal transistor behaves like an open switch
* Note: There is also a mode of operation
called inverse active, but it is rarely used.
Three Types of BJT Biasing
Kristin Ackerson, Virginia Tech EE
Spring 2002
Biasing the transistor refers to applying voltage to get the
transistor to achieve certain operating conditions.
Common-Base Biasing (CB) : input = VEB & IE
output = VCB & IC
Common-Emitter Biasing (CE): input = VBE & IB
output = VCE & IC
Common-Collector Biasing (CC): input = VBC & IB
output = VEC & IE
Common-Base
Kristin Ackerson, Virginia Tech EE
Spring 2002
Although the Common-Base configuration is not the most
common biasing type, it is often helpful in the understanding of
how the BJT works.
Emitter-Current Curves
SaturationRegion
IE
IC
VCB
Active
Region
Cutoff
IE = 0
Common-Base
Kristin Ackerson, Virginia Tech EE
Spring 2002
Circuit Diagram: NPN Transistor
+
_
+
_
IC IE
IB
VCB VBE
EC
B
VCE
VBEVCB
Region of
Operation
IC VCE VBE VCB
C-B
Bias
E-B
Bias
Active IB =VBE+VCE ~0.7V  0V Rev. Fwd.
Saturation Max ~0V ~0.7V -0.7V<VCE<0 Fwd. Fwd.
Cutoff ~0 =VBE+VCE  0V  0V Rev.
None
/Rev.
The Table Below lists assumptions
that can be made for the attributes
of the common-base biased circuit
in the different regions of
operation. Given for a Silicon NPN
transistor.
Common-Emitter
Kristin Ackerson, Virginia Tech EE
Spring 2002
Circuit Diagram
+
_VC
C
IC
VCE
IB
Collector-Current Curves
VCE
IC
Active
Region
IB
Saturation Region
Cutoff Region
IB = 0
Region of
Operation
Description
Active Small base current
controls a large
collector current
Saturation VCE(sat) ~ 0.2V, VCE
increases with IC
Cutoff Achieved by reducing
IB to 0, Ideally, IC will
also equal 0.
Common-Collector
Kristin Ackerson, Virginia Tech EE
Spring 2002
Emitter-Current Curves
VCE
IE
Active
Region
IB
Saturation Region
Cutoff Region
IB = 0
The Common-
Collector biasing
circuit is basically
equivalent to the
common-emitter
biased circuit except
instead of looking at
IC as a function of VCE
and IB we are looking
at IE.
Also, since  ~ 1, and
 = IC/IE that means
IC~IE
Eber-Moll BJT Model
Kristin Ackerson, Virginia Tech EE
Spring 2002
The Eber-Moll Model for BJTs is fairly complex, but it is
valid in all regions of BJT operation. The circuit diagram
below shows all the components of the Eber-Moll Model:
E C
B
IR
IF
IE IC
IB
RIERIC
Kristin Ackerson, Virginia Tech EE
Spring 2002
Eber-Moll BJT Model
R = Common-base current gain (in forward active mode)
F = Common-base current gain (in inverse active mode)
IES = Reverse-Saturation Current of B-E Junction
ICS = Reverse-Saturation Current of B-C Junction
IC = FIF – IR IB = IE - IC
IE = IF - RIR
IF = IES [exp(qVBE/kT) – 1] IR = IC [exp(qVBC/kT) – 1]
 If IES & ICS are not given, they can be determined using various
BJT parameters.
Kristin Ackerson, Virginia Tech EE
Spring 2002
Small Signal BJT Equivalent Circuit
The small-signal model can be used when the BJT is in the active region.
The small-signal active-region model for a CB circuit is shown below:
iBr
iE
iC
iB
B C
E
r = ( + 1) * VT
IE
@  = 1 and T = 25C
r = ( + 1) * 0.026
IE
Recall:
 = IC / IB
The Early Effect (Early Voltage)
Kristin Ackerson, Virginia Tech EE
Spring 2002
VCE
IC
Note: Common-Emitter
Configuration
-VA
IB
Green = Ideal IC
Orange = Actual IC (IC’)
IC’ = IC VCE + 1
VA
Kristin Ackerson, Virginia Tech EE
Spring 2002
Early Effect Example
Given: The common-emitter circuit below with IB = 25A,
VCC = 15V,  = 100 and VA = 80.
Find: a) The ideal collector current
b) The actual collector current
Circuit Diagram
+
_VCC
IC
VCE
IB
 = 100 = IC/IB
a)
IC = 100 * IB = 100 * (25x10-6 A)
IC = 2.5 mA
b) IC’ = IC VCE + 1 = 2.5x10-3 15 + 1 = 2.96 mA
VA 80
IC’ = 2.96 mA
Breakdown Voltage
Kristin Ackerson, Virginia Tech EE
Spring 2002
The maximum voltage that the BJT can withstand.
BVCEO = The breakdown voltage for a common-emitter
biased circuit. This breakdown voltage usually
ranges from ~20-1000 Volts.
BVCBO = The breakdown voltage for a common-base biased
circuit. This breakdown voltage is usually much
higher than BVCEO and has a minimum value of ~60
Volts.
Breakdown Voltage is Determined By:
• The Base Width
• Material Being Used
• Doping Levels
• Biasing Voltage
Sources
Dailey, Denton. Electronic Devices and Circuits, Discrete and Integrated. Prentice Hall, New
Jersey: 2001. (pp 84-153)
1 Figure 3.7, Transconductance curve for a typical npn transistor, pg 90.
Liou, J.J. and Yuan, J.S. Semiconductor Device Physics and Simulation. Plenum Press,
New York: 1998.
Neamen, Donald. Semiconductor Physics & Devices. Basic Principles. McGraw-Hill,
Boston: 1997. (pp 351-409)
Web Sites
http://www.infoplease.com/ce6/sci/A0861609.html
Kristin Ackerson, Virginia Tech EE
Spring 2002

More Related Content

What's hot

36.voltage divider bias
36.voltage divider bias36.voltage divider bias
36.voltage divider bias
DoCircuits
 
Hybrid Parameter in BJT
Hybrid Parameter in BJTHybrid Parameter in BJT
Physica curckts
Physica curcktsPhysica curckts
Physica curckts
12B-129-El
 
Amplifiers (analog electronics ii lab)
Amplifiers (analog electronics ii lab)Amplifiers (analog electronics ii lab)
Amplifiers (analog electronics ii lab)
Mashood
 
My mind.dot
My mind.dotMy mind.dot
My mind.dot
Nur Amaliah
 
Performance Comparison of Multi Input Capacitor Converter Circuits
Performance Comparison of Multi Input Capacitor Converter CircuitsPerformance Comparison of Multi Input Capacitor Converter Circuits
Performance Comparison of Multi Input Capacitor Converter Circuits
IJECEIAES
 
Regions of operation of bjt and mosfet
Regions of operation of bjt and mosfetRegions of operation of bjt and mosfet
Regions of operation of bjt and mosfet
MahoneyKadir
 
High Electron Mobility Transistor
High Electron Mobility TransistorHigh Electron Mobility Transistor
High Electron Mobility Transistor
RCC Institute of Information Technology
 
Solution of problems of chapter 2 for simple resistiv circuits
Solution of problems of chapter 2  for simple resistiv circuitsSolution of problems of chapter 2  for simple resistiv circuits
Solution of problems of chapter 2 for simple resistiv circuits
Môstafâ Araby
 
DoS of bulk and quantum structures
DoS of bulk and quantum structuresDoS of bulk and quantum structures
DoS of bulk and quantum structures
RCC Institute of Information Technology
 
Capacitance and dielectrics
Capacitance and dielectrics Capacitance and dielectrics
Capacitance and dielectrics
Anaya Zafar
 
Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253
Fairul Izwan Muzamuddin
 
Hybrid model for Transistor, small signal Analysis
Hybrid model for Transistor, small signal AnalysisHybrid model for Transistor, small signal Analysis
Hybrid model for Transistor, small signal Analysis
Abhishek Choksi
 
Operationamplifier
OperationamplifierOperationamplifier
Operationamplifier
Ahmad Al-Jmal
 
Short-Channel Effects in MOSFET
Short-Channel Effects in MOSFETShort-Channel Effects in MOSFET
Short-Channel Effects in MOSFET
RCC Institute of Information Technology
 
Phy 4240 lec (9) and (10)
Phy 4240 lec (9) and (10)Phy 4240 lec (9) and (10)
Phy 4240 lec (9) and (10)
Dr. Abeer Kamal
 
Ce cb cc
Ce cb ccCe cb cc
Ce cb cc
DhanrajBobade
 
Bab5
Bab5Bab5
Large signal vs small signal
Large signal vs small signalLarge signal vs small signal
Large signal vs small signal
Mujtaba Ahmed
 

What's hot (19)

36.voltage divider bias
36.voltage divider bias36.voltage divider bias
36.voltage divider bias
 
Hybrid Parameter in BJT
Hybrid Parameter in BJTHybrid Parameter in BJT
Hybrid Parameter in BJT
 
Physica curckts
Physica curcktsPhysica curckts
Physica curckts
 
Amplifiers (analog electronics ii lab)
Amplifiers (analog electronics ii lab)Amplifiers (analog electronics ii lab)
Amplifiers (analog electronics ii lab)
 
My mind.dot
My mind.dotMy mind.dot
My mind.dot
 
Performance Comparison of Multi Input Capacitor Converter Circuits
Performance Comparison of Multi Input Capacitor Converter CircuitsPerformance Comparison of Multi Input Capacitor Converter Circuits
Performance Comparison of Multi Input Capacitor Converter Circuits
 
Regions of operation of bjt and mosfet
Regions of operation of bjt and mosfetRegions of operation of bjt and mosfet
Regions of operation of bjt and mosfet
 
High Electron Mobility Transistor
High Electron Mobility TransistorHigh Electron Mobility Transistor
High Electron Mobility Transistor
 
Solution of problems of chapter 2 for simple resistiv circuits
Solution of problems of chapter 2  for simple resistiv circuitsSolution of problems of chapter 2  for simple resistiv circuits
Solution of problems of chapter 2 for simple resistiv circuits
 
DoS of bulk and quantum structures
DoS of bulk and quantum structuresDoS of bulk and quantum structures
DoS of bulk and quantum structures
 
Capacitance and dielectrics
Capacitance and dielectrics Capacitance and dielectrics
Capacitance and dielectrics
 
Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253
 
Hybrid model for Transistor, small signal Analysis
Hybrid model for Transistor, small signal AnalysisHybrid model for Transistor, small signal Analysis
Hybrid model for Transistor, small signal Analysis
 
Operationamplifier
OperationamplifierOperationamplifier
Operationamplifier
 
Short-Channel Effects in MOSFET
Short-Channel Effects in MOSFETShort-Channel Effects in MOSFET
Short-Channel Effects in MOSFET
 
Phy 4240 lec (9) and (10)
Phy 4240 lec (9) and (10)Phy 4240 lec (9) and (10)
Phy 4240 lec (9) and (10)
 
Ce cb cc
Ce cb ccCe cb cc
Ce cb cc
 
Bab5
Bab5Bab5
Bab5
 
Large signal vs small signal
Large signal vs small signalLarge signal vs small signal
Large signal vs small signal
 

Similar to Bjts

BJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdfBJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdf
GunaG14
 
My_lec_Bipolar_Junction_Transistor_text_book.pdf
My_lec_Bipolar_Junction_Transistor_text_book.pdfMy_lec_Bipolar_Junction_Transistor_text_book.pdf
My_lec_Bipolar_Junction_Transistor_text_book.pdf
Elorme
 
Bjts
BjtsBjts
Trnasistor chapter 5th 2013_09_13_15_57_13
Trnasistor chapter 5th  2013_09_13_15_57_13Trnasistor chapter 5th  2013_09_13_15_57_13
Trnasistor chapter 5th 2013_09_13_15_57_13
Hardik Faldu
 
dc biasing
dc biasingdc biasing
dc biasing
Ahmad Al-Jmal
 
Chp1 1 bjt [read only]
Chp1 1 bjt [read only]Chp1 1 bjt [read only]
Chp1 1 bjt [read only]
Muhamad Zolkepli
 
Chapter2BipolarJunctionTransistor (1).pdf
Chapter2BipolarJunctionTransistor (1).pdfChapter2BipolarJunctionTransistor (1).pdf
Chapter2BipolarJunctionTransistor (1).pdf
Abebaw44
 
BJT Biasing for B.Tech Ist Year Engineering
BJT Biasing for B.Tech Ist Year EngineeringBJT Biasing for B.Tech Ist Year Engineering
BJT Biasing for B.Tech Ist Year Engineering
Raghav Bansal
 
module2.pdf
module2.pdfmodule2.pdf
module2.pdf
AnjanSengupta6
 
Ce configuration
Ce configurationCe configuration
Ce configuration
HarshitParkar6677
 
Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristics
Dr Naim R Kidwai
 
99992505.pdf
99992505.pdf99992505.pdf
99992505.pdf
NurHuda254477
 
dc biasing of bjt
dc biasing of bjtdc biasing of bjt
dc biasing of bjt
abhinavmj
 
Electronics and modern physics presentation
Electronics and modern physics presentationElectronics and modern physics presentation
Electronics and modern physics presentation
NoorulainRazzaq
 
Lecture trans bias_1
Lecture trans bias_1Lecture trans bias_1
Lecture trans bias_1
Napex Terra
 
Analog & Digital Electronics
Analog & Digital ElectronicsAnalog & Digital Electronics
Analog & Digital Electronics
Praveen Vadlamudi
 
Lecture 8M.pptx
Lecture 8M.pptxLecture 8M.pptx
Lecture 8M.pptx
AzeenShahid
 
Chapter 6: Bipolar Junction Transistors (BJTs)
Chapter 6: Bipolar Junction Transistors (BJTs)Chapter 6: Bipolar Junction Transistors (BJTs)
Chapter 6: Bipolar Junction Transistors (BJTs)
JeremyLauKarHei
 
DC Biasing – Bipolar Junction Transistors (BJTs)
DC Biasing – Bipolar Junction Transistors  (BJTs)DC Biasing – Bipolar Junction Transistors  (BJTs)
DC Biasing – Bipolar Junction Transistors (BJTs)
ssuserb29892
 
Characteristics of Bipolar Junction Transistor
Characteristics of Bipolar Junction TransistorCharacteristics of Bipolar Junction Transistor
Characteristics of Bipolar Junction Transistor
arhantenterprises2
 

Similar to Bjts (20)

BJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdfBJT BIASING-SOWMIYA.pdf
BJT BIASING-SOWMIYA.pdf
 
My_lec_Bipolar_Junction_Transistor_text_book.pdf
My_lec_Bipolar_Junction_Transistor_text_book.pdfMy_lec_Bipolar_Junction_Transistor_text_book.pdf
My_lec_Bipolar_Junction_Transistor_text_book.pdf
 
Bjts
BjtsBjts
Bjts
 
Trnasistor chapter 5th 2013_09_13_15_57_13
Trnasistor chapter 5th  2013_09_13_15_57_13Trnasistor chapter 5th  2013_09_13_15_57_13
Trnasistor chapter 5th 2013_09_13_15_57_13
 
dc biasing
dc biasingdc biasing
dc biasing
 
Chp1 1 bjt [read only]
Chp1 1 bjt [read only]Chp1 1 bjt [read only]
Chp1 1 bjt [read only]
 
Chapter2BipolarJunctionTransistor (1).pdf
Chapter2BipolarJunctionTransistor (1).pdfChapter2BipolarJunctionTransistor (1).pdf
Chapter2BipolarJunctionTransistor (1).pdf
 
BJT Biasing for B.Tech Ist Year Engineering
BJT Biasing for B.Tech Ist Year EngineeringBJT Biasing for B.Tech Ist Year Engineering
BJT Biasing for B.Tech Ist Year Engineering
 
module2.pdf
module2.pdfmodule2.pdf
module2.pdf
 
Ce configuration
Ce configurationCe configuration
Ce configuration
 
Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristics
 
99992505.pdf
99992505.pdf99992505.pdf
99992505.pdf
 
dc biasing of bjt
dc biasing of bjtdc biasing of bjt
dc biasing of bjt
 
Electronics and modern physics presentation
Electronics and modern physics presentationElectronics and modern physics presentation
Electronics and modern physics presentation
 
Lecture trans bias_1
Lecture trans bias_1Lecture trans bias_1
Lecture trans bias_1
 
Analog & Digital Electronics
Analog & Digital ElectronicsAnalog & Digital Electronics
Analog & Digital Electronics
 
Lecture 8M.pptx
Lecture 8M.pptxLecture 8M.pptx
Lecture 8M.pptx
 
Chapter 6: Bipolar Junction Transistors (BJTs)
Chapter 6: Bipolar Junction Transistors (BJTs)Chapter 6: Bipolar Junction Transistors (BJTs)
Chapter 6: Bipolar Junction Transistors (BJTs)
 
DC Biasing – Bipolar Junction Transistors (BJTs)
DC Biasing – Bipolar Junction Transistors  (BJTs)DC Biasing – Bipolar Junction Transistors  (BJTs)
DC Biasing – Bipolar Junction Transistors (BJTs)
 
Characteristics of Bipolar Junction Transistor
Characteristics of Bipolar Junction TransistorCharacteristics of Bipolar Junction Transistor
Characteristics of Bipolar Junction Transistor
 

More from HarshitParkar6677

Wi fi hacking
Wi fi hackingWi fi hacking
Wi fi hacking
HarshitParkar6677
 
D dos attack
D dos attackD dos attack
D dos attack
HarshitParkar6677
 
Notes chapter 6
Notes chapter  6Notes chapter  6
Notes chapter 6
HarshitParkar6677
 
Interface notes
Interface notesInterface notes
Interface notes
HarshitParkar6677
 
Chapter6 2
Chapter6 2Chapter6 2
Chapter6 2
HarshitParkar6677
 
Chapter6
Chapter6Chapter6
8086 cpu 1
8086 cpu 18086 cpu 1
8086 cpu 1
HarshitParkar6677
 
Chapter 6 notes
Chapter 6 notesChapter 6 notes
Chapter 6 notes
HarshitParkar6677
 
Chapter 5 notes
Chapter 5 notesChapter 5 notes
Chapter 5 notes
HarshitParkar6677
 
Chap6 procedures &amp; macros
Chap6 procedures &amp; macrosChap6 procedures &amp; macros
Chap6 procedures &amp; macros
HarshitParkar6677
 
Chapter 5 notes new
Chapter 5 notes newChapter 5 notes new
Chapter 5 notes new
HarshitParkar6677
 
Notes arithmetic instructions
Notes arithmetic instructionsNotes arithmetic instructions
Notes arithmetic instructions
HarshitParkar6677
 
Notes all instructions
Notes all instructionsNotes all instructions
Notes all instructions
HarshitParkar6677
 
Notes aaa aa
Notes aaa aaNotes aaa aa
Notes aaa aa
HarshitParkar6677
 
Notes 8086 instruction format
Notes 8086 instruction formatNotes 8086 instruction format
Notes 8086 instruction format
HarshitParkar6677
 
Misc
MiscMisc
Copy of 8086inst logical
Copy of 8086inst logicalCopy of 8086inst logical
Copy of 8086inst logical
HarshitParkar6677
 
Copy of 8086inst logical
Copy of 8086inst logicalCopy of 8086inst logical
Copy of 8086inst logical
HarshitParkar6677
 
Chapter3 program flow control instructions
Chapter3 program flow control instructionsChapter3 program flow control instructions
Chapter3 program flow control instructions
HarshitParkar6677
 
Chapter3 8086inst stringsl
Chapter3 8086inst stringslChapter3 8086inst stringsl
Chapter3 8086inst stringsl
HarshitParkar6677
 

More from HarshitParkar6677 (20)

Wi fi hacking
Wi fi hackingWi fi hacking
Wi fi hacking
 
D dos attack
D dos attackD dos attack
D dos attack
 
Notes chapter 6
Notes chapter  6Notes chapter  6
Notes chapter 6
 
Interface notes
Interface notesInterface notes
Interface notes
 
Chapter6 2
Chapter6 2Chapter6 2
Chapter6 2
 
Chapter6
Chapter6Chapter6
Chapter6
 
8086 cpu 1
8086 cpu 18086 cpu 1
8086 cpu 1
 
Chapter 6 notes
Chapter 6 notesChapter 6 notes
Chapter 6 notes
 
Chapter 5 notes
Chapter 5 notesChapter 5 notes
Chapter 5 notes
 
Chap6 procedures &amp; macros
Chap6 procedures &amp; macrosChap6 procedures &amp; macros
Chap6 procedures &amp; macros
 
Chapter 5 notes new
Chapter 5 notes newChapter 5 notes new
Chapter 5 notes new
 
Notes arithmetic instructions
Notes arithmetic instructionsNotes arithmetic instructions
Notes arithmetic instructions
 
Notes all instructions
Notes all instructionsNotes all instructions
Notes all instructions
 
Notes aaa aa
Notes aaa aaNotes aaa aa
Notes aaa aa
 
Notes 8086 instruction format
Notes 8086 instruction formatNotes 8086 instruction format
Notes 8086 instruction format
 
Misc
MiscMisc
Misc
 
Copy of 8086inst logical
Copy of 8086inst logicalCopy of 8086inst logical
Copy of 8086inst logical
 
Copy of 8086inst logical
Copy of 8086inst logicalCopy of 8086inst logical
Copy of 8086inst logical
 
Chapter3 program flow control instructions
Chapter3 program flow control instructionsChapter3 program flow control instructions
Chapter3 program flow control instructions
 
Chapter3 8086inst stringsl
Chapter3 8086inst stringslChapter3 8086inst stringsl
Chapter3 8086inst stringsl
 

Recently uploaded

Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
Divyanshu
 
SENTIMENT ANALYSIS ON PPT AND Project template_.pptx
SENTIMENT ANALYSIS ON PPT AND Project template_.pptxSENTIMENT ANALYSIS ON PPT AND Project template_.pptx
SENTIMENT ANALYSIS ON PPT AND Project template_.pptx
b0754201
 
AN INTRODUCTION OF AI & SEARCHING TECHIQUES
AN INTRODUCTION OF AI & SEARCHING TECHIQUESAN INTRODUCTION OF AI & SEARCHING TECHIQUES
AN INTRODUCTION OF AI & SEARCHING TECHIQUES
drshikhapandey2022
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
Atif Razi
 
Open Channel Flow: fluid flow with a free surface
Open Channel Flow: fluid flow with a free surfaceOpen Channel Flow: fluid flow with a free surface
Open Channel Flow: fluid flow with a free surface
Indrajeet sahu
 
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
ydzowc
 
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdfAsymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
felixwold
 
Blood finder application project report (1).pdf
Blood finder application project report (1).pdfBlood finder application project report (1).pdf
Blood finder application project report (1).pdf
Kamal Acharya
 
OOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming languageOOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming language
PreethaV16
 
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
sydezfe
 
Height and depth gauge linear metrology.pdf
Height and depth gauge linear metrology.pdfHeight and depth gauge linear metrology.pdf
Height and depth gauge linear metrology.pdf
q30122000
 
Determination of Equivalent Circuit parameters and performance characteristic...
Determination of Equivalent Circuit parameters and performance characteristic...Determination of Equivalent Circuit parameters and performance characteristic...
Determination of Equivalent Circuit parameters and performance characteristic...
pvpriya2
 
SCALING OF MOS CIRCUITS m .pptx
SCALING OF MOS CIRCUITS m                 .pptxSCALING OF MOS CIRCUITS m                 .pptx
SCALING OF MOS CIRCUITS m .pptx
harshapolam10
 
Impartiality as per ISO /IEC 17025:2017 Standard
Impartiality as per ISO /IEC 17025:2017 StandardImpartiality as per ISO /IEC 17025:2017 Standard
Impartiality as per ISO /IEC 17025:2017 Standard
MuhammadJazib15
 
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
MadhavJungKarki
 
Ericsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.pptEricsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.ppt
wafawafa52
 
Transformers design and coooling methods
Transformers design and coooling methodsTransformers design and coooling methods
Transformers design and coooling methods
Roger Rozario
 
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Transcat
 
Supermarket Management System Project Report.pdf
Supermarket Management System Project Report.pdfSupermarket Management System Project Report.pdf
Supermarket Management System Project Report.pdf
Kamal Acharya
 
EV BMS WITH CHARGE MONITOR AND FIRE DETECTION.pptx
EV BMS WITH CHARGE MONITOR AND FIRE DETECTION.pptxEV BMS WITH CHARGE MONITOR AND FIRE DETECTION.pptx
EV BMS WITH CHARGE MONITOR AND FIRE DETECTION.pptx
nikshimanasa
 

Recently uploaded (20)

Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
 
SENTIMENT ANALYSIS ON PPT AND Project template_.pptx
SENTIMENT ANALYSIS ON PPT AND Project template_.pptxSENTIMENT ANALYSIS ON PPT AND Project template_.pptx
SENTIMENT ANALYSIS ON PPT AND Project template_.pptx
 
AN INTRODUCTION OF AI & SEARCHING TECHIQUES
AN INTRODUCTION OF AI & SEARCHING TECHIQUESAN INTRODUCTION OF AI & SEARCHING TECHIQUES
AN INTRODUCTION OF AI & SEARCHING TECHIQUES
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
 
Open Channel Flow: fluid flow with a free surface
Open Channel Flow: fluid flow with a free surfaceOpen Channel Flow: fluid flow with a free surface
Open Channel Flow: fluid flow with a free surface
 
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
 
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdfAsymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
 
Blood finder application project report (1).pdf
Blood finder application project report (1).pdfBlood finder application project report (1).pdf
Blood finder application project report (1).pdf
 
OOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming languageOOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming language
 
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
 
Height and depth gauge linear metrology.pdf
Height and depth gauge linear metrology.pdfHeight and depth gauge linear metrology.pdf
Height and depth gauge linear metrology.pdf
 
Determination of Equivalent Circuit parameters and performance characteristic...
Determination of Equivalent Circuit parameters and performance characteristic...Determination of Equivalent Circuit parameters and performance characteristic...
Determination of Equivalent Circuit parameters and performance characteristic...
 
SCALING OF MOS CIRCUITS m .pptx
SCALING OF MOS CIRCUITS m                 .pptxSCALING OF MOS CIRCUITS m                 .pptx
SCALING OF MOS CIRCUITS m .pptx
 
Impartiality as per ISO /IEC 17025:2017 Standard
Impartiality as per ISO /IEC 17025:2017 StandardImpartiality as per ISO /IEC 17025:2017 Standard
Impartiality as per ISO /IEC 17025:2017 Standard
 
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
 
Ericsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.pptEricsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.ppt
 
Transformers design and coooling methods
Transformers design and coooling methodsTransformers design and coooling methods
Transformers design and coooling methods
 
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
 
Supermarket Management System Project Report.pdf
Supermarket Management System Project Report.pdfSupermarket Management System Project Report.pdf
Supermarket Management System Project Report.pdf
 
EV BMS WITH CHARGE MONITOR AND FIRE DETECTION.pptx
EV BMS WITH CHARGE MONITOR AND FIRE DETECTION.pptxEV BMS WITH CHARGE MONITOR AND FIRE DETECTION.pptx
EV BMS WITH CHARGE MONITOR AND FIRE DETECTION.pptx
 

Bjts

  • 1. Kristin Ackerson, Virginia Tech EE Spring 2002 B C E
  • 2. The Bipolar Junction Transistor_______________________________slide 3 BJT Relationships – Equations________________________________slide 4 DC  and DC  _____________________________________________slides 5 BJT Example_______________________________________________slide 6 BJT Transconductance Curve_________________________________slide 7 Modes of Operation_________________________________________slide 8 Three Types of BJT Biasing__________________________________slide 9 Common Base______________________slide 10-11 Common Emitter_____________________slide 12 Common Collector___________________slide 13 Eber-Moll Model__________________________________________slides 14-15 Small Signal BJT Equivalent Circuit__________________________slides 16 The Early Effect___________________________________________slide 17 Early Effect Example_______________________________________slide 18 Breakdown Voltage________________________________________slide 19 Sources__________________________________________________slide 20 Table of Contents Kristin Ackerson, Virginia Tech EE Spring 2002
  • 3. The BJT – Bipolar Junction Transistor Kristin Ackerson, Virginia Tech EE Spring 2002  Note: It will be very helpful to go through the Analog Electronics Diodes Tutorial to get information on doping, n-type and p-type materials. The Two Types of BJT Transistors: npn pnp n p nE B C p n pE B C Cross Section Cross Section B C E Schematic Symbol B C E Schematic Symbol • Collector doping is usually ~ 106 • Base doping is slightly higher ~ 107 – 108 • Emitter doping is much higher ~ 1015
  • 4. BJT Relationships - Equations Kristin Ackerson, Virginia Tech EE Spring 2002 B CE IE IC IB - + VBE VBC + - +- VCE B CE IE IC IB - + VEB VCB + - + -VEC npn IE = IB + IC VCE = -VBC + VBE pnp IE = IB + IC VEC = VEB - VCB Note: The equations seen above are for the transistor, not the circuit.
  • 5. DC  and DC  Kristin Ackerson, Virginia Tech EE Spring 2002  = Common-emitter current gain  = Common-base current gain  = IC  = IC IB IE The relationships between the two parameters are:  =   =   + 1 1 -  Note:  and  are sometimes referred to as dc and dc because the relationships being dealt with in the BJT are DC.
  • 6. BJT Example Kristin Ackerson, Virginia Tech EE Spring 2002 Using Common-Base NPN Circuit Configuration + _ + _ Given: IB = 50  A , IC = 1 mA Find: IE ,  , and  Solution: IE = IB + IC = 0.05 mA + 1 mA = 1.05 mA  = IC / IB = 1 mA / 0.05 mA = 20  = IC / IE = 1 mA / 1.05 mA = 0.95238  could also be calculated using the value of  with the formula from the previous slide.  =  = 20 = 0.95238  + 1 21 IC IE IB VCB VBE E C B
  • 7. BJT Transconductance Curve Kristin Ackerson, Virginia Tech EE Spring 2002 Typical NPN Transistor 1 VBE IC 2 mA 4 mA 6 mA 8 mA 0.7 V Collector Current: IC =  IES eVBE/VT Transconductance: (slope of the curve) gm =  IC /  VBE IES = The reverse saturation current of the B-E Junction. VT = kT/q = 26 mV (@ T=300K)  = the emission coefficient and is usually ~1
  • 8. Modes of Operation Kristin Ackerson, Virginia Tech EE Spring 2002 • Most important mode of operation • Central to amplifier operation • The region where current curves are practically flat Active: Saturation: • Barrier potential of the junctions cancel each other out causing a virtual short Cutoff: • Current reduced to zero • Ideal transistor behaves like an open switch * Note: There is also a mode of operation called inverse active, but it is rarely used.
  • 9. Three Types of BJT Biasing Kristin Ackerson, Virginia Tech EE Spring 2002 Biasing the transistor refers to applying voltage to get the transistor to achieve certain operating conditions. Common-Base Biasing (CB) : input = VEB & IE output = VCB & IC Common-Emitter Biasing (CE): input = VBE & IB output = VCE & IC Common-Collector Biasing (CC): input = VBC & IB output = VEC & IE
  • 10. Common-Base Kristin Ackerson, Virginia Tech EE Spring 2002 Although the Common-Base configuration is not the most common biasing type, it is often helpful in the understanding of how the BJT works. Emitter-Current Curves SaturationRegion IE IC VCB Active Region Cutoff IE = 0
  • 11. Common-Base Kristin Ackerson, Virginia Tech EE Spring 2002 Circuit Diagram: NPN Transistor + _ + _ IC IE IB VCB VBE EC B VCE VBEVCB Region of Operation IC VCE VBE VCB C-B Bias E-B Bias Active IB =VBE+VCE ~0.7V  0V Rev. Fwd. Saturation Max ~0V ~0.7V -0.7V<VCE<0 Fwd. Fwd. Cutoff ~0 =VBE+VCE  0V  0V Rev. None /Rev. The Table Below lists assumptions that can be made for the attributes of the common-base biased circuit in the different regions of operation. Given for a Silicon NPN transistor.
  • 12. Common-Emitter Kristin Ackerson, Virginia Tech EE Spring 2002 Circuit Diagram + _VC C IC VCE IB Collector-Current Curves VCE IC Active Region IB Saturation Region Cutoff Region IB = 0 Region of Operation Description Active Small base current controls a large collector current Saturation VCE(sat) ~ 0.2V, VCE increases with IC Cutoff Achieved by reducing IB to 0, Ideally, IC will also equal 0.
  • 13. Common-Collector Kristin Ackerson, Virginia Tech EE Spring 2002 Emitter-Current Curves VCE IE Active Region IB Saturation Region Cutoff Region IB = 0 The Common- Collector biasing circuit is basically equivalent to the common-emitter biased circuit except instead of looking at IC as a function of VCE and IB we are looking at IE. Also, since  ~ 1, and  = IC/IE that means IC~IE
  • 14. Eber-Moll BJT Model Kristin Ackerson, Virginia Tech EE Spring 2002 The Eber-Moll Model for BJTs is fairly complex, but it is valid in all regions of BJT operation. The circuit diagram below shows all the components of the Eber-Moll Model: E C B IR IF IE IC IB RIERIC
  • 15. Kristin Ackerson, Virginia Tech EE Spring 2002 Eber-Moll BJT Model R = Common-base current gain (in forward active mode) F = Common-base current gain (in inverse active mode) IES = Reverse-Saturation Current of B-E Junction ICS = Reverse-Saturation Current of B-C Junction IC = FIF – IR IB = IE - IC IE = IF - RIR IF = IES [exp(qVBE/kT) – 1] IR = IC [exp(qVBC/kT) – 1]  If IES & ICS are not given, they can be determined using various BJT parameters.
  • 16. Kristin Ackerson, Virginia Tech EE Spring 2002 Small Signal BJT Equivalent Circuit The small-signal model can be used when the BJT is in the active region. The small-signal active-region model for a CB circuit is shown below: iBr iE iC iB B C E r = ( + 1) * VT IE @  = 1 and T = 25C r = ( + 1) * 0.026 IE Recall:  = IC / IB
  • 17. The Early Effect (Early Voltage) Kristin Ackerson, Virginia Tech EE Spring 2002 VCE IC Note: Common-Emitter Configuration -VA IB Green = Ideal IC Orange = Actual IC (IC’) IC’ = IC VCE + 1 VA
  • 18. Kristin Ackerson, Virginia Tech EE Spring 2002 Early Effect Example Given: The common-emitter circuit below with IB = 25A, VCC = 15V,  = 100 and VA = 80. Find: a) The ideal collector current b) The actual collector current Circuit Diagram + _VCC IC VCE IB  = 100 = IC/IB a) IC = 100 * IB = 100 * (25x10-6 A) IC = 2.5 mA b) IC’ = IC VCE + 1 = 2.5x10-3 15 + 1 = 2.96 mA VA 80 IC’ = 2.96 mA
  • 19. Breakdown Voltage Kristin Ackerson, Virginia Tech EE Spring 2002 The maximum voltage that the BJT can withstand. BVCEO = The breakdown voltage for a common-emitter biased circuit. This breakdown voltage usually ranges from ~20-1000 Volts. BVCBO = The breakdown voltage for a common-base biased circuit. This breakdown voltage is usually much higher than BVCEO and has a minimum value of ~60 Volts. Breakdown Voltage is Determined By: • The Base Width • Material Being Used • Doping Levels • Biasing Voltage
  • 20. Sources Dailey, Denton. Electronic Devices and Circuits, Discrete and Integrated. Prentice Hall, New Jersey: 2001. (pp 84-153) 1 Figure 3.7, Transconductance curve for a typical npn transistor, pg 90. Liou, J.J. and Yuan, J.S. Semiconductor Device Physics and Simulation. Plenum Press, New York: 1998. Neamen, Donald. Semiconductor Physics & Devices. Basic Principles. McGraw-Hill, Boston: 1997. (pp 351-409) Web Sites http://www.infoplease.com/ce6/sci/A0861609.html Kristin Ackerson, Virginia Tech EE Spring 2002