SlideShare a Scribd company logo
Diode Applications
REC 101: Basic Electronics Unit 1
PN junction diode: Introduction of Semiconductor Materials Semiconductor Diode: Depletion
layer, V-I characteristics, ideal and practical, diode resistance, capacitance, Diode Equivalent
Circuits, Transition and Diffusion Capacitance, Zener Diodes breakdown mechanism (Zener
and avalanche) Diode Application: Series , Parallel and Series, Parallel Diode Configuration,
Half and Full Wave rectification, Clippers, Clampers, Zener diode as shunt regulator, Voltage-
Multiplier Circuits Special Purpose two terminal Devices :Light-Emitting Diodes, Varactor
(Varicap) Diodes, Tunnel Diodes, Liquid-Crystal Displays.
9/11/2017 1
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
Diode Application: Series, Parallel and
Series, Parallel Configuration
• The forward resistance of diode is so small
compared to the other series elements of network
that it can be ignored (if not specified)
• In general, a diode is in the ON state if the current
established by the sources is such that, its direction
matches to the arrow of diode symbol, and VD  VK
otherwise it is in OFF state
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
2
Diode VK (V)
Ideal 0
Ge 0.3
Si 0.7
GaAs 1.2
Steps to find the state of diode
1. Replace the diode with equivalent circuit.
2. mentally replace diode with a resistance
and check direction of current through it.
3. If current direction matches to diode arrow
then diode is ON otherwise it is OFF
Practical
VK
ideal ideal
VK
Rf
OR
Diode Equivalent circuit
VK knee voltage
Rf diode forward resistance
Diode Application: Series , Parallel and
Series, Parallel Diode Configuration,
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
3
ideal
0.7 V
10 V 100 
Si
10 V 100 
1.Replace diode with
equivalent circuit
ideal
0.7 V
10 V 100 
2.Replace ideal diode with
fictitious resistance and
find the current direction
3. As current matches with
diode direction, it is ON.
Short-circuit the diode
and solve the circuit
mA93A093.0
100
7.010


I
0.7 V
10 V 100 
I
Diode Application: rectifier
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
4
• One of the common application of diode is ‘rectifier’ which
converts AC signal into DC.
• There are many rectifier circuits
– Half Wave rectifier
– Full wave rectifier; Bridge type & Centre tapped
• Practical rectifier consists of; Transformer, Rectifier, Filter &
Regulator stage
• Rectifier output for one cycle (period) of input is analyzed
AC
Input
+
DC
output
-
Transformer
Stage
Rectifier
Stage
Regulator
stage
Filter
Stage
Diode Application: Half Wave rectifier
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
5
t
Vi(t)
T
Vm
-Vm
+
Vo(t)=Vi(t)
-
+
Vi(t)
-
Rt
Vi(t)
T
Vm
-Vm
Vo
T
Vm
t
Positive Half cycle
(0  t< T/2)
Vi(t) >0 and diode is ON
So Vo(t) = Vi(t)
+ -
+
V0(t)
-
+
Vi(t)
-
R
Half wave rectifier circuit 
T
tSinVtV mi


2
where,)( 
The process of removing one-
half the input ac signal to
establish a dc level is called
halfwave rectification
V0(t)
T
Vm
t
+
Vi(t)
-
Rt
Vi(t)
T
Vm
-Vm
Negative Half cycle
(T/2  t< T)
Vi(t) <0 and diode is OFF
So Vo(t) = 0
+
Vo(t)=0
-






TtTfor
TtfortV
tV i
2/0
2/0)(
)(periodofoutputcombinedTherefore 0
Diode Application: Half Wave rectifier
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
6
t
Vi(t)
T
Vm
-Vm
V0(t)
T
Vm
t
2T
2T
Vdc= 0.318Vm
 
  






mm
T
m
dc
T
m
TT
i
T
dc
V
Cos
T
Cos
V
tCos
T
V
V
dttSinV
T
dtdttV
T
dttV
T
V






















 
)0(
22
1
.0)(
1
)(
1
2
0
2
0
2
0
2
00
0
VDC: is periodic average of output wave
mdc VV 318.0 





TtTfor
TtfortV
tV i
2/0
2/0)(
)(0
 
       
2
0
4
2sin
42
2cos1
2
.0)(
1
)(
1
2
2
0
2
2
0
22
0
2
2
0
2
22
0
2
0
2
0
2
mm
T
m
T
m
T
m
dc
T
m
TT
i
T
orms
VV
t
T
V
t
T
V
dtt
T
V
V
dttSin
T
V
dtdttV
T
dttV
T
V

















Vrms: square root of periodic average of squared output
mrms VV 5.0
Diode Application: Half Wave rectifier
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
7
Peak inverse voltage (PIV or PRV) :
Applying KVL, in loop of reverse bias diode. PIV  Vm
-
Vm
+
R
- PIV +
V0(t)=0 V
Ripple factor: ratio of Vac to Vdc
  21.1157.11
2
12
factorformiskwhere
11factorRipple
2
2
2
f
2
222
222
































m
m
f
dc
rms
dc
dcrms
dc
ac
dcacrms
V
V
k
V
V
V
VV
V
V
VVV
Diode Application:
Bridge type Full Wave rectifier
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
8
t
Vi(t)
T
Vm
-Vm
t
Vi(t)
T
Vm
-Vm
Vo(t)
T
Vm
t
+
Vi(t)
-
R
- Vo(t) +
Positive Half cycle
(0  t< T/2)
Vi(t)>0 so
D2 and D3 is ON
D1 and D4 is ON
So Vo(t) = Vi(t)
+
Vi(t)
-
R
- Vo(t) +
D1 D2
D3 D4
The process of utilizing full
period of ac signal to establish
a dc level is called fullwave
rectification
A bridge with 4 diodes as
shown in figure is most
familiar full wave rectifier.
Diode Application:
Bridge type Full Wave rectifier
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
9
t
Vi(t)
T
Vm
-Vm
V0(t)
T
Vm
t
t
Vi(t)
T
Vm
-Vm
Vo(t)
T
Vm
t
+
Vi(t)
-
R
- Vo(t) +
Negative Half cycle
(T/2  t< T)
Vi(t)<0 and
D2 and D3 is ON
D1 and D4 is ON
So Vo(t) = - Vi(t)
 

 m
T
m
T
i
T
dc
V
dttSinV
T
dttV
T
dttV
T
V
22
)(2
1
)(
1 2
0
2
00
0 








 
VDC: As the area above the axis for one full cycle
is now twice of that for a half-wave system, dc
level has also been doubled
mdc VV 636.0






TtTfortV
TtfortV
tV
i
i
2/)(
2/0)(
)(periodofoutputcombinedTherefore 0
Vdc= 0.636Vm
Diode Application:
Bridge type Full Wave rectifier
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
10
 
22
2
)(
2
)(
1 22
0
2
22
0
2
0
2 mm
T
m
T
i
T
orms
VV
dttSin
T
V
dttV
T
dttV
T
V   
Vrms:
mrms VV 707.0
Peak inverse voltage (PIV or PRV)
Applying KVL, in loop containing
input and reverse bias diode.
PIV  Vm
+
Vm
-
R
- Vo(t) +
-
Vm
+
R
- Vo(t) +
Ripple factor: ratio of Vac to Vdc
  48.01109.11
22
1
2
21
2
2
2
2



























m
m
dc
rms
V
V
V
V
Diode Application:
Centre tapped Full Wave rectifier
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
11
t
Vi(t)
T
Vm
-Vm
t
Vi(t)
T
Vm
-Vm
Vo(t)
T
Vm
t
R
1:2
+
Vi(t)
- - Vo(t) +
+
Vi(t)
-
+
Vi(t)
-
Positive Half cycle
(0  t< T/2)
Vi(t) >0 so
D1 is ON & D2 is OFF
So V0(t) = Vi(t)
+
Vi(t)
-
R
- Vo(t) +
+
Vi(t)
-
+
Vi(t)
-
1:2
D1
D2
Another type of fullwave
rectifier is Centre tapped
It uses 2 diodes with a centre
tapped transformer.
t
Vi(t)
T
Vm
-Vm
Vo(t)
T
Vm
t
R
1:2
+
Vi(t)
- - Vo(t) +
+
Vi(t)
-
+
Vi(t)
-
Negative Half cycle
(T/2  t< T)
Vi(t) <0 so
D1 is OFF & D2 is ON
So V0 (t) = -Vi(t)
Diode Application:
Centre tapped Full Wave rectifier
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
12
VDC: equal to that of bridge type full wave rectifier
mdc VV 636.0






TtTfortV
TtfortV
tV
i
i
2/)(
2/0)(
)(periodofoutputcombinedTherefore 0
t
Vi(t)
T
Vm
-Vm
Vo(t)
T
Vm
t
Vdc= 0.636VmVrms: equal to that of bridge type full wave rectifier
mrms VV 707.0
Peak inverse voltage (PIV or PRV)
Applying KVL, in loop containing input
and reverse bias diode.
PIV  2Vm
R
1:2
+
Vm
- - Vm +
+
Vm
-
+
Vm
-- PIV +
Ripple factor: ratio of Vac to Vdc
48.0
Diode Application: Clippers
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
13
Clippers are networks that employ diodes to “clip” away a
portion of an input signal without distorting the remaining
part of the applied waveform.
t
Vi(t)
T
Vm
-Vm
+
V0(t)
-
+
Vi(t)
-
R t
Vo(t)
T
Vm
-Vm
If Vi(t) 0, Diode ON, Vo(t)= Vi(t)
If Vi(t) <0, Diode OFF, Vo(t) =0
t
Vi(t)
T
Vm
-Vm
+
V0(t)
-
+
Vi(t)
-
R t
Vo(t)
T
-Vm
If Vi(t) >0, Diode OFF, Vo(t)= 0
If Vi(t) 0, Diode ON, Vo(t) =Vi(t)
Negative Series Clipper
Positive Series Clipper
Diode Application: Clippers
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
14
t
Vi(t)
T
Vm
-Vm
+
V0(t)
-
+
Vi(t)
-
R t
Vo(t)
T
Vm-VVV V
-V
t
Vi(t)
T
Vm
-Vm
+
V0(t)
-
+
Vi(t)
-
R t
Vo(t)
T
-(Vm+V)
If Vi(t) -V0, Diode ON, Vo(t)= Vi(t) -V
If Vi(t) -V<0, Diode OFF, Vo(t) =0
If Vi(t) -V>0, Diode OFF, Vo(t)= 0
If Vi(t) -V  0, Diode ON, Vo(t) =Vi(t) -V
t
Vi(t)
T
Vm
-Vm
+
V0(t)
-
+
Vi(t)
-
R
t
Vo(t)
Vm+V
V
V
V
-V
t
Vi(t)
T
Vm
-Vm
+
V0(t)
-
+
Vi(t)
-
R t
Vo(t)
T
-(Vm-V)
If Vi(t) +V0, Diode ON, Vo(t)= Vi(t) +V
If Vi(t) +V<0, Diode OFF, Vo(t) =0
If Vi(t)+V>0, Diode OFF, Vo(t)= 0
If Vi(t) +V  0, Diode ON, Vo(t) =Vi(t) +V
T
Negative biased Series Clipper Positive biased Series Clipper
Diode Application: Clippers
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
15
+
V0(t)
-
+
Vi(t)
-
R
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
Vm
If Vi(t) >0, Diode OFF, Vo(t)= Vi(t)
If Vi(t)  0, Diode ON, Vo(t) =0
+
V0(t)
-
+
Vi(t)
-
R
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
-Vm
If Vi(t)  0, Diode ON, Vo(t)= 0
If Vi(t) <0, Diode OFF, Vo(t) =Vi(t)
+
V0(t)
-
+
Vi(t)
-
R
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
-Vm
If Vi(t)-V 0, Diode ON, Vo(t)= V
If Vi(t)-V <0, Diode OFF, Vo(t) = Vi(t)
V
V V
+
V0(t)
-
+
Vi(t)
-
R
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
Vm
If Vi(t)-V >0, Diode OFF, Vo(t)= Vi(t)
If Vi(t)-V 0, Diode ON, Vo(t) = V
V
V V
Negative parallel Clipper Positive parallel Clipper
Negative biased parallel Clipper Positive biased parallel Clipper
Diode Application: Clippers
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
16
+
V0(t)
-
+
Vi(t)
-
R
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
-Vm
If Vi(t)+V  0, Diode ON, Vo(t)= -V
If Vi(t)+V <0, Diode OFF, Vo(t) = Vi(t)
VV -V
+
V0(t)
-
+
Vi(t)
-
R
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
Vm
If Vi(t)+V >0, Diode OFF, Vo(t)= Vi(t)
If Vi(t)+V 0, Diode ON, Vo(t) = -V
V-V
Negative biased parallel Clipper Positive biased parallel Clipper
-V
+
V0(t)
-
+
Vi(t)
-
R
t
Vi(t)
T
Vm
-Vm
If Vi(t)- V1 0, Diode D1 ON, & Vi(t)+ V2 >0, Diode D2 OFF, Vo(t)= V1
If Vi(t)- V1 <0, Diode D1 OFF, & Vi(t)+ V2 >0, Diode D2 OFF, Vo(t)= Vi(t)
If Vi(t)- V1 <0, Diode D1 OFF, & Vi(t)+ V2 0, Diode D2 ON, Vo(t)= -V2
V1
V1
t
Vo(t)
T
V1
V2
-V2
-V2
D1 D2
Diode Application: Clampers
Clamping networks have capacitor connected in series with a
diode and resistance in parallel.
Steps to solve clamper circuit
1. Start analysis by examining the response of the portion of
the input signal that will forward bias the diode
2. determine maximum voltage with polarity on capacitor
(assumed that capacitor is charged instantaneously)
3. Assume that during the period when the diode is in OFF state
the capacitor holds on to its established voltage level
4. Now determine the output
5. Check that total swing of the output matches to the input
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
17
Diode Application: Clampers
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
18
Step 1. In +ve half cycle, Diode is ON and maximum voltage on
charged capacitor voltage Vm with polarities shown
V1
+
V0(t)
-
+
Vi(t)
-
R
C
+
V0(t)
-
+
Vi(t)
-
R
C
+ Vm -
t
Vi(t)
T
Vm
-Vm
t
Vi(t)
T
Vm
-Vm
Diode Application: Clampers
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
19
2. Assuming capacitor has charged upto to Vm and holds in when
diode is in OFF state
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
Vm
-Vm
Now as Vi(t)-Vm0, diode is ON and Vo(t)=0
+
V0(t)
-
+
Vi(t)
-
R
C
+ Vm -
+
V0(t)
-
+
Vi(t)
-
R
C
+ Vm -
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
-2Vm
Now as Vi(t)-Vm<0, diode is OFF and Vo(t)= Vi(t)-Vm =-2Vm
Positive part of cycle
(0  t< T/2)
Vi(t) =Vm so
Diode is ON
So V0(t) = 0
Negative part of cycle
(T/2  t< 0)
Vi(t) =-Vm so
Diode is OFF
So V0(t) = Vi(t)-Vm= -2Vm
Diode Application: Clampers
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
20
The output is drawn
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
-2Vm
-2Vm
-2Vm
Diode Application: Clampers
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
21
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
-2Vm
+
V0(t)
-
+
Vi(t)
-
R
C
Vm
+ -
Vm
+
V0(t)
-
+
Vi(t)
-
R
C
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
2Vm
- m +
t
Vi(t)
T
Vm
-Vm
Vm+V +
V0(t)
-
+
Vi(t)
-
R
C
V
- +
t
Vo(t)
T
2Vm+V
V
t
Vi(t)
T
Vm
-Vm
V
+
V0(t)
-
+
Vi(t)
-
R
C
(Vm+V)
+ -
t
Vo(t)
T
-V
-2Vm-V
t
Vi(t)
T
Vm
-Vm
Vm-V +
V0(t)
-
+
Vi(t)
-
R
C
V
- +
t
Vo(t)
T
2Vm-V
-V
t
Vi(t)
T
Vm
-Vm
V
+
V0(t)
-
+
Vi(t)
-
R
C
(Vm-V)
+ -
t
Vo(t)
T
V
-2Vm+V
Diode Application: Zener diode as shunt regulator
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
22
The use of the Zener diode as a regulator is very common.
Steps to analyse Zener diode networks
1. Determine the state of the Zener diode by removing it from the
network and calculating the voltage across the resulting open circuit
2. Substitute the appropriate equivalent circuit and solve for the
desired unknowns + VD -
Forward bias VD  0
+ VK -
+ VD -
+ VD - - VZ +
Reverse bias VZ <VD < 0
Breakdown VD = VZ
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
23
+
V0
-
R
+
VZ
-
IZ
RL
Vi
+
V0
-
R
+
V
-
RL
Vi
L
iL
RR
VR
V

If V  VZ Then Zener is ON (breakdown region)
If V < VZ Then Zener is OFF
If diode is ON, then circuit shall be
+
V0
-
R
RL
Vi VZ
IR
IZ IL
ZZZ
L
Z
i
L
ZZi
Z
LRZ
ZO
IVP
RR
V
R
V
R
V
R
VV
I
III
VVV












11
Diode Application: Zener diode as shunt regulator
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
24
L
iL
RR
VR
V


If V  VZ Then Zener is ON (breakdown region)
If V < VZ Then Zener is OFF
If diode is ON, then circuit shall be
sheetdataperascurrentdiodemaxiswhere
soconstant,isas
breakdowninONbetodiodeforresistanceLoadMin
thus
min
minmin
max
min
min
ZMZMRL
R
L
Z
L
L
L
L
Zi
Z
L
L
iL
ZO
IIII
I
R
V
R
V
I
R
VV
RV
R
RR
VR
VVV






+
V0
-
R
+
VZ
-
IZ
RL
Vi
+
V0
-
R
+
V
-
RL
Vi
+
V0
-
R
RL
Vi VZ
IR
IZ IL
Diode Application: Zener diode as shunt regulator
Diode Application: Voltage-Multiplier Circuits
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
25
• Voltage multipliers use clamping action to increase peak rectified
voltages without increasing the transformer’s voltage rating.
• Multiplication factors of two, three, and four are common.
• Voltage multipliers are used in high-voltage, low-current
• applications such as cathode-ray tubes (CRTs) and particle
accelerators
Diode Application: Voltage-Multiplier Circuits
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
26
Half wave Voltage doubler
t
Vi(t)
T
Vm
-Vm
D1
C1
+
Vi(t)
-
-
2Vm
+
D2
C2
t
Vi(t)
T
Vm
-Vm
C1
+
Vi(t)
-
+
Vo(t)
-
C2
+ -
Vm+
Vm
-
-
Vm
+
+ -
C1
+
Vi(t)
-
-
2Vm
+
C2
Vm
Half wave Voltage doubler operation:
Positive half cycle
Half wave Voltage doubler operation:
Negative half cycle
t
Vi(t)
T
Vm
-Vm
Diode Application: Voltage-Multiplier Circuits
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
27
Full wave Voltage doubler
Full wave Voltage doubler operation:
Positive half cycle
Full wave Voltage doubler operation:
Negative half cycle
t
Vi(t)
T
Vm
-Vm
C1
D1
+
2Vm
-
C2
+
Vi(t)
-
D2
t
Vi(t)
T
Vm
-Vm
C1
D1
+
-
C2
+
Vi(t)
-
D2
Vm
+
-
t
Vi(t)
T
Vm
-Vm
C1
D1
+
-
C2
+
Vi(t)
-
D2
Vm
-
+
+
-
Vm
+
-
Vm
+
-
Vm
+
-
Vm
Diode Application: Voltage-Multiplier Circuits
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
28
Voltage Tripler and Quadrupler
t
Vi(t)
T
Vm
-Vm
Vm
+
Vi(t)
-
D1
C2
D2
C3
D3
C4
D4
C1
+ -
+ -
2Vm
+ -
2Vm
+ -
2Vm
doubler
Quadrupler
Tripler
Thanks
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
29
Contact
Dr Naim R Kidwai
Professor & Dean
JETGI, Faculty of Engineering Barabanki, (UP)
Email: naim.kidwai@gmail.com
Naim.Kidwai@jit.edu.in

More Related Content

What's hot

Circuit theory thevenin theorem
Circuit theory thevenin theoremCircuit theory thevenin theorem
Circuit theory thevenin theorem
Syed Saeed
 
Semiconductor diodes
Semiconductor diodesSemiconductor diodes
Semiconductor diodes
Sirat Mahmood
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-1
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-1Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-1
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-1Shiwam Isrie
 
Unit-I Characteristics of opamp
Unit-I Characteristics of opampUnit-I Characteristics of opamp
Unit-I Characteristics of opamp
Dr.Raja R
 
Shockley Diode
Shockley DiodeShockley Diode
Shockley Diode
Barira Khan
 
Diodes
DiodesDiodes
Diodes
Soujanya Roy
 
Norton's theorem
Norton's theoremNorton's theorem
Norton's theorem
Syed Saeed
 
Semiconductor diodes1
Semiconductor diodes1Semiconductor diodes1
Semiconductor diodes1
Sirat Mahmood
 
PN Junction diode
PN Junction diodePN Junction diode
PN Junction diode
PHYSICS PPT CLUB
 
Load line & q point
Load line & q pointLoad line & q point
Load line & q point
THE CREATORS ACADEMY
 
Electronics 1 : Chapter # 07 : AC Analysis BJT
Electronics 1 : Chapter # 07 : AC Analysis BJTElectronics 1 : Chapter # 07 : AC Analysis BJT
Electronics 1 : Chapter # 07 : AC Analysis BJT
Sk_Group
 
Pn junction diode by sarmad baloch
Pn junction diode by sarmad balochPn junction diode by sarmad baloch
Pn junction diode by sarmad baloch
Sarmad Baloch
 
SPECIAL PURPOSE DIODE
SPECIAL PURPOSE DIODESPECIAL PURPOSE DIODE
SPECIAL PURPOSE DIODE
mihir jain
 
Semiconductor diode
Semiconductor diodeSemiconductor diode
Semiconductor diode
RAMPRAKASHT1
 
Tunnel diode
Tunnel diodeTunnel diode
Tunnel diode
Sohel Sarker
 
Study of wave shaping circuits of diode, integrators and differentiators
Study of wave shaping circuits  of diode, integrators and  differentiatorsStudy of wave shaping circuits  of diode, integrators and  differentiators
Study of wave shaping circuits of diode, integrators and differentiators
THE CREATORS ACADEMY
 
Types of transistors
Types of transistorsTypes of transistors
Types of transistors
Unsa Shakir
 
Switching regulators
Switching regulatorsSwitching regulators
Switching regulators
vishalgohel12195
 
Diode Application
Diode ApplicationDiode Application
Diode Application
UMAR ALI
 

What's hot (20)

Circuit theory thevenin theorem
Circuit theory thevenin theoremCircuit theory thevenin theorem
Circuit theory thevenin theorem
 
Semiconductor diodes
Semiconductor diodesSemiconductor diodes
Semiconductor diodes
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-1
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-1Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-1
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-1
 
Unit-I Characteristics of opamp
Unit-I Characteristics of opampUnit-I Characteristics of opamp
Unit-I Characteristics of opamp
 
Shockley Diode
Shockley DiodeShockley Diode
Shockley Diode
 
Diodes
DiodesDiodes
Diodes
 
Norton's theorem
Norton's theoremNorton's theorem
Norton's theorem
 
Semiconductor diodes1
Semiconductor diodes1Semiconductor diodes1
Semiconductor diodes1
 
PN Junction diode
PN Junction diodePN Junction diode
PN Junction diode
 
Load line & q point
Load line & q pointLoad line & q point
Load line & q point
 
Electronics 1 : Chapter # 07 : AC Analysis BJT
Electronics 1 : Chapter # 07 : AC Analysis BJTElectronics 1 : Chapter # 07 : AC Analysis BJT
Electronics 1 : Chapter # 07 : AC Analysis BJT
 
Pn junction diode by sarmad baloch
Pn junction diode by sarmad balochPn junction diode by sarmad baloch
Pn junction diode by sarmad baloch
 
SPECIAL PURPOSE DIODE
SPECIAL PURPOSE DIODESPECIAL PURPOSE DIODE
SPECIAL PURPOSE DIODE
 
Semiconductor diode
Semiconductor diodeSemiconductor diode
Semiconductor diode
 
Tunnel diode
Tunnel diodeTunnel diode
Tunnel diode
 
Study of wave shaping circuits of diode, integrators and differentiators
Study of wave shaping circuits  of diode, integrators and  differentiatorsStudy of wave shaping circuits  of diode, integrators and  differentiators
Study of wave shaping circuits of diode, integrators and differentiators
 
Types of transistors
Types of transistorsTypes of transistors
Types of transistors
 
Switching regulators
Switching regulatorsSwitching regulators
Switching regulators
 
Diode Application
Diode ApplicationDiode Application
Diode Application
 
Transistor as a switch
Transistor as a switch Transistor as a switch
Transistor as a switch
 

Similar to Rec101 unit 1 (part iii) diode applications

ADE UNIT-I.pptx
ADE UNIT-I.pptxADE UNIT-I.pptx
ADE UNIT-I.pptx
KUMARS641064
 
Semiconductor basics
Semiconductor basicsSemiconductor basics
Semiconductor basics
Rohit Kumar
 
Diode - Basic Applications
Diode - Basic ApplicationsDiode - Basic Applications
Diode - Basic Applications
Yong Heui Cho
 
Diode - V and I
Diode - V and IDiode - V and I
Diode - V and I
Yong Heui Cho
 
Aec manual for III SEM ECE Students VTU
Aec manual for III SEM ECE Students VTUAec manual for III SEM ECE Students VTU
Aec manual for III SEM ECE Students VTU
Gopal Krishna Murthy C R
 
Zener_diode.pdf
Zener_diode.pdfZener_diode.pdf
Zener_diode.pdf
mohamedShabaan37
 
4. Rectifier.pptx
4. Rectifier.pptx4. Rectifier.pptx
4. Rectifier.pptx
DHANUSHKUMARKS
 
Aec manual2017 imp
Aec manual2017 impAec manual2017 imp
Aec manual2017 imp
Gopinath.B.L Naidu
 
Clippers_and_Clampers.pptx
Clippers_and_Clampers.pptxClippers_and_Clampers.pptx
Clippers_and_Clampers.pptx
SIVA NAGI REDY KALLI
 
Eg1108 rectifiers
Eg1108 rectifiersEg1108 rectifiers
Eg1108 rectifiers
Apik Indrapraja
 
Diode Applications.pptx
Diode Applications.pptxDiode Applications.pptx
Diode Applications.pptx
ShrutiSharma485933
 
Improved High Gain Dc-Dc Converter with Reduced Noise
Improved High Gain Dc-Dc Converter with Reduced NoiseImproved High Gain Dc-Dc Converter with Reduced Noise
Improved High Gain Dc-Dc Converter with Reduced Noise
IRJET Journal
 
Original MOSFET N-Channel IRF740 740 TO-220 10A 400V New
Original MOSFET N-Channel IRF740 740 TO-220  10A 400V NewOriginal MOSFET N-Channel IRF740 740 TO-220  10A 400V New
Original MOSFET N-Channel IRF740 740 TO-220 10A 400V New
AUTHELECTRONIC
 
Components the diode
Components   the diodeComponents   the diode
Components the diodesld1950
 
Components the diode
Components   the diodeComponents   the diode
Components the diodesdacey
 
Devices part 1
Devices part 1Devices part 1
Devices part 1
Taimur Ijaz
 
Ch2slide (1).pdf
Ch2slide (1).pdfCh2slide (1).pdf
Ch2slide (1).pdf
TahirNIAZIKHAN
 
Clamping Circuit and Clipping Circuit
Clamping Circuit and Clipping CircuitClamping Circuit and Clipping Circuit
Clamping Circuit and Clipping Circuit
Dr.Raja R
 

Similar to Rec101 unit 1 (part iii) diode applications (20)

ADE UNIT-I.pptx
ADE UNIT-I.pptxADE UNIT-I.pptx
ADE UNIT-I.pptx
 
Lec-2.pdf
Lec-2.pdfLec-2.pdf
Lec-2.pdf
 
Lec-2.pdf
Lec-2.pdfLec-2.pdf
Lec-2.pdf
 
Semiconductor basics
Semiconductor basicsSemiconductor basics
Semiconductor basics
 
Diode - Basic Applications
Diode - Basic ApplicationsDiode - Basic Applications
Diode - Basic Applications
 
Diode - V and I
Diode - V and IDiode - V and I
Diode - V and I
 
Aec manual for III SEM ECE Students VTU
Aec manual for III SEM ECE Students VTUAec manual for III SEM ECE Students VTU
Aec manual for III SEM ECE Students VTU
 
Zener_diode.pdf
Zener_diode.pdfZener_diode.pdf
Zener_diode.pdf
 
4. Rectifier.pptx
4. Rectifier.pptx4. Rectifier.pptx
4. Rectifier.pptx
 
Aec manual2017 imp
Aec manual2017 impAec manual2017 imp
Aec manual2017 imp
 
Clippers_and_Clampers.pptx
Clippers_and_Clampers.pptxClippers_and_Clampers.pptx
Clippers_and_Clampers.pptx
 
Eg1108 rectifiers
Eg1108 rectifiersEg1108 rectifiers
Eg1108 rectifiers
 
Diode Applications.pptx
Diode Applications.pptxDiode Applications.pptx
Diode Applications.pptx
 
Improved High Gain Dc-Dc Converter with Reduced Noise
Improved High Gain Dc-Dc Converter with Reduced NoiseImproved High Gain Dc-Dc Converter with Reduced Noise
Improved High Gain Dc-Dc Converter with Reduced Noise
 
Original MOSFET N-Channel IRF740 740 TO-220 10A 400V New
Original MOSFET N-Channel IRF740 740 TO-220  10A 400V NewOriginal MOSFET N-Channel IRF740 740 TO-220  10A 400V New
Original MOSFET N-Channel IRF740 740 TO-220 10A 400V New
 
Components the diode
Components   the diodeComponents   the diode
Components the diode
 
Components the diode
Components   the diodeComponents   the diode
Components the diode
 
Devices part 1
Devices part 1Devices part 1
Devices part 1
 
Ch2slide (1).pdf
Ch2slide (1).pdfCh2slide (1).pdf
Ch2slide (1).pdf
 
Clamping Circuit and Clipping Circuit
Clamping Circuit and Clipping CircuitClamping Circuit and Clipping Circuit
Clamping Circuit and Clipping Circuit
 

More from Dr Naim R Kidwai

Asynchronous sequential circuit analysis
Asynchronous sequential circuit analysisAsynchronous sequential circuit analysis
Asynchronous sequential circuit analysis
Dr Naim R Kidwai
 
synchronous Sequential circuit counters and registers
synchronous Sequential circuit counters and registerssynchronous Sequential circuit counters and registers
synchronous Sequential circuit counters and registers
Dr Naim R Kidwai
 
Clocked Sequential circuit analysis and design
Clocked Sequential circuit analysis and designClocked Sequential circuit analysis and design
Clocked Sequential circuit analysis and design
Dr Naim R Kidwai
 
Sequential circuit-flip flops
Sequential circuit-flip flopsSequential circuit-flip flops
Sequential circuit-flip flops
Dr Naim R Kidwai
 
Sampling Theorem
Sampling TheoremSampling Theorem
Sampling Theorem
Dr Naim R Kidwai
 
Moodle introduction
Moodle introductionMoodle introduction
Moodle introduction
Dr Naim R Kidwai
 
Project financial feasibility
Project financial feasibilityProject financial feasibility
Project financial feasibility
Dr Naim R Kidwai
 
financing infrastructure projects
financing infrastructure projectsfinancing infrastructure projects
financing infrastructure projects
Dr Naim R Kidwai
 
financing projects
financing projectsfinancing projects
financing projects
Dr Naim R Kidwai
 
multiple projects and constraints
multiple projects and constraintsmultiple projects and constraints
multiple projects and constraints
Dr Naim R Kidwai
 
project risk analysis
project risk analysisproject risk analysis
project risk analysis
Dr Naim R Kidwai
 
Nec 602 unit ii Random Variables and Random process
Nec 602 unit ii Random Variables and Random processNec 602 unit ii Random Variables and Random process
Nec 602 unit ii Random Variables and Random process
Dr Naim R Kidwai
 
spread spectrum communication
spread spectrum communicationspread spectrum communication
spread spectrum communication
Dr Naim R Kidwai
 
Error Control coding
Error Control codingError Control coding
Error Control coding
Dr Naim R Kidwai
 
information theory
information theoryinformation theory
information theory
Dr Naim R Kidwai
 
Rec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re modelRec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re model
Dr Naim R Kidwai
 
Rec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistorRec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistor
Dr Naim R Kidwai
 
Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristics
Dr Naim R Kidwai
 
Rec101 unit v communication engg
Rec101 unit v communication enggRec101 unit v communication engg
Rec101 unit v communication engg
Dr Naim R Kidwai
 
Rec101 unit iv emi
Rec101 unit iv emiRec101 unit iv emi
Rec101 unit iv emi
Dr Naim R Kidwai
 

More from Dr Naim R Kidwai (20)

Asynchronous sequential circuit analysis
Asynchronous sequential circuit analysisAsynchronous sequential circuit analysis
Asynchronous sequential circuit analysis
 
synchronous Sequential circuit counters and registers
synchronous Sequential circuit counters and registerssynchronous Sequential circuit counters and registers
synchronous Sequential circuit counters and registers
 
Clocked Sequential circuit analysis and design
Clocked Sequential circuit analysis and designClocked Sequential circuit analysis and design
Clocked Sequential circuit analysis and design
 
Sequential circuit-flip flops
Sequential circuit-flip flopsSequential circuit-flip flops
Sequential circuit-flip flops
 
Sampling Theorem
Sampling TheoremSampling Theorem
Sampling Theorem
 
Moodle introduction
Moodle introductionMoodle introduction
Moodle introduction
 
Project financial feasibility
Project financial feasibilityProject financial feasibility
Project financial feasibility
 
financing infrastructure projects
financing infrastructure projectsfinancing infrastructure projects
financing infrastructure projects
 
financing projects
financing projectsfinancing projects
financing projects
 
multiple projects and constraints
multiple projects and constraintsmultiple projects and constraints
multiple projects and constraints
 
project risk analysis
project risk analysisproject risk analysis
project risk analysis
 
Nec 602 unit ii Random Variables and Random process
Nec 602 unit ii Random Variables and Random processNec 602 unit ii Random Variables and Random process
Nec 602 unit ii Random Variables and Random process
 
spread spectrum communication
spread spectrum communicationspread spectrum communication
spread spectrum communication
 
Error Control coding
Error Control codingError Control coding
Error Control coding
 
information theory
information theoryinformation theory
information theory
 
Rec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re modelRec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re model
 
Rec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistorRec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistor
 
Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristics
 
Rec101 unit v communication engg
Rec101 unit v communication enggRec101 unit v communication engg
Rec101 unit v communication engg
 
Rec101 unit iv emi
Rec101 unit iv emiRec101 unit iv emi
Rec101 unit iv emi
 

Recently uploaded

Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
heavyhaig
 
Water billing management system project report.pdf
Water billing management system project report.pdfWater billing management system project report.pdf
Water billing management system project report.pdf
Kamal Acharya
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
gestioneergodomus
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
yokeleetan1
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
SUTEJAS
 
Unbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptxUnbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptx
ChristineTorrepenida1
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Fundamentals of Induction Motor Drives.pptx
Fundamentals of Induction Motor Drives.pptxFundamentals of Induction Motor Drives.pptx
Fundamentals of Induction Motor Drives.pptx
manasideore6
 
digital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdfdigital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdf
drwaing
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Soumen Santra
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
symbo111
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
An Approach to Detecting Writing Styles Based on Clustering Techniques
An Approach to Detecting Writing Styles Based on Clustering TechniquesAn Approach to Detecting Writing Styles Based on Clustering Techniques
An Approach to Detecting Writing Styles Based on Clustering Techniques
ambekarshweta25
 

Recently uploaded (20)

Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
 
Water billing management system project report.pdf
Water billing management system project report.pdfWater billing management system project report.pdf
Water billing management system project report.pdf
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
 
Unbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptxUnbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptx
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Fundamentals of Induction Motor Drives.pptx
Fundamentals of Induction Motor Drives.pptxFundamentals of Induction Motor Drives.pptx
Fundamentals of Induction Motor Drives.pptx
 
digital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdfdigital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdf
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
An Approach to Detecting Writing Styles Based on Clustering Techniques
An Approach to Detecting Writing Styles Based on Clustering TechniquesAn Approach to Detecting Writing Styles Based on Clustering Techniques
An Approach to Detecting Writing Styles Based on Clustering Techniques
 

Rec101 unit 1 (part iii) diode applications

  • 1. Diode Applications REC 101: Basic Electronics Unit 1 PN junction diode: Introduction of Semiconductor Materials Semiconductor Diode: Depletion layer, V-I characteristics, ideal and practical, diode resistance, capacitance, Diode Equivalent Circuits, Transition and Diffusion Capacitance, Zener Diodes breakdown mechanism (Zener and avalanche) Diode Application: Series , Parallel and Series, Parallel Diode Configuration, Half and Full Wave rectification, Clippers, Clampers, Zener diode as shunt regulator, Voltage- Multiplier Circuits Special Purpose two terminal Devices :Light-Emitting Diodes, Varactor (Varicap) Diodes, Tunnel Diodes, Liquid-Crystal Displays. 9/11/2017 1 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad
  • 2. Diode Application: Series, Parallel and Series, Parallel Configuration • The forward resistance of diode is so small compared to the other series elements of network that it can be ignored (if not specified) • In general, a diode is in the ON state if the current established by the sources is such that, its direction matches to the arrow of diode symbol, and VD  VK otherwise it is in OFF state 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 2 Diode VK (V) Ideal 0 Ge 0.3 Si 0.7 GaAs 1.2 Steps to find the state of diode 1. Replace the diode with equivalent circuit. 2. mentally replace diode with a resistance and check direction of current through it. 3. If current direction matches to diode arrow then diode is ON otherwise it is OFF Practical VK ideal ideal VK Rf OR Diode Equivalent circuit VK knee voltage Rf diode forward resistance
  • 3. Diode Application: Series , Parallel and Series, Parallel Diode Configuration, 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 3 ideal 0.7 V 10 V 100  Si 10 V 100  1.Replace diode with equivalent circuit ideal 0.7 V 10 V 100  2.Replace ideal diode with fictitious resistance and find the current direction 3. As current matches with diode direction, it is ON. Short-circuit the diode and solve the circuit mA93A093.0 100 7.010   I 0.7 V 10 V 100  I
  • 4. Diode Application: rectifier 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 4 • One of the common application of diode is ‘rectifier’ which converts AC signal into DC. • There are many rectifier circuits – Half Wave rectifier – Full wave rectifier; Bridge type & Centre tapped • Practical rectifier consists of; Transformer, Rectifier, Filter & Regulator stage • Rectifier output for one cycle (period) of input is analyzed AC Input + DC output - Transformer Stage Rectifier Stage Regulator stage Filter Stage
  • 5. Diode Application: Half Wave rectifier 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 5 t Vi(t) T Vm -Vm + Vo(t)=Vi(t) - + Vi(t) - Rt Vi(t) T Vm -Vm Vo T Vm t Positive Half cycle (0  t< T/2) Vi(t) >0 and diode is ON So Vo(t) = Vi(t) + - + V0(t) - + Vi(t) - R Half wave rectifier circuit  T tSinVtV mi   2 where,)(  The process of removing one- half the input ac signal to establish a dc level is called halfwave rectification V0(t) T Vm t + Vi(t) - Rt Vi(t) T Vm -Vm Negative Half cycle (T/2  t< T) Vi(t) <0 and diode is OFF So Vo(t) = 0 + Vo(t)=0 -       TtTfor TtfortV tV i 2/0 2/0)( )(periodofoutputcombinedTherefore 0
  • 6. Diode Application: Half Wave rectifier 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 6 t Vi(t) T Vm -Vm V0(t) T Vm t 2T 2T Vdc= 0.318Vm            mm T m dc T m TT i T dc V Cos T Cos V tCos T V V dttSinV T dtdttV T dttV T V                         )0( 22 1 .0)( 1 )( 1 2 0 2 0 2 0 2 00 0 VDC: is periodic average of output wave mdc VV 318.0       TtTfor TtfortV tV i 2/0 2/0)( )(0           2 0 4 2sin 42 2cos1 2 .0)( 1 )( 1 2 2 0 2 2 0 22 0 2 2 0 2 22 0 2 0 2 0 2 mm T m T m T m dc T m TT i T orms VV t T V t T V dtt T V V dttSin T V dtdttV T dttV T V                  Vrms: square root of periodic average of squared output mrms VV 5.0
  • 7. Diode Application: Half Wave rectifier 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 7 Peak inverse voltage (PIV or PRV) : Applying KVL, in loop of reverse bias diode. PIV  Vm - Vm + R - PIV + V0(t)=0 V Ripple factor: ratio of Vac to Vdc   21.1157.11 2 12 factorformiskwhere 11factorRipple 2 2 2 f 2 222 222                                 m m f dc rms dc dcrms dc ac dcacrms V V k V V V VV V V VVV
  • 8. Diode Application: Bridge type Full Wave rectifier 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 8 t Vi(t) T Vm -Vm t Vi(t) T Vm -Vm Vo(t) T Vm t + Vi(t) - R - Vo(t) + Positive Half cycle (0  t< T/2) Vi(t)>0 so D2 and D3 is ON D1 and D4 is ON So Vo(t) = Vi(t) + Vi(t) - R - Vo(t) + D1 D2 D3 D4 The process of utilizing full period of ac signal to establish a dc level is called fullwave rectification A bridge with 4 diodes as shown in figure is most familiar full wave rectifier.
  • 9. Diode Application: Bridge type Full Wave rectifier 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 9 t Vi(t) T Vm -Vm V0(t) T Vm t t Vi(t) T Vm -Vm Vo(t) T Vm t + Vi(t) - R - Vo(t) + Negative Half cycle (T/2  t< T) Vi(t)<0 and D2 and D3 is ON D1 and D4 is ON So Vo(t) = - Vi(t)     m T m T i T dc V dttSinV T dttV T dttV T V 22 )(2 1 )( 1 2 0 2 00 0            VDC: As the area above the axis for one full cycle is now twice of that for a half-wave system, dc level has also been doubled mdc VV 636.0       TtTfortV TtfortV tV i i 2/)( 2/0)( )(periodofoutputcombinedTherefore 0 Vdc= 0.636Vm
  • 10. Diode Application: Bridge type Full Wave rectifier 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 10   22 2 )( 2 )( 1 22 0 2 22 0 2 0 2 mm T m T i T orms VV dttSin T V dttV T dttV T V    Vrms: mrms VV 707.0 Peak inverse voltage (PIV or PRV) Applying KVL, in loop containing input and reverse bias diode. PIV  Vm + Vm - R - Vo(t) + - Vm + R - Vo(t) + Ripple factor: ratio of Vac to Vdc   48.01109.11 22 1 2 21 2 2 2 2                            m m dc rms V V V V
  • 11. Diode Application: Centre tapped Full Wave rectifier 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 11 t Vi(t) T Vm -Vm t Vi(t) T Vm -Vm Vo(t) T Vm t R 1:2 + Vi(t) - - Vo(t) + + Vi(t) - + Vi(t) - Positive Half cycle (0  t< T/2) Vi(t) >0 so D1 is ON & D2 is OFF So V0(t) = Vi(t) + Vi(t) - R - Vo(t) + + Vi(t) - + Vi(t) - 1:2 D1 D2 Another type of fullwave rectifier is Centre tapped It uses 2 diodes with a centre tapped transformer. t Vi(t) T Vm -Vm Vo(t) T Vm t R 1:2 + Vi(t) - - Vo(t) + + Vi(t) - + Vi(t) - Negative Half cycle (T/2  t< T) Vi(t) <0 so D1 is OFF & D2 is ON So V0 (t) = -Vi(t)
  • 12. Diode Application: Centre tapped Full Wave rectifier 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 12 VDC: equal to that of bridge type full wave rectifier mdc VV 636.0       TtTfortV TtfortV tV i i 2/)( 2/0)( )(periodofoutputcombinedTherefore 0 t Vi(t) T Vm -Vm Vo(t) T Vm t Vdc= 0.636VmVrms: equal to that of bridge type full wave rectifier mrms VV 707.0 Peak inverse voltage (PIV or PRV) Applying KVL, in loop containing input and reverse bias diode. PIV  2Vm R 1:2 + Vm - - Vm + + Vm - + Vm -- PIV + Ripple factor: ratio of Vac to Vdc 48.0
  • 13. Diode Application: Clippers 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 13 Clippers are networks that employ diodes to “clip” away a portion of an input signal without distorting the remaining part of the applied waveform. t Vi(t) T Vm -Vm + V0(t) - + Vi(t) - R t Vo(t) T Vm -Vm If Vi(t) 0, Diode ON, Vo(t)= Vi(t) If Vi(t) <0, Diode OFF, Vo(t) =0 t Vi(t) T Vm -Vm + V0(t) - + Vi(t) - R t Vo(t) T -Vm If Vi(t) >0, Diode OFF, Vo(t)= 0 If Vi(t) 0, Diode ON, Vo(t) =Vi(t) Negative Series Clipper Positive Series Clipper
  • 14. Diode Application: Clippers 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 14 t Vi(t) T Vm -Vm + V0(t) - + Vi(t) - R t Vo(t) T Vm-VVV V -V t Vi(t) T Vm -Vm + V0(t) - + Vi(t) - R t Vo(t) T -(Vm+V) If Vi(t) -V0, Diode ON, Vo(t)= Vi(t) -V If Vi(t) -V<0, Diode OFF, Vo(t) =0 If Vi(t) -V>0, Diode OFF, Vo(t)= 0 If Vi(t) -V  0, Diode ON, Vo(t) =Vi(t) -V t Vi(t) T Vm -Vm + V0(t) - + Vi(t) - R t Vo(t) Vm+V V V V -V t Vi(t) T Vm -Vm + V0(t) - + Vi(t) - R t Vo(t) T -(Vm-V) If Vi(t) +V0, Diode ON, Vo(t)= Vi(t) +V If Vi(t) +V<0, Diode OFF, Vo(t) =0 If Vi(t)+V>0, Diode OFF, Vo(t)= 0 If Vi(t) +V  0, Diode ON, Vo(t) =Vi(t) +V T Negative biased Series Clipper Positive biased Series Clipper
  • 15. Diode Application: Clippers 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 15 + V0(t) - + Vi(t) - R t Vi(t) T Vm -Vm t Vo(t) T Vm If Vi(t) >0, Diode OFF, Vo(t)= Vi(t) If Vi(t)  0, Diode ON, Vo(t) =0 + V0(t) - + Vi(t) - R t Vi(t) T Vm -Vm t Vo(t) T -Vm If Vi(t)  0, Diode ON, Vo(t)= 0 If Vi(t) <0, Diode OFF, Vo(t) =Vi(t) + V0(t) - + Vi(t) - R t Vi(t) T Vm -Vm t Vo(t) T -Vm If Vi(t)-V 0, Diode ON, Vo(t)= V If Vi(t)-V <0, Diode OFF, Vo(t) = Vi(t) V V V + V0(t) - + Vi(t) - R t Vi(t) T Vm -Vm t Vo(t) T Vm If Vi(t)-V >0, Diode OFF, Vo(t)= Vi(t) If Vi(t)-V 0, Diode ON, Vo(t) = V V V V Negative parallel Clipper Positive parallel Clipper Negative biased parallel Clipper Positive biased parallel Clipper
  • 16. Diode Application: Clippers 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 16 + V0(t) - + Vi(t) - R t Vi(t) T Vm -Vm t Vo(t) T -Vm If Vi(t)+V  0, Diode ON, Vo(t)= -V If Vi(t)+V <0, Diode OFF, Vo(t) = Vi(t) VV -V + V0(t) - + Vi(t) - R t Vi(t) T Vm -Vm t Vo(t) T Vm If Vi(t)+V >0, Diode OFF, Vo(t)= Vi(t) If Vi(t)+V 0, Diode ON, Vo(t) = -V V-V Negative biased parallel Clipper Positive biased parallel Clipper -V + V0(t) - + Vi(t) - R t Vi(t) T Vm -Vm If Vi(t)- V1 0, Diode D1 ON, & Vi(t)+ V2 >0, Diode D2 OFF, Vo(t)= V1 If Vi(t)- V1 <0, Diode D1 OFF, & Vi(t)+ V2 >0, Diode D2 OFF, Vo(t)= Vi(t) If Vi(t)- V1 <0, Diode D1 OFF, & Vi(t)+ V2 0, Diode D2 ON, Vo(t)= -V2 V1 V1 t Vo(t) T V1 V2 -V2 -V2 D1 D2
  • 17. Diode Application: Clampers Clamping networks have capacitor connected in series with a diode and resistance in parallel. Steps to solve clamper circuit 1. Start analysis by examining the response of the portion of the input signal that will forward bias the diode 2. determine maximum voltage with polarity on capacitor (assumed that capacitor is charged instantaneously) 3. Assume that during the period when the diode is in OFF state the capacitor holds on to its established voltage level 4. Now determine the output 5. Check that total swing of the output matches to the input 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 17
  • 18. Diode Application: Clampers 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 18 Step 1. In +ve half cycle, Diode is ON and maximum voltage on charged capacitor voltage Vm with polarities shown V1 + V0(t) - + Vi(t) - R C + V0(t) - + Vi(t) - R C + Vm - t Vi(t) T Vm -Vm t Vi(t) T Vm -Vm
  • 19. Diode Application: Clampers 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 19 2. Assuming capacitor has charged upto to Vm and holds in when diode is in OFF state t Vi(t) T Vm -Vm t Vo(t) T Vm -Vm Now as Vi(t)-Vm0, diode is ON and Vo(t)=0 + V0(t) - + Vi(t) - R C + Vm - + V0(t) - + Vi(t) - R C + Vm - t Vi(t) T Vm -Vm t Vo(t) T -2Vm Now as Vi(t)-Vm<0, diode is OFF and Vo(t)= Vi(t)-Vm =-2Vm Positive part of cycle (0  t< T/2) Vi(t) =Vm so Diode is ON So V0(t) = 0 Negative part of cycle (T/2  t< 0) Vi(t) =-Vm so Diode is OFF So V0(t) = Vi(t)-Vm= -2Vm
  • 20. Diode Application: Clampers 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 20 The output is drawn t Vi(t) T Vm -Vm t Vo(t) T -2Vm -2Vm -2Vm
  • 21. Diode Application: Clampers 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 21 t Vi(t) T Vm -Vm t Vo(t) T -2Vm + V0(t) - + Vi(t) - R C Vm + - Vm + V0(t) - + Vi(t) - R C t Vi(t) T Vm -Vm t Vo(t) T 2Vm - m + t Vi(t) T Vm -Vm Vm+V + V0(t) - + Vi(t) - R C V - + t Vo(t) T 2Vm+V V t Vi(t) T Vm -Vm V + V0(t) - + Vi(t) - R C (Vm+V) + - t Vo(t) T -V -2Vm-V t Vi(t) T Vm -Vm Vm-V + V0(t) - + Vi(t) - R C V - + t Vo(t) T 2Vm-V -V t Vi(t) T Vm -Vm V + V0(t) - + Vi(t) - R C (Vm-V) + - t Vo(t) T V -2Vm+V
  • 22. Diode Application: Zener diode as shunt regulator 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 22 The use of the Zener diode as a regulator is very common. Steps to analyse Zener diode networks 1. Determine the state of the Zener diode by removing it from the network and calculating the voltage across the resulting open circuit 2. Substitute the appropriate equivalent circuit and solve for the desired unknowns + VD - Forward bias VD  0 + VK - + VD - + VD - - VZ + Reverse bias VZ <VD < 0 Breakdown VD = VZ
  • 23. 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 23 + V0 - R + VZ - IZ RL Vi + V0 - R + V - RL Vi L iL RR VR V  If V  VZ Then Zener is ON (breakdown region) If V < VZ Then Zener is OFF If diode is ON, then circuit shall be + V0 - R RL Vi VZ IR IZ IL ZZZ L Z i L ZZi Z LRZ ZO IVP RR V R V R V R VV I III VVV             11 Diode Application: Zener diode as shunt regulator
  • 24. 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 24 L iL RR VR V   If V  VZ Then Zener is ON (breakdown region) If V < VZ Then Zener is OFF If diode is ON, then circuit shall be sheetdataperascurrentdiodemaxiswhere soconstant,isas breakdowninONbetodiodeforresistanceLoadMin thus min minmin max min min ZMZMRL R L Z L L L L Zi Z L L iL ZO IIII I R V R V I R VV RV R RR VR VVV       + V0 - R + VZ - IZ RL Vi + V0 - R + V - RL Vi + V0 - R RL Vi VZ IR IZ IL Diode Application: Zener diode as shunt regulator
  • 25. Diode Application: Voltage-Multiplier Circuits 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 25 • Voltage multipliers use clamping action to increase peak rectified voltages without increasing the transformer’s voltage rating. • Multiplication factors of two, three, and four are common. • Voltage multipliers are used in high-voltage, low-current • applications such as cathode-ray tubes (CRTs) and particle accelerators
  • 26. Diode Application: Voltage-Multiplier Circuits 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 26 Half wave Voltage doubler t Vi(t) T Vm -Vm D1 C1 + Vi(t) - - 2Vm + D2 C2 t Vi(t) T Vm -Vm C1 + Vi(t) - + Vo(t) - C2 + - Vm+ Vm - - Vm + + - C1 + Vi(t) - - 2Vm + C2 Vm Half wave Voltage doubler operation: Positive half cycle Half wave Voltage doubler operation: Negative half cycle t Vi(t) T Vm -Vm
  • 27. Diode Application: Voltage-Multiplier Circuits 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 27 Full wave Voltage doubler Full wave Voltage doubler operation: Positive half cycle Full wave Voltage doubler operation: Negative half cycle t Vi(t) T Vm -Vm C1 D1 + 2Vm - C2 + Vi(t) - D2 t Vi(t) T Vm -Vm C1 D1 + - C2 + Vi(t) - D2 Vm + - t Vi(t) T Vm -Vm C1 D1 + - C2 + Vi(t) - D2 Vm - + + - Vm + - Vm + - Vm + - Vm
  • 28. Diode Application: Voltage-Multiplier Circuits 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 28 Voltage Tripler and Quadrupler t Vi(t) T Vm -Vm Vm + Vi(t) - D1 C2 D2 C3 D3 C4 D4 C1 + - + - 2Vm + - 2Vm + - 2Vm doubler Quadrupler Tripler
  • 29. Thanks 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 29 Contact Dr Naim R Kidwai Professor & Dean JETGI, Faculty of Engineering Barabanki, (UP) Email: naim.kidwai@gmail.com Naim.Kidwai@jit.edu.in