SlideShare a Scribd company logo
Course: Electromagnetic Theory
paper code: EI 503
Course Coordinator: Arpan Deyasi
Department of Electronics and Communication Engineering
RCC Institute of Information Technology
Kolkata, India
Topic: Transmission Line – Propagation Coefficients
24-11-2021 Arpan Deyasi, EM Theory 1
Arpan Deyasi
Electromagnetic
Theory
Reflection Coefficient
It is the ratio of reflected voltage(/current) with the incident voltage (/current)
for a given transmission line
ref ref
inc inc
V I
V I
 = = −
z
z 0 inc
inc 0
0 0
V e V
I I e
Z Z
+ −
+ −
= = =
z
z 0 ref
ref 0
0 0
V e V
I I e
Z Z
− 
− 
= = − = −
24-11-2021 Arpan Deyasi, EM Theory 2
Arpan Deyasi
Electromagnetic
Theory
Reflection Coefficient
z z
0 0
V(z) V e V e
+ −
− 
= +
Now
z z
0 0
V(z) V e V e
+ +
− −
= + 
( )
z
0
V(z) V e 1
+ −
= + 
24-11-2021 Arpan Deyasi, EM Theory 3
Arpan Deyasi
Electromagnetic
Theory
Reflection Coefficient
Similarly
z z
0 0
I(z) I e I e
+ −
− 
= −
z z
0 0
I(z) I e I e
+ +
− −
= − 
( )
z
0
I(z) I e 1
+ −
= − 
24-11-2021 Arpan Deyasi, EM Theory 4
Arpan Deyasi
Electromagnetic
Theory
Reflection Coefficient
If the transmission line has a length ‘l’
( )
l
0 l
V(l) V e 1
+ −
= + 
( )
l
0 l
I(l) I e 1
+ −
= − 
24-11-2021 Arpan Deyasi, EM Theory 5
Arpan Deyasi
Electromagnetic
Theory
Reflection Coefficient
If the transmission line is terminated by load ‘ZL’
( )
( )
l
0 l
l
0 l
V e 1
V(l)
Z(l)
I(l) I e 1
+ −
+ −
+ 
= =
− 
( )
( )
l
0
l
1
Z(l) Z
1
+ 
=
− 
L 0
l
L 0
Z Z
Z Z
−
 =
+
24-11-2021 Arpan Deyasi, EM Theory 6
Arpan Deyasi
Electromagnetic
Theory
Tranmission Coefficient
Transmission coefficient
tr tr
inc inc
V I
T
V I
= =
L 0
L 0
Z Z
T 1 1
Z Z
−
= +  = +
+
L
L 0
2Z
T
Z Z
=
+
24-11-2021 Arpan Deyasi, EM Theory 7
Arpan Deyasi
Electromagnetic
Theory
Transmission Coefficient
From power conservation principle
in ref tr
P P P
= +
tr in ref
P P P
= −
( ) ( ) ( )
2 2 2
l l l
tr 0 0
L 0 0
V e V e V e
2Z 2Z 2Z
+ + −
− − −
= −
24-11-2021 Arpan Deyasi, EM Theory 8
Arpan Deyasi
Electromagnetic
Theory
Transmission Coefficient
( ) ( ) ( )
( )
2 2 2
l l l
tr 0 0
2
l
L 0
0
V e V e V e
1
2Z 2Z V e
+ + −
− − −
+ −
 
 
= −
 
 
 
2
2 L
l
0
Z
T 1
Z
 
= − 
 
24-11-2021 Arpan Deyasi, EM Theory 9
Arpan Deyasi
Electromagnetic
Theory
Problem 1
A certain transmission line has characteristic impedance (75+j0.01) Ω and is
terminated by load impedance of (70+j50) Ω. Calculate reflection coefficient
and transmission coefficient.
Soln
L 0
l
L 0
Z Z
Z Z
−
 =
+
l
(70 j50) (75 j0.01)
(70 j50) (75 j0.01)
+ − +
 =
+ + +
l 0.08 j0.32
 = +
24-11-2021 Arpan Deyasi, EM Theory 10
Arpan Deyasi
Electromagnetic
Theory
T 1
= + 
T 1 0.08 j0.32
= + +
T 1.08 j0.32
= +
24-11-2021 Arpan Deyasi, EM Theory 11
Arpan Deyasi
Electromagnetic
Theory
Problem 2
A lossless transmission line has characteristic impedance 50 Ω and is terminated by
load impedance of 75 Ω. If the line is energized by a generator with output impedance
of 50 Ω and open circuit output voltage of 30 V [rms). Find magnitude of instantaneous
load voltage, instantaneous power delivered to the load. Consider length of the line is
2.25λ.
Soln
2
l .
4 2
  
 = =

L 0
l
L 0
Z Z 75 50
0.2
Z Z 75 50
− −
 = = =
+ +
24-11-2021 Arpan Deyasi, EM Theory 12
Arpan Deyasi
Electromagnetic
Theory
Instantaneous voltage at load
( )
l
0 l
V(l) V e 1
+ −
= + 
( )
j l
0 l
V(l) V e 1
+ − 
= + 
( )
V(l) 30 1 0.2
= +
V(l) 36 V
=
24-11-2021 Arpan Deyasi, EM Theory 13
Arpan Deyasi
Electromagnetic
Theory
Instantaneous power delivered
2
l
L
V
P(l)
Z
=
2
36
P(l)
75
=
P(l) 17.28 W
=
24-11-2021 Arpan Deyasi, EM Theory 14
Arpan Deyasi
Electromagnetic
Theory
Standing wave
General solution of transmission line equation
z z
0 0
V(z) V e V e
+ −
− 
= +
z z
0 0
I(z) I e I e
+ −
− 
= −
j
 =  + 
Propagation constant
z z
0 0
V(z) V e V e
+ −
− 
= +
z j z z j z
0 0
I(z) I e e I e e
+ −
− −   
= −
z j z z j z
0 0
V(z) V e e V e e
+ −
− −   
 = +
24-11-2021 Arpan Deyasi, EM Theory 15
Arpan Deyasi
Electromagnetic
Theory
z j z z j z
0 0
V(z) V e e V e e
+ −
− −   
= +
Standing wave
Now
( ) ( ) ( ) ( )
z z
0 0
V e cos z jsin z V e cos z jsin z
+ −
− 
=  −  +  + 
   
   
( ) ( )
z z z z
0 0 0 0
V e V e cos z V e V e sin z
+ − + −
−  − 
   
= +  + − 
   
j
0
V e− 
=
24-11-2021 Arpan Deyasi, EM Theory 16
Arpan Deyasi
Electromagnetic
Theory
Standing wave
where
( ) ( )
1/ 2
2 2
z z 2 z z 2
0 0 0 0 0
V V e V e cos z V e V e sin z
+ − + −
−  − 
 
   
= +  + − 
   
 
 
( )
( )
( )
z z
0 0
1
z z
0 0
V e V e
tan tan z
V e V e
+ −
− 
−
+ −
− 
 
−
 
 = 
 
+
 
Voltage for
standing-wave pattern
Phase for standing-wave pattern
24-11-2021 Arpan Deyasi, EM Theory 17
Arpan Deyasi
Electromagnetic
Theory
Standing wave: properties
Maximum voltage amplitude
z z
max 0 0
V V e V e
+ −
− 
= +
 
z
max 0
V V e 1
+ −
= + 
Minimum voltage amplitude
z z
min 0 0
V V e V e
+ −
− 
= −
 
z
min 0
V V e 1
+ −
= − 
occurs at z n
 = 
occurs at z (2n 1)
2

 = −
24-11-2021 Arpan Deyasi, EM Theory 18
Arpan Deyasi
Electromagnetic
Theory
Standing wave: properties
The distance between two successive minima or maxima is one-half wavelength
z n
 = 
n n
z
2
 
= =



n
z
2

=
24-11-2021 Arpan Deyasi, EM Theory 19
Arpan Deyasi
Electromagnetic
Theory
Standing wave
z j z z j z
0 0
I(z) I e e I e e
+ −
− −   
= −
Again
( ) ( ) ( ) ( )
z z
0 0
I e cos z jsin z I e cos z jsin z
+ −
− 
=  −  −  + 
   
   
( ) ( )
z z z z
0 0 0 0
I e I e cos z I e I e sin z
+ − + −
−  − 
   
= +  − − 
   
j
0
I e− 
=
24-11-2021 Arpan Deyasi, EM Theory 20
Arpan Deyasi
Electromagnetic
Theory
Standing wave
where
( ) ( )
1/ 2
2 2
z z 2 z z 2
0 0 0 0 0
I I e I e cos z I e I e sin z
+ − + −
−  − 
 
   
= −  + + 
   
 
 
( )
( )
( )
z z
0 0
1
z z
0 0
I e I e
tan tan z
I e I e
+ −
− 
−
+ −
− 
 
+
 
 = 
 
−
 
Current for
standing-wave pattern
Phase for standing-wave pattern
24-11-2021 Arpan Deyasi, EM Theory 21
Arpan Deyasi
Electromagnetic
Theory
Standing wave: properties
Maximum voltage amplitude
Minimum voltage amplitude
occurs at
occurs at
z z
max 0 0
I I e I e
+ −
− 
= −
 
z
max 0
I I e 1
+ −
= +  z n
 = 
z z
min 0 0
I I e I e
+ −
− 
= +
 
z
min 0
I I e 1
+ −
= −  z (2n 1)
2

 = −
24-11-2021 Arpan Deyasi, EM Theory 22
Arpan Deyasi
Electromagnetic
Theory
Standing wave: properties
When
z z
0 0
V e V e
+ −
− 
=
then standing wave pattern with zero phase is given by
( )
z
S 0
V 2V e cos z
+ −
= 
This is pure standing wave
Vmax
Vmin
λ/2
λ/2
24-11-2021 Arpan Deyasi, EM Theory 23
Arpan Deyasi
Electromagnetic
Theory
When
z z
0 0
I e I e
+ −
− 
=
then standing wave pattern with zero phase is given by
( )
z
0
S
0
V
I 2j e sin z
Z
+
−
= − 
This is pure standing wave
Standing wave: properties
Vmax
Vmin
λ/2
λ/2
24-11-2021 Arpan Deyasi, EM Theory 24
Arpan Deyasi
Electromagnetic
Theory
Voltage and current standing waves are 90° out of phase along any time
Standing wave: properties
Voltage nodes and current nodes are interlaced a quarter-wavelength apart
V I
λ/4
24-11-2021 Arpan Deyasi, EM Theory 25
Arpan Deyasi
Electromagnetic
Theory
Standing Wave Ratio
It is the ratio of maximum standing wave pattern (voltage/ current) to the minimum of
that value (voltage/ current)
max max
min min
V I
SWR
V I
= =
1
SWR
1
+ 
=
− 
24-11-2021 Arpan Deyasi, EM Theory 26
Arpan Deyasi
Electromagnetic
Theory
24-11-2021 Arpan Deyasi, EM Theory 27
Problem 3
A transmission line has characteristic impedance (50+j0.01) Ω and is terminated by
load impedance of (73-j42.5) Ω. Calculate SWR.
Soln
L 0
l
L 0
Z Z
Z Z
−
 =
+
l
(73 j42.5) (50 j0.01)
(73 j42.5) (50 j0.01)
− − +
 =
− + +
l 0.377 42.7
 =  
Arpan Deyasi
Electromagnetic
Theory
24-11-2021 Arpan Deyasi, EM Theory 28
1
SWR
1
+ 
=
− 
1 0.377
SWR
1 0.377
+
=
−
SWR 2.21
=
Arpan Deyasi
Electromagnetic
Theory
24-11-2021 Arpan Deyasi, EM Theory 29
Problem 4
Soln
A transmission line of characteristics impedance of Z0 = 50 Ω is terminated by a load
RL = ZL = 100 Ω. Find V.S.W.R, ZMIN and ZMAX
L 0
L
L 0
Z Z
Z Z
−
 =
+
L
100 50 50
100 50 150
−
 = =
+
L 0.33
 =
Arpan Deyasi
Electromagnetic
Theory
24-11-2021 Arpan Deyasi, EM Theory 30
L
L
1
V.S.W.R
1
+ 
=
− 
1
1
3
V.S.W.R
1
1
3
+
=
−
V.S.W.R 2
=
Arpan Deyasi
Electromagnetic
Theory
24-11-2021 Arpan Deyasi, EM Theory 31
L
MAX 0
L
1
Z Z
1
 
+ 
=  
− 
 
L
MIN 0
L
1
Z Z
1
 
− 
=  
+ 
 
MAX
Z 100
= 
MIN
Z 25
= 
Arpan Deyasi
Electromagnetic
Theory
24-11-2021 Arpan Deyasi, EM Theory 32
Problem 5
Soln
A lossless transmission line with a characteristics impedance of 75 Ω is terminated
by a load of impedance 120 Ω. If the magnitude of incident voltage is 10 V. Calculate
the minimum and maximum values of voltages on the line.
L 0
L
L 0
Z Z
Z Z
−
 =
+
L
45
195
 =
L
120 75
120 75
−
 =
+
L 0.243
 =
Arpan Deyasi
Electromagnetic
Theory
24-11-2021 Arpan Deyasi, EM Theory 33
( )
Max 0 L
V V 1
= + 
( )
Min 0 L
V V 1
= − 
( )
Max
V 10 1 0.243
= +
Max
V 12.43V
=
( )
Min
V 10 1 0.243
= −
Min
V 7.57V
=
Arpan Deyasi
Electromagnetic
Theory

More Related Content

What's hot

Waveguides12
Waveguides12Waveguides12
Waveguides12
Gaurav Yogesh
 
transmission-lines
transmission-linestransmission-lines
transmission-lines
ATTO RATHORE
 
Transmission lines and RF systems
Transmission lines and RF systemsTransmission lines and RF systems
Transmission lines and RF systems
GopinathD17
 
Two port network
Two port networkTwo port network
Two port network
Rajput Manthan
 
transmission line theory prp
transmission line theory prptransmission line theory prp
transmission line theory prp
Dr. Pravin Prajapati
 
Antenna Parameters Part 2
Antenna Parameters Part 2Antenna Parameters Part 2
Antenna Parameters Part 2
Roma Rico Flores
 
Solved problems in waveguides
Solved problems in waveguidesSolved problems in waveguides
Solved problems in waveguides
subhashinivec
 
Poisson’s and Laplace’s Equation
Poisson’s and Laplace’s EquationPoisson’s and Laplace’s Equation
Poisson’s and Laplace’s Equation
Abhishek Choksi
 
Transmission lines
Transmission linesTransmission lines
Transmission lines
umavijay
 
Pulse shaping
Pulse shapingPulse shaping
Pulse shaping
Ramraj Choudhary
 
Microwave devices
Microwave devicesMicrowave devices
Microwave devices
john chezhiyan r
 
Microwave waveguides 1st 1
Microwave waveguides 1st 1Microwave waveguides 1st 1
Microwave waveguides 1st 1
HIMANSHU DIWAKAR
 
Double Side band Suppressed carrier (DSB-SC) Modulation and Demodulation.
 Double Side band Suppressed carrier (DSB-SC) Modulation and Demodulation. Double Side band Suppressed carrier (DSB-SC) Modulation and Demodulation.
Double Side band Suppressed carrier (DSB-SC) Modulation and Demodulation.
SAiFul IslAm
 
wave-guides
wave-guideswave-guides
wave-guides
ATTO RATHORE
 
waveguide-1
waveguide-1waveguide-1
waveguide-1
ATTO RATHORE
 
Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1
Ali Farooq
 
Resonance in series and parallel circuits
Resonance in series and parallel circuitsResonance in series and parallel circuits
Resonance in series and parallel circuits
hardikpanchal424
 

What's hot (20)

Waveguides12
Waveguides12Waveguides12
Waveguides12
 
transmission-lines
transmission-linestransmission-lines
transmission-lines
 
Transmission lines and RF systems
Transmission lines and RF systemsTransmission lines and RF systems
Transmission lines and RF systems
 
Two port network
Two port networkTwo port network
Two port network
 
transmission line theory prp
transmission line theory prptransmission line theory prp
transmission line theory prp
 
Antenna Parameters Part 2
Antenna Parameters Part 2Antenna Parameters Part 2
Antenna Parameters Part 2
 
Solved problems in waveguides
Solved problems in waveguidesSolved problems in waveguides
Solved problems in waveguides
 
Poisson’s and Laplace’s Equation
Poisson’s and Laplace’s EquationPoisson’s and Laplace’s Equation
Poisson’s and Laplace’s Equation
 
ASk,FSK,PSK
ASk,FSK,PSKASk,FSK,PSK
ASk,FSK,PSK
 
Transmission lines
Transmission linesTransmission lines
Transmission lines
 
Pulse shaping
Pulse shapingPulse shaping
Pulse shaping
 
Microwave devices
Microwave devicesMicrowave devices
Microwave devices
 
Microwave waveguides 1st 1
Microwave waveguides 1st 1Microwave waveguides 1st 1
Microwave waveguides 1st 1
 
Chapter4
Chapter4Chapter4
Chapter4
 
Double Side band Suppressed carrier (DSB-SC) Modulation and Demodulation.
 Double Side band Suppressed carrier (DSB-SC) Modulation and Demodulation. Double Side band Suppressed carrier (DSB-SC) Modulation and Demodulation.
Double Side band Suppressed carrier (DSB-SC) Modulation and Demodulation.
 
wave-guides
wave-guideswave-guides
wave-guides
 
6 slides
6 slides6 slides
6 slides
 
waveguide-1
waveguide-1waveguide-1
waveguide-1
 
Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1
 
Resonance in series and parallel circuits
Resonance in series and parallel circuitsResonance in series and parallel circuits
Resonance in series and parallel circuits
 

Similar to Reflection and Transmission coefficients in transmission line

Fundamentals of Coulomb's Law
Fundamentals of Coulomb's LawFundamentals of Coulomb's Law
Fundamentals of Coulomb's Law
RCC Institute of Information Technology
 
Telegrapher's Equation
Telegrapher's EquationTelegrapher's Equation
Laplace equation
Laplace equationLaplace equation
Laplace equation
alexkhan129
 
Vector Integration
Vector IntegrationVector Integration
1 potential & capacity 09
1 potential & capacity 091 potential & capacity 09
1 potential & capacity 09
GODARAMANGERAM
 
Fundamentals of Gauss' Law
Fundamentals of Gauss' LawFundamentals of Gauss' Law
Fundamentals of Gauss' Law
RCC Institute of Information Technology
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysisdivyanshuprakashrock
 
Scalar and vector differentiation
Scalar and vector differentiationScalar and vector differentiation
Scalar and vector differentiation
RCC Institute of Information Technology
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
Forward2025
 
Lecture 12
Lecture 12Lecture 12
Lecture 12
Forward2025
 
Introduction to the electron-phonon renormalization of electronic band struc...
Introduction to the electron-phonon  renormalization of electronic band struc...Introduction to the electron-phonon  renormalization of electronic band struc...
Introduction to the electron-phonon renormalization of electronic band struc...
Elena Cannuccia
 
Electromagnetic Wave Propagations
Electromagnetic Wave PropagationsElectromagnetic Wave Propagations
Electromagnetic Wave Propagations
RCC Institute of Information Technology
 
Lect. 23 rotational vibrational raman spectroscopy
Lect. 23 rotational   vibrational raman spectroscopyLect. 23 rotational   vibrational raman spectroscopy
Lect. 23 rotational vibrational raman spectroscopy
Shri Shivaji Science College Amravati
 
Circuit theory
Circuit theoryCircuit theory
Circuit theory
protectionmgb
 
Lecture06h Frequency Dependent Transport5.ppt
Lecture06h Frequency Dependent Transport5.pptLecture06h Frequency Dependent Transport5.ppt
Lecture06h Frequency Dependent Transport5.ppt
HanzlaAhmad2
 
Lecture 12 Part B_introduction_to_electronics.pdf
Lecture 12 Part B_introduction_to_electronics.pdfLecture 12 Part B_introduction_to_electronics.pdf
Lecture 12 Part B_introduction_to_electronics.pdf
AbhijeetSinghThakur13
 
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
melihbulut1
 
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
melihbulut1
 
Laws of ELECTROMAGNETIC FIELD
Laws of ELECTROMAGNETIC FIELDLaws of ELECTROMAGNETIC FIELD
Laws of ELECTROMAGNETIC FIELD
Karthik Kathan
 

Similar to Reflection and Transmission coefficients in transmission line (20)

Fundamentals of Coulomb's Law
Fundamentals of Coulomb's LawFundamentals of Coulomb's Law
Fundamentals of Coulomb's Law
 
Telegrapher's Equation
Telegrapher's EquationTelegrapher's Equation
Telegrapher's Equation
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
 
Vector Integration
Vector IntegrationVector Integration
Vector Integration
 
1 potential & capacity 09
1 potential & capacity 091 potential & capacity 09
1 potential & capacity 09
 
Fundamentals of Gauss' Law
Fundamentals of Gauss' LawFundamentals of Gauss' Law
Fundamentals of Gauss' Law
 
Biot-Savart law
Biot-Savart lawBiot-Savart law
Biot-Savart law
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
 
Scalar and vector differentiation
Scalar and vector differentiationScalar and vector differentiation
Scalar and vector differentiation
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Lecture 12
Lecture 12Lecture 12
Lecture 12
 
Introduction to the electron-phonon renormalization of electronic band struc...
Introduction to the electron-phonon  renormalization of electronic band struc...Introduction to the electron-phonon  renormalization of electronic band struc...
Introduction to the electron-phonon renormalization of electronic band struc...
 
Electromagnetic Wave Propagations
Electromagnetic Wave PropagationsElectromagnetic Wave Propagations
Electromagnetic Wave Propagations
 
Lect. 23 rotational vibrational raman spectroscopy
Lect. 23 rotational   vibrational raman spectroscopyLect. 23 rotational   vibrational raman spectroscopy
Lect. 23 rotational vibrational raman spectroscopy
 
Circuit theory
Circuit theoryCircuit theory
Circuit theory
 
Lecture06h Frequency Dependent Transport5.ppt
Lecture06h Frequency Dependent Transport5.pptLecture06h Frequency Dependent Transport5.ppt
Lecture06h Frequency Dependent Transport5.ppt
 
Lecture 12 Part B_introduction_to_electronics.pdf
Lecture 12 Part B_introduction_to_electronics.pdfLecture 12 Part B_introduction_to_electronics.pdf
Lecture 12 Part B_introduction_to_electronics.pdf
 
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
 
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
1LectureIKC_Biot_Savart_lawaaaaaaaaaaaa.pdf
 
Laws of ELECTROMAGNETIC FIELD
Laws of ELECTROMAGNETIC FIELDLaws of ELECTROMAGNETIC FIELD
Laws of ELECTROMAGNETIC FIELD
 

More from RCC Institute of Information Technology

Scaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltageScaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltage
RCC Institute of Information Technology
 
Carrier scattering and ballistic transport
Carrier scattering and ballistic transportCarrier scattering and ballistic transport
Carrier scattering and ballistic transport
RCC Institute of Information Technology
 
Ampere's circuital law
Ampere's circuital lawAmpere's circuital law
Magnetic Potentials
Magnetic PotentialsMagnetic Potentials
Quantum Hall Effect
Quantum Hall EffectQuantum Hall Effect
Dielectrics
DielectricsDielectrics
Capacitor
CapacitorCapacitor
Electrical Properties of Dipole
Electrical Properties of DipoleElectrical Properties of Dipole
Electrical Properties of Dipole
RCC Institute of Information Technology
 
Application of Gauss' Law
Application of Gauss' LawApplication of Gauss' Law
Application of Gauss' Law
RCC Institute of Information Technology
 
Coordinate transformation
Coordinate transformationCoordinate transformation
Coordinate transformation
RCC Institute of Information Technology
 
Moletronics
MoletronicsMoletronics
Crystal Growth
Crystal GrowthCrystal Growth
Memristor
MemristorMemristor
Advanced MOSFET
Advanced MOSFETAdvanced MOSFET
CNTFET
CNTFETCNTFET
Electrical characteristics of MOSFET
Electrical characteristics of MOSFETElectrical characteristics of MOSFET
Electrical characteristics of MOSFET
RCC Institute of Information Technology
 
Mosfet fundamentals
Mosfet fundamentalsMosfet fundamentals
Single Electron Transistor
Single Electron TransistorSingle Electron Transistor
Single Electron Transistor
RCC Institute of Information Technology
 
High Electron Mobility Transistor
High Electron Mobility TransistorHigh Electron Mobility Transistor
High Electron Mobility Transistor
RCC Institute of Information Technology
 
Resonant Tunneling
Resonant TunnelingResonant Tunneling

More from RCC Institute of Information Technology (20)

Scaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltageScaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltage
 
Carrier scattering and ballistic transport
Carrier scattering and ballistic transportCarrier scattering and ballistic transport
Carrier scattering and ballistic transport
 
Ampere's circuital law
Ampere's circuital lawAmpere's circuital law
Ampere's circuital law
 
Magnetic Potentials
Magnetic PotentialsMagnetic Potentials
Magnetic Potentials
 
Quantum Hall Effect
Quantum Hall EffectQuantum Hall Effect
Quantum Hall Effect
 
Dielectrics
DielectricsDielectrics
Dielectrics
 
Capacitor
CapacitorCapacitor
Capacitor
 
Electrical Properties of Dipole
Electrical Properties of DipoleElectrical Properties of Dipole
Electrical Properties of Dipole
 
Application of Gauss' Law
Application of Gauss' LawApplication of Gauss' Law
Application of Gauss' Law
 
Coordinate transformation
Coordinate transformationCoordinate transformation
Coordinate transformation
 
Moletronics
MoletronicsMoletronics
Moletronics
 
Crystal Growth
Crystal GrowthCrystal Growth
Crystal Growth
 
Memristor
MemristorMemristor
Memristor
 
Advanced MOSFET
Advanced MOSFETAdvanced MOSFET
Advanced MOSFET
 
CNTFET
CNTFETCNTFET
CNTFET
 
Electrical characteristics of MOSFET
Electrical characteristics of MOSFETElectrical characteristics of MOSFET
Electrical characteristics of MOSFET
 
Mosfet fundamentals
Mosfet fundamentalsMosfet fundamentals
Mosfet fundamentals
 
Single Electron Transistor
Single Electron TransistorSingle Electron Transistor
Single Electron Transistor
 
High Electron Mobility Transistor
High Electron Mobility TransistorHigh Electron Mobility Transistor
High Electron Mobility Transistor
 
Resonant Tunneling
Resonant TunnelingResonant Tunneling
Resonant Tunneling
 

Recently uploaded

NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
Intella Parts
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
PrashantGoswami42
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
Kamal Acharya
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
MuhammadTufail242431
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
ssuser9bd3ba
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 

Recently uploaded (20)

NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 

Reflection and Transmission coefficients in transmission line

  • 1. Course: Electromagnetic Theory paper code: EI 503 Course Coordinator: Arpan Deyasi Department of Electronics and Communication Engineering RCC Institute of Information Technology Kolkata, India Topic: Transmission Line – Propagation Coefficients 24-11-2021 Arpan Deyasi, EM Theory 1 Arpan Deyasi Electromagnetic Theory
  • 2. Reflection Coefficient It is the ratio of reflected voltage(/current) with the incident voltage (/current) for a given transmission line ref ref inc inc V I V I  = = − z z 0 inc inc 0 0 0 V e V I I e Z Z + − + − = = = z z 0 ref ref 0 0 0 V e V I I e Z Z −  −  = = − = − 24-11-2021 Arpan Deyasi, EM Theory 2 Arpan Deyasi Electromagnetic Theory
  • 3. Reflection Coefficient z z 0 0 V(z) V e V e + − −  = + Now z z 0 0 V(z) V e V e + + − − = +  ( ) z 0 V(z) V e 1 + − = +  24-11-2021 Arpan Deyasi, EM Theory 3 Arpan Deyasi Electromagnetic Theory
  • 4. Reflection Coefficient Similarly z z 0 0 I(z) I e I e + − −  = − z z 0 0 I(z) I e I e + + − − = −  ( ) z 0 I(z) I e 1 + − = −  24-11-2021 Arpan Deyasi, EM Theory 4 Arpan Deyasi Electromagnetic Theory
  • 5. Reflection Coefficient If the transmission line has a length ‘l’ ( ) l 0 l V(l) V e 1 + − = +  ( ) l 0 l I(l) I e 1 + − = −  24-11-2021 Arpan Deyasi, EM Theory 5 Arpan Deyasi Electromagnetic Theory
  • 6. Reflection Coefficient If the transmission line is terminated by load ‘ZL’ ( ) ( ) l 0 l l 0 l V e 1 V(l) Z(l) I(l) I e 1 + − + − +  = = −  ( ) ( ) l 0 l 1 Z(l) Z 1 +  = −  L 0 l L 0 Z Z Z Z −  = + 24-11-2021 Arpan Deyasi, EM Theory 6 Arpan Deyasi Electromagnetic Theory
  • 7. Tranmission Coefficient Transmission coefficient tr tr inc inc V I T V I = = L 0 L 0 Z Z T 1 1 Z Z − = +  = + + L L 0 2Z T Z Z = + 24-11-2021 Arpan Deyasi, EM Theory 7 Arpan Deyasi Electromagnetic Theory
  • 8. Transmission Coefficient From power conservation principle in ref tr P P P = + tr in ref P P P = − ( ) ( ) ( ) 2 2 2 l l l tr 0 0 L 0 0 V e V e V e 2Z 2Z 2Z + + − − − − = − 24-11-2021 Arpan Deyasi, EM Theory 8 Arpan Deyasi Electromagnetic Theory
  • 9. Transmission Coefficient ( ) ( ) ( ) ( ) 2 2 2 l l l tr 0 0 2 l L 0 0 V e V e V e 1 2Z 2Z V e + + − − − − + −     = −       2 2 L l 0 Z T 1 Z   = −    24-11-2021 Arpan Deyasi, EM Theory 9 Arpan Deyasi Electromagnetic Theory
  • 10. Problem 1 A certain transmission line has characteristic impedance (75+j0.01) Ω and is terminated by load impedance of (70+j50) Ω. Calculate reflection coefficient and transmission coefficient. Soln L 0 l L 0 Z Z Z Z −  = + l (70 j50) (75 j0.01) (70 j50) (75 j0.01) + − +  = + + + l 0.08 j0.32  = + 24-11-2021 Arpan Deyasi, EM Theory 10 Arpan Deyasi Electromagnetic Theory
  • 11. T 1 = +  T 1 0.08 j0.32 = + + T 1.08 j0.32 = + 24-11-2021 Arpan Deyasi, EM Theory 11 Arpan Deyasi Electromagnetic Theory
  • 12. Problem 2 A lossless transmission line has characteristic impedance 50 Ω and is terminated by load impedance of 75 Ω. If the line is energized by a generator with output impedance of 50 Ω and open circuit output voltage of 30 V [rms). Find magnitude of instantaneous load voltage, instantaneous power delivered to the load. Consider length of the line is 2.25λ. Soln 2 l . 4 2     = =  L 0 l L 0 Z Z 75 50 0.2 Z Z 75 50 − −  = = = + + 24-11-2021 Arpan Deyasi, EM Theory 12 Arpan Deyasi Electromagnetic Theory
  • 13. Instantaneous voltage at load ( ) l 0 l V(l) V e 1 + − = +  ( ) j l 0 l V(l) V e 1 + −  = +  ( ) V(l) 30 1 0.2 = + V(l) 36 V = 24-11-2021 Arpan Deyasi, EM Theory 13 Arpan Deyasi Electromagnetic Theory
  • 14. Instantaneous power delivered 2 l L V P(l) Z = 2 36 P(l) 75 = P(l) 17.28 W = 24-11-2021 Arpan Deyasi, EM Theory 14 Arpan Deyasi Electromagnetic Theory
  • 15. Standing wave General solution of transmission line equation z z 0 0 V(z) V e V e + − −  = + z z 0 0 I(z) I e I e + − −  = − j  =  +  Propagation constant z z 0 0 V(z) V e V e + − −  = + z j z z j z 0 0 I(z) I e e I e e + − − −    = − z j z z j z 0 0 V(z) V e e V e e + − − −     = + 24-11-2021 Arpan Deyasi, EM Theory 15 Arpan Deyasi Electromagnetic Theory
  • 16. z j z z j z 0 0 V(z) V e e V e e + − − −    = + Standing wave Now ( ) ( ) ( ) ( ) z z 0 0 V e cos z jsin z V e cos z jsin z + − −  =  −  +  +          ( ) ( ) z z z z 0 0 0 0 V e V e cos z V e V e sin z + − + − −  −      = +  + −      j 0 V e−  = 24-11-2021 Arpan Deyasi, EM Theory 16 Arpan Deyasi Electromagnetic Theory
  • 17. Standing wave where ( ) ( ) 1/ 2 2 2 z z 2 z z 2 0 0 0 0 0 V V e V e cos z V e V e sin z + − + − −  −        = +  + −          ( ) ( ) ( ) z z 0 0 1 z z 0 0 V e V e tan tan z V e V e + − −  − + − −    −    =    +   Voltage for standing-wave pattern Phase for standing-wave pattern 24-11-2021 Arpan Deyasi, EM Theory 17 Arpan Deyasi Electromagnetic Theory
  • 18. Standing wave: properties Maximum voltage amplitude z z max 0 0 V V e V e + − −  = +   z max 0 V V e 1 + − = +  Minimum voltage amplitude z z min 0 0 V V e V e + − −  = −   z min 0 V V e 1 + − = −  occurs at z n  =  occurs at z (2n 1) 2   = − 24-11-2021 Arpan Deyasi, EM Theory 18 Arpan Deyasi Electromagnetic Theory
  • 19. Standing wave: properties The distance between two successive minima or maxima is one-half wavelength z n  =  n n z 2   = =    n z 2  = 24-11-2021 Arpan Deyasi, EM Theory 19 Arpan Deyasi Electromagnetic Theory
  • 20. Standing wave z j z z j z 0 0 I(z) I e e I e e + − − −    = − Again ( ) ( ) ( ) ( ) z z 0 0 I e cos z jsin z I e cos z jsin z + − −  =  −  −  +          ( ) ( ) z z z z 0 0 0 0 I e I e cos z I e I e sin z + − + − −  −      = +  − −      j 0 I e−  = 24-11-2021 Arpan Deyasi, EM Theory 20 Arpan Deyasi Electromagnetic Theory
  • 21. Standing wave where ( ) ( ) 1/ 2 2 2 z z 2 z z 2 0 0 0 0 0 I I e I e cos z I e I e sin z + − + − −  −        = −  + +          ( ) ( ) ( ) z z 0 0 1 z z 0 0 I e I e tan tan z I e I e + − −  − + − −    +    =    −   Current for standing-wave pattern Phase for standing-wave pattern 24-11-2021 Arpan Deyasi, EM Theory 21 Arpan Deyasi Electromagnetic Theory
  • 22. Standing wave: properties Maximum voltage amplitude Minimum voltage amplitude occurs at occurs at z z max 0 0 I I e I e + − −  = −   z max 0 I I e 1 + − = +  z n  =  z z min 0 0 I I e I e + − −  = +   z min 0 I I e 1 + − = −  z (2n 1) 2   = − 24-11-2021 Arpan Deyasi, EM Theory 22 Arpan Deyasi Electromagnetic Theory
  • 23. Standing wave: properties When z z 0 0 V e V e + − −  = then standing wave pattern with zero phase is given by ( ) z S 0 V 2V e cos z + − =  This is pure standing wave Vmax Vmin λ/2 λ/2 24-11-2021 Arpan Deyasi, EM Theory 23 Arpan Deyasi Electromagnetic Theory
  • 24. When z z 0 0 I e I e + − −  = then standing wave pattern with zero phase is given by ( ) z 0 S 0 V I 2j e sin z Z + − = −  This is pure standing wave Standing wave: properties Vmax Vmin λ/2 λ/2 24-11-2021 Arpan Deyasi, EM Theory 24 Arpan Deyasi Electromagnetic Theory
  • 25. Voltage and current standing waves are 90° out of phase along any time Standing wave: properties Voltage nodes and current nodes are interlaced a quarter-wavelength apart V I λ/4 24-11-2021 Arpan Deyasi, EM Theory 25 Arpan Deyasi Electromagnetic Theory
  • 26. Standing Wave Ratio It is the ratio of maximum standing wave pattern (voltage/ current) to the minimum of that value (voltage/ current) max max min min V I SWR V I = = 1 SWR 1 +  = −  24-11-2021 Arpan Deyasi, EM Theory 26 Arpan Deyasi Electromagnetic Theory
  • 27. 24-11-2021 Arpan Deyasi, EM Theory 27 Problem 3 A transmission line has characteristic impedance (50+j0.01) Ω and is terminated by load impedance of (73-j42.5) Ω. Calculate SWR. Soln L 0 l L 0 Z Z Z Z −  = + l (73 j42.5) (50 j0.01) (73 j42.5) (50 j0.01) − − +  = − + + l 0.377 42.7  =   Arpan Deyasi Electromagnetic Theory
  • 28. 24-11-2021 Arpan Deyasi, EM Theory 28 1 SWR 1 +  = −  1 0.377 SWR 1 0.377 + = − SWR 2.21 = Arpan Deyasi Electromagnetic Theory
  • 29. 24-11-2021 Arpan Deyasi, EM Theory 29 Problem 4 Soln A transmission line of characteristics impedance of Z0 = 50 Ω is terminated by a load RL = ZL = 100 Ω. Find V.S.W.R, ZMIN and ZMAX L 0 L L 0 Z Z Z Z −  = + L 100 50 50 100 50 150 −  = = + L 0.33  = Arpan Deyasi Electromagnetic Theory
  • 30. 24-11-2021 Arpan Deyasi, EM Theory 30 L L 1 V.S.W.R 1 +  = −  1 1 3 V.S.W.R 1 1 3 + = − V.S.W.R 2 = Arpan Deyasi Electromagnetic Theory
  • 31. 24-11-2021 Arpan Deyasi, EM Theory 31 L MAX 0 L 1 Z Z 1   +  =   −    L MIN 0 L 1 Z Z 1   −  =   +    MAX Z 100 =  MIN Z 25 =  Arpan Deyasi Electromagnetic Theory
  • 32. 24-11-2021 Arpan Deyasi, EM Theory 32 Problem 5 Soln A lossless transmission line with a characteristics impedance of 75 Ω is terminated by a load of impedance 120 Ω. If the magnitude of incident voltage is 10 V. Calculate the minimum and maximum values of voltages on the line. L 0 L L 0 Z Z Z Z −  = + L 45 195  = L 120 75 120 75 −  = + L 0.243  = Arpan Deyasi Electromagnetic Theory
  • 33. 24-11-2021 Arpan Deyasi, EM Theory 33 ( ) Max 0 L V V 1 = +  ( ) Min 0 L V V 1 = −  ( ) Max V 10 1 0.243 = + Max V 12.43V = ( ) Min V 10 1 0.243 = − Min V 7.57V = Arpan Deyasi Electromagnetic Theory