SlideShare a Scribd company logo
Sampling
3/11/2019 1
Dr Naim R Kidwai, Professor, Integral University, Lucknow
www.nrkidwai.wordpress.com
Sampling theorem, Ideal sampling, Flat top sampling, Natural sampling,
reconstruction of signals from samples, aliasing effect, up sampling and down
sampling, discrete time processing of continuous time signals
Sampling Theorem
3/11/2019 2
Dr Naim R Kidwai, Professor, Integral University, Lucknow
www.nrkidwai.wordpress.com
A continuous time band limited signal can be represented by its samples, and can
be recovered from its samples,
provided that Sampling frequency s≥2m, (mmaximum frequency of signal)
The condition is referred as Nyquist criterion
Sampling
Continuous time
signal g(t)
Discrete time
signal g(t)
Sampling frequency S
t tTs0
Ideal Sampling
3/11/2019 3
Dr Naim R Kidwai, Professor, Integral University, Lucknow
www.nrkidwai.wordpress.com
Let continuous time band limited signal be
0)(..)()(   m
GtsGtg 

Let periodic impulse train be
)(
1
)(or
])([*)(
2
1
)]([)(
)()()(signalSampledThen
2where;)()()(















n
s
s
n
ss
p
s
s
n
ss
k
sp
nG
T
G
nGtgFG
ttgtg
T
nTtt









Discrete time signal g(t)
Ideal
SamplingContinuous time signal g(t)
Sampling
frequency S
t tTs0
p(t)
tTs0
1
Using linearity property of FT and convolution property of impulse




n
s
s
nG
T
tg )(
1
)(Thus 
Using multiplication property of FT
Ideal Sampling
3/11/2019 4
Dr Naim R Kidwai, Professor, Integral University, Lucknow
www.nrkidwai.wordpress.com
g(t) Signal
t
g(t) Sampled signal
tTs 2Ts0 3Ts
p(t) Impulse train
tTs 2Ts0 3Ts
1
p()

s 2s0
s
-s-2s
G()
m-m
A



F[g(t)]
s 2s0
A/Ts
-s-2s
s> 2m
In Time domain:
Sampling results in conversion of
continuous time signal into discrete time
signal
In Frequency domain:
Sampling results in multiple translation of
signal spectrum (linear combination of
shifted signal spectrum at integer
multiples of sampling frequency.
Ideal Sampling: Reconstruction
3/11/2019 5
Dr Naim R Kidwai, Professor, Integral University, Lucknow
www.nrkidwai.wordpress.com
Low Pass filter
Cut-off m




n
s
s
nG
T
tg )(
1
)(  )(
1
G
Ts
Amplifier
with gain Ts


 

otherwise
H m
L
0
1
)(


)(G
Reconstruction Filter
Sampled signal
tTs0
g(t)
g(t)
t
)(
1
tg
Ts
Sampling Example: Musical CD
3/11/2019 6
Dr Naim R Kidwai, Professor, Integral University, Lucknow
www.nrkidwai.wordpress.com
Audio frequency range is 20Hz-20KHz.
Musical CD consists of two channels of music (for stereo sound) sampled at 44.1 KHz
(oversampling satisfying Nyquist criterion) and quantized to 16 bit. Compute the data size of CD
for 70 minutes music.
CD data= 2 x (44.1 x 103) x 16 x 60 x70 bits = 740.88 MB
Aliasing
3/11/2019 7
Dr Naim R Kidwai, Professor, Integral University, Lucknow
www.nrkidwai.wordpress.com
g(t) Signal
t
g(t) Sampled signal
tTs 2Ts0 3Ts
G()
m-m
A


F[g(t)]
s 2s0
As
-s-2s
s> 2m
In case of under sampling (s<2m),
shifted versions of signal spectrum shall
overlap resulting in spectral distortions.
In such case, signal can not be recovered
from its samples. This effect is known as
ALIASING.
To avoid aliasing effect due to spurious
frequencies, a pre alias filter is applied
before sampling
F[g(t)]
s 2s0
As
-s-2s
s= 2m
s <2m
F[g(t)]
s 2s0
As
-s-2s
g(t) Sampled signal
tTs 2Ts0 3Ts
g(t) Sampled signal
tTs 2Ts0 3Ts

Flat Top Sampling
3/11/2019 8
Dr Naim R Kidwai, Professor, Integral University, Lucknow
www.nrkidwai.wordpress.com
As ideal impulse can’t be generated, practical sampling pulse will exist for a duration.
In Flat top sampling, for each sample, the value is hold for a duration T.
Flat top sampling may be thought of as output of a system with impulse response h(t) shown
in figure to the input of ideal samples.
Ideal
SamplingContinuous time
signal g(t)
Sampling
frequency S
t
g(t)
tTs0
p(t)
tTs0
1
System with
impulse response
h(t)
tT
1
Ideal samples g(t) Flat top samples gF(t)
gF(t)
tTs0 T
Flat Top Sampling
3/11/2019 9
Dr Naim R Kidwai, Professor, Integral University, Lucknow
www.nrkidwai.wordpress.com


























 

22
exp)(
0
22
12)(responseInput
T
Sa
Tj
TH
otherwise
T
t
T
T
Tt
rectth


)(
22
exp)(
)()()(

















n
s
s
F
F
nG
T
Sa
Tj
T
T
tG
tGHtG


 
 
  )(
22
exp2
1
)(Thus 
























 

n
s
ss
s
n
sF nG
T
Sa
Tj
T
T
T
Tnt
rectnTgtg 

FTofpropertyshifttimeand
2
pairFTUsing 










 T
SaT
T
t
rect

Flat Top Sampling
3/11/2019 10
Dr Naim R Kidwai, Professor, Integral University, Lucknow
www.nrkidwai.wordpress.com
g(t) Signal
t
g(t) Sampled signal
tTs 2Ts0 3Ts
p(t) Impulse train
tTs 2Ts0 3Ts
1
p()

s 2s0
s
-s-2s
G()
m-m
A



F[g(t)]
s 2s0
As
-s-2s
s> 2m

F[gF(t)]
s 2s0
As
-s-2s
s> 2m
gF(t)
tTs0 T
Flat top sampling, introduces aperture effect as per sample function
Flat Top Sampling: Reconstruction
3/11/2019 11
Dr Naim R Kidwai, Professor, Integral University, Lucknow
www.nrkidwai.wordpress.com
Low Pass filter
Cut-off m
Equalizer


 

otherwise
H m
L
0
1
)(


)(G
Reconstruction Filter g(t)
t
m
s
T
Sa
T
T
H 

 







2
1
)(
)(
22
exp)( 















n
s
s
F nG
T
Sa
Tj
T
T
tg 

gF(t)
tT
s
0 T
H()
t
-m m






2
1
T
Sa
T
Ts

Natural Sampling
3/11/2019 12
Dr Naim R Kidwai, Professor, Integral University, Lucknow
www.nrkidwai.wordpress.com
In Natural sampling, each sample is pulse of duration T with amplitude varying in accordance
to signal value.
Natural sampling may be thought of multiplication of signal with pulse train.
Natural
SamplingContinuous time
signal g(t)
Sampling
frequency S
t
Natural samples gN(t)
gN(t)
tTs0 T
tTs0 T
Natural Sampling
3/11/2019 13
Dr Naim R Kidwai, Professor, Integral University, Lucknow
www.nrkidwai.wordpress.com
 s
n
s
s
n
s
n
TjTn
SaT
T
TnTt
rect 

 



















 




 2
exp
2
2trainpulse
 
)(
22
exp)(
2
exp
2
*)(
2
1
)(
2)()(










































 

n
s
s
s
N
s
n
s
sN
n
s
N
nG
Tn
Sa
T
T
T
tG
n
TjTn
SaTGtG
T
TnTt
recttgtg






)(
22
exp)(Thus 















n
s
s
s
F nG
Tn
Sa
T
T
T
tg 

Natural Sampling
3/11/2019 14
Dr Naim R Kidwai, Professor, Integral University, Lucknow
www.nrkidwai.wordpress.com
g(t) Signal
t

s 2s0
sT
-s-2s
G()
m-m
A



F[gN(t)]
s 2s0
As
-s-2s
s> 2m
tTs0 T
Pulse Train
Natural sampling, introduces amplitude scaling as per sample function at every shifted version
of G(), and not the aperture effect as in Flat top sampling.
gN(t) Natural Sampling
tTs0 T
Natural Sampling: Reconstruction
3/11/2019 15
Dr Naim R Kidwai, Professor, Integral University, Lucknow
www.nrkidwai.wordpress.com
)(G
Low Pass filter
Cut-off m
Amplifier with
gain T/Ts


 

otherwise
H m
L
0
1
)(


Reconstruction Filter g(t)
t
)(
22
exp)( 















n
s
s
s
N nG
Tn
Sa
T
T
T
tg 

gN(t) Natural Sampling
tTs0 T
Zero Order Hold Reconstruction of Signals
3/11/2019 16
Dr Naim R Kidwai, Professor, Integral University, Lucknow
www.nrkidwai.wordpress.com
g(t) Signal
tg(t) Sampled signal
tTs 2Ts0 3Ts
gZ(t) Zero order hold reconstruction
tTs 2Ts0 3Ts
Zero order hold reconstruction involve holding the
sampling value till next sample. It makes a staircase
approximation of the signal.
i.e. Zero order hold is special case of flat top sampling
with pulse width equal to sampling period gz(t)gF(t)TTs
 
)(
22
exp)(g
2
1
)()()(g






















n
s
ss
z
n s
s
sTTFz
nG
T
Sa
Tj
t
T
Tnt
rectnTgtgt
s


Exponential term in Spectrum of Zero order hold reflects delay by Ts/2, while sample
function term results in aperture effect causing distortion.
Zero Order Hold Reconstruction of Signals
3/11/2019 17
Dr Naim R Kidwai, Professor, Integral University, Lucknow
www.nrkidwai.wordpress.com
Zero order hold can be achieved by simple holding circuit which holds sample value till next
sample
Low Pass filter
Cut-off m
Equalizer


 

otherwise
H m
L
0
1
)(


)(G
Reconstruction Filter g(t)
t
m
sT
Sa
H 

 







2
1
)(
H()
t
-m m






2
1
sT
Sa

gZ(t) Zero order hold
tTs 2Ts0 3Ts
)(
22
exp)(g 















n
s
ss
z nG
T
Sa
Tj
t 

Up Sampling and Down sampling
3/11/2019 18
Dr Naim R Kidwai, Professor, Integral University, Lucknow
www.nrkidwai.wordpress.com
Up-sampling: introducing zeros between
samples to create a longer signal
Down-sampling (decimation): sub-sampling a
discrete signal
g(t) Signal
t
g(t) Sampled signal
tTs 2Ts0 3Ts
gd(t) down sampling g(t) by 2
tTs 2Ts0 3Ts
g(t) up-sampling gd(t) by 2
tTs 2Ts0 3Ts
Discrete Time Processing of Continuous time Signals
3/11/2019 19
Dr Naim R Kidwai, Professor, Integral University, Lucknow
www.nrkidwai.wordpress.com
Continuous time signals can be converted into discrete time using sampling and quantized to
make it digital. These discrete time signals can be processed using computer based discrete
time systems and output can be reconstructed as continuous time signal.
g(t) A/D converter
(Sampling/
Quantization)
Discrete time
system
D/A converter
(Reconstruction)
g(nTs)
=g[n]
y(nTs)
=y[n] y(t)

More Related Content

What's hot

Multirate DSP
Multirate DSPMultirate DSP
Multirate DSP
@zenafaris91
 
Z transfrm ppt
Z transfrm pptZ transfrm ppt
Z transfrm ppt
SWATI MISHRA
 
Basics of Digital Filters
Basics of Digital FiltersBasics of Digital Filters
Basics of Digital Filters
op205
 
Z Transform
Z TransformZ Transform
Z Transform
Darshan Bhatt
 
FILTER DESIGN
FILTER DESIGNFILTER DESIGN
FILTER DESIGN
naimish12
 
Signal classification of signal
Signal classification of signalSignal classification of signal
Signal classification of signal
001Abhishek1
 
DSP_FOEHU - Lec 10 - FIR Filter Design
DSP_FOEHU - Lec 10 - FIR Filter DesignDSP_FOEHU - Lec 10 - FIR Filter Design
DSP_FOEHU - Lec 10 - FIR Filter Design
Amr E. Mohamed
 
Sampling
SamplingSampling
Radix-2 DIT FFT
Radix-2 DIT FFT Radix-2 DIT FFT
Radix-2 DIT FFT
Sarang Joshi
 
Windowing techniques of fir filter design
Windowing techniques of fir filter designWindowing techniques of fir filter design
Windowing techniques of fir filter design
Rohan Nagpal
 
IIR filter realization using direct form I & II
IIR filter realization using direct form I & IIIIR filter realization using direct form I & II
IIR filter realization using direct form I & II
Sarang Joshi
 
OPERATIONS ON SIGNALS
OPERATIONS ON SIGNALSOPERATIONS ON SIGNALS
OPERATIONS ON SIGNALS
vishalgohel12195
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transform
NimithaSoman
 
DPCM
DPCMDPCM
Fast Fourier Transform
Fast Fourier TransformFast Fourier Transform
Fast Fourier Transform
op205
 
Lti system
Lti systemLti system
Lti system
Fariza Zahari
 
Chebyshev filter
Chebyshev filterChebyshev filter
Chebyshev filter
MOHAMMAD AKRAM
 
Butterworth filter design
Butterworth filter designButterworth filter design
Butterworth filter designSushant Shankar
 
Design of FIR filters
Design of FIR filtersDesign of FIR filters
Design of FIR filters
op205
 

What's hot (20)

Multirate DSP
Multirate DSPMultirate DSP
Multirate DSP
 
Z transfrm ppt
Z transfrm pptZ transfrm ppt
Z transfrm ppt
 
Basics of Digital Filters
Basics of Digital FiltersBasics of Digital Filters
Basics of Digital Filters
 
Z Transform
Z TransformZ Transform
Z Transform
 
Matched filter
Matched filterMatched filter
Matched filter
 
FILTER DESIGN
FILTER DESIGNFILTER DESIGN
FILTER DESIGN
 
Signal classification of signal
Signal classification of signalSignal classification of signal
Signal classification of signal
 
DSP_FOEHU - Lec 10 - FIR Filter Design
DSP_FOEHU - Lec 10 - FIR Filter DesignDSP_FOEHU - Lec 10 - FIR Filter Design
DSP_FOEHU - Lec 10 - FIR Filter Design
 
Sampling
SamplingSampling
Sampling
 
Radix-2 DIT FFT
Radix-2 DIT FFT Radix-2 DIT FFT
Radix-2 DIT FFT
 
Windowing techniques of fir filter design
Windowing techniques of fir filter designWindowing techniques of fir filter design
Windowing techniques of fir filter design
 
IIR filter realization using direct form I & II
IIR filter realization using direct form I & IIIIR filter realization using direct form I & II
IIR filter realization using direct form I & II
 
OPERATIONS ON SIGNALS
OPERATIONS ON SIGNALSOPERATIONS ON SIGNALS
OPERATIONS ON SIGNALS
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transform
 
DPCM
DPCMDPCM
DPCM
 
Fast Fourier Transform
Fast Fourier TransformFast Fourier Transform
Fast Fourier Transform
 
Lti system
Lti systemLti system
Lti system
 
Chebyshev filter
Chebyshev filterChebyshev filter
Chebyshev filter
 
Butterworth filter design
Butterworth filter designButterworth filter design
Butterworth filter design
 
Design of FIR filters
Design of FIR filtersDesign of FIR filters
Design of FIR filters
 

Similar to Sampling Theorem

chap3.pptx
chap3.pptxchap3.pptx
chap3.pptx
ssuser478d0e
 
Nyquist criterion for zero ISI
Nyquist criterion for zero ISINyquist criterion for zero ISI
Nyquist criterion for zero ISI
Gunasekara Reddy
 
Digital Signal Processing[ECEG-3171]-Ch1_L05
Digital Signal Processing[ECEG-3171]-Ch1_L05Digital Signal Processing[ECEG-3171]-Ch1_L05
Digital Signal Processing[ECEG-3171]-Ch1_L05
Rediet Moges
 
4.Sampling and Hilbert Transform
4.Sampling and Hilbert Transform4.Sampling and Hilbert Transform
4.Sampling and Hilbert Transform
INDIAN NAVY
 
Digital Signal Processing[ECEG-3171]-Ch1_L06
Digital Signal Processing[ECEG-3171]-Ch1_L06Digital Signal Processing[ECEG-3171]-Ch1_L06
Digital Signal Processing[ECEG-3171]-Ch1_L06
Rediet Moges
 
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsDSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
Amr E. Mohamed
 
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Amr E. Mohamed
 
Lecture13
Lecture13Lecture13
Lecture13
INDHULEKSHMI M.C
 
A Simple Design to Mitigate Problems of Conventional Digital Phase Locked Loop
A Simple Design to Mitigate Problems of Conventional Digital Phase Locked LoopA Simple Design to Mitigate Problems of Conventional Digital Phase Locked Loop
A Simple Design to Mitigate Problems of Conventional Digital Phase Locked Loop
CSCJournals
 
Chap2 ofdm basics
Chap2 ofdm basicsChap2 ofdm basics
Chap2 ofdm basics
Karuthapandi A
 
Baseband transmission
Baseband transmissionBaseband transmission
Baseband transmission
Punk Pankaj
 
Lecture_ch6.pptx
Lecture_ch6.pptxLecture_ch6.pptx
Lecture_ch6.pptx
rshoukatimtek
 
Instrumentation Engineering : Signals & systems, THE GATE ACADEMY
Instrumentation Engineering : Signals & systems, THE GATE ACADEMYInstrumentation Engineering : Signals & systems, THE GATE ACADEMY
Instrumentation Engineering : Signals & systems, THE GATE ACADEMY
klirantga
 
디지털통신 7
디지털통신 7디지털통신 7
디지털통신 7
KengTe Liao
 
Ch6 digital transmission of analog signal pg 99
Ch6 digital transmission of analog signal pg 99Ch6 digital transmission of analog signal pg 99
Ch6 digital transmission of analog signal pg 99
Prateek Omer
 
On The Fundamental Aspects of Demodulation
On The Fundamental Aspects of DemodulationOn The Fundamental Aspects of Demodulation
On The Fundamental Aspects of Demodulation
CSCJournals
 
unit4 sampling.pptx
unit4 sampling.pptxunit4 sampling.pptx
unit4 sampling.pptx
Dr.SHANTHI K.G
 
Frequency Modulation.ppt
Frequency Modulation.pptFrequency Modulation.ppt
Frequency Modulation.ppt
Stefan Oprea
 
sampling.ppt
sampling.pptsampling.ppt
sampling.ppt
AkasGkamal2
 

Similar to Sampling Theorem (20)

chap3.pptx
chap3.pptxchap3.pptx
chap3.pptx
 
Nyquist criterion for zero ISI
Nyquist criterion for zero ISINyquist criterion for zero ISI
Nyquist criterion for zero ISI
 
Digital Signal Processing[ECEG-3171]-Ch1_L05
Digital Signal Processing[ECEG-3171]-Ch1_L05Digital Signal Processing[ECEG-3171]-Ch1_L05
Digital Signal Processing[ECEG-3171]-Ch1_L05
 
4.Sampling and Hilbert Transform
4.Sampling and Hilbert Transform4.Sampling and Hilbert Transform
4.Sampling and Hilbert Transform
 
Digital Signal Processing[ECEG-3171]-Ch1_L06
Digital Signal Processing[ECEG-3171]-Ch1_L06Digital Signal Processing[ECEG-3171]-Ch1_L06
Digital Signal Processing[ECEG-3171]-Ch1_L06
 
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsDSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
 
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
 
Lecture13
Lecture13Lecture13
Lecture13
 
A Simple Design to Mitigate Problems of Conventional Digital Phase Locked Loop
A Simple Design to Mitigate Problems of Conventional Digital Phase Locked LoopA Simple Design to Mitigate Problems of Conventional Digital Phase Locked Loop
A Simple Design to Mitigate Problems of Conventional Digital Phase Locked Loop
 
Chap2 ofdm basics
Chap2 ofdm basicsChap2 ofdm basics
Chap2 ofdm basics
 
Baseband transmission
Baseband transmissionBaseband transmission
Baseband transmission
 
Lecture_ch6.pptx
Lecture_ch6.pptxLecture_ch6.pptx
Lecture_ch6.pptx
 
Instrumentation Engineering : Signals & systems, THE GATE ACADEMY
Instrumentation Engineering : Signals & systems, THE GATE ACADEMYInstrumentation Engineering : Signals & systems, THE GATE ACADEMY
Instrumentation Engineering : Signals & systems, THE GATE ACADEMY
 
디지털통신 7
디지털통신 7디지털통신 7
디지털통신 7
 
notes11.pdf
notes11.pdfnotes11.pdf
notes11.pdf
 
Ch6 digital transmission of analog signal pg 99
Ch6 digital transmission of analog signal pg 99Ch6 digital transmission of analog signal pg 99
Ch6 digital transmission of analog signal pg 99
 
On The Fundamental Aspects of Demodulation
On The Fundamental Aspects of DemodulationOn The Fundamental Aspects of Demodulation
On The Fundamental Aspects of Demodulation
 
unit4 sampling.pptx
unit4 sampling.pptxunit4 sampling.pptx
unit4 sampling.pptx
 
Frequency Modulation.ppt
Frequency Modulation.pptFrequency Modulation.ppt
Frequency Modulation.ppt
 
sampling.ppt
sampling.pptsampling.ppt
sampling.ppt
 

More from Dr Naim R Kidwai

Asynchronous sequential circuit analysis
Asynchronous sequential circuit analysisAsynchronous sequential circuit analysis
Asynchronous sequential circuit analysis
Dr Naim R Kidwai
 
synchronous Sequential circuit counters and registers
synchronous Sequential circuit counters and registerssynchronous Sequential circuit counters and registers
synchronous Sequential circuit counters and registers
Dr Naim R Kidwai
 
Clocked Sequential circuit analysis and design
Clocked Sequential circuit analysis and designClocked Sequential circuit analysis and design
Clocked Sequential circuit analysis and design
Dr Naim R Kidwai
 
Sequential circuit-flip flops
Sequential circuit-flip flopsSequential circuit-flip flops
Sequential circuit-flip flops
Dr Naim R Kidwai
 
Moodle introduction
Moodle introductionMoodle introduction
Moodle introduction
Dr Naim R Kidwai
 
Project financial feasibility
Project financial feasibilityProject financial feasibility
Project financial feasibility
Dr Naim R Kidwai
 
financing infrastructure projects
financing infrastructure projectsfinancing infrastructure projects
financing infrastructure projects
Dr Naim R Kidwai
 
financing projects
financing projectsfinancing projects
financing projects
Dr Naim R Kidwai
 
multiple projects and constraints
multiple projects and constraintsmultiple projects and constraints
multiple projects and constraints
Dr Naim R Kidwai
 
project risk analysis
project risk analysisproject risk analysis
project risk analysis
Dr Naim R Kidwai
 
Nec 602 unit ii Random Variables and Random process
Nec 602 unit ii Random Variables and Random processNec 602 unit ii Random Variables and Random process
Nec 602 unit ii Random Variables and Random process
Dr Naim R Kidwai
 
spread spectrum communication
spread spectrum communicationspread spectrum communication
spread spectrum communication
Dr Naim R Kidwai
 
Error Control coding
Error Control codingError Control coding
Error Control coding
Dr Naim R Kidwai
 
information theory
information theoryinformation theory
information theory
Dr Naim R Kidwai
 
Rec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re modelRec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re model
Dr Naim R Kidwai
 
Rec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistorRec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistor
Dr Naim R Kidwai
 
Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristics
Dr Naim R Kidwai
 
Rec101 unit v communication engg
Rec101 unit v communication enggRec101 unit v communication engg
Rec101 unit v communication engg
Dr Naim R Kidwai
 
Rec101 unit iv emi
Rec101 unit iv emiRec101 unit iv emi
Rec101 unit iv emi
Dr Naim R Kidwai
 
Rec101 unit iii operational amplifier
Rec101 unit iii operational amplifierRec101 unit iii operational amplifier
Rec101 unit iii operational amplifier
Dr Naim R Kidwai
 

More from Dr Naim R Kidwai (20)

Asynchronous sequential circuit analysis
Asynchronous sequential circuit analysisAsynchronous sequential circuit analysis
Asynchronous sequential circuit analysis
 
synchronous Sequential circuit counters and registers
synchronous Sequential circuit counters and registerssynchronous Sequential circuit counters and registers
synchronous Sequential circuit counters and registers
 
Clocked Sequential circuit analysis and design
Clocked Sequential circuit analysis and designClocked Sequential circuit analysis and design
Clocked Sequential circuit analysis and design
 
Sequential circuit-flip flops
Sequential circuit-flip flopsSequential circuit-flip flops
Sequential circuit-flip flops
 
Moodle introduction
Moodle introductionMoodle introduction
Moodle introduction
 
Project financial feasibility
Project financial feasibilityProject financial feasibility
Project financial feasibility
 
financing infrastructure projects
financing infrastructure projectsfinancing infrastructure projects
financing infrastructure projects
 
financing projects
financing projectsfinancing projects
financing projects
 
multiple projects and constraints
multiple projects and constraintsmultiple projects and constraints
multiple projects and constraints
 
project risk analysis
project risk analysisproject risk analysis
project risk analysis
 
Nec 602 unit ii Random Variables and Random process
Nec 602 unit ii Random Variables and Random processNec 602 unit ii Random Variables and Random process
Nec 602 unit ii Random Variables and Random process
 
spread spectrum communication
spread spectrum communicationspread spectrum communication
spread spectrum communication
 
Error Control coding
Error Control codingError Control coding
Error Control coding
 
information theory
information theoryinformation theory
information theory
 
Rec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re modelRec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re model
 
Rec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistorRec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistor
 
Rec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristicsRec101 unit ii (part 1) bjt characteristics
Rec101 unit ii (part 1) bjt characteristics
 
Rec101 unit v communication engg
Rec101 unit v communication enggRec101 unit v communication engg
Rec101 unit v communication engg
 
Rec101 unit iv emi
Rec101 unit iv emiRec101 unit iv emi
Rec101 unit iv emi
 
Rec101 unit iii operational amplifier
Rec101 unit iii operational amplifierRec101 unit iii operational amplifier
Rec101 unit iii operational amplifier
 

Recently uploaded

Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
BrazilAccount1
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 

Recently uploaded (20)

Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 

Sampling Theorem

  • 1. Sampling 3/11/2019 1 Dr Naim R Kidwai, Professor, Integral University, Lucknow www.nrkidwai.wordpress.com Sampling theorem, Ideal sampling, Flat top sampling, Natural sampling, reconstruction of signals from samples, aliasing effect, up sampling and down sampling, discrete time processing of continuous time signals
  • 2. Sampling Theorem 3/11/2019 2 Dr Naim R Kidwai, Professor, Integral University, Lucknow www.nrkidwai.wordpress.com A continuous time band limited signal can be represented by its samples, and can be recovered from its samples, provided that Sampling frequency s≥2m, (mmaximum frequency of signal) The condition is referred as Nyquist criterion Sampling Continuous time signal g(t) Discrete time signal g(t) Sampling frequency S t tTs0
  • 3. Ideal Sampling 3/11/2019 3 Dr Naim R Kidwai, Professor, Integral University, Lucknow www.nrkidwai.wordpress.com Let continuous time band limited signal be 0)(..)()(   m GtsGtg   Let periodic impulse train be )( 1 )(or ])([*)( 2 1 )]([)( )()()(signalSampledThen 2where;)()()(                n s s n ss p s s n ss k sp nG T G nGtgFG ttgtg T nTtt          Discrete time signal g(t) Ideal SamplingContinuous time signal g(t) Sampling frequency S t tTs0 p(t) tTs0 1 Using linearity property of FT and convolution property of impulse     n s s nG T tg )( 1 )(Thus  Using multiplication property of FT
  • 4. Ideal Sampling 3/11/2019 4 Dr Naim R Kidwai, Professor, Integral University, Lucknow www.nrkidwai.wordpress.com g(t) Signal t g(t) Sampled signal tTs 2Ts0 3Ts p(t) Impulse train tTs 2Ts0 3Ts 1 p()  s 2s0 s -s-2s G() m-m A    F[g(t)] s 2s0 A/Ts -s-2s s> 2m In Time domain: Sampling results in conversion of continuous time signal into discrete time signal In Frequency domain: Sampling results in multiple translation of signal spectrum (linear combination of shifted signal spectrum at integer multiples of sampling frequency.
  • 5. Ideal Sampling: Reconstruction 3/11/2019 5 Dr Naim R Kidwai, Professor, Integral University, Lucknow www.nrkidwai.wordpress.com Low Pass filter Cut-off m     n s s nG T tg )( 1 )(  )( 1 G Ts Amplifier with gain Ts      otherwise H m L 0 1 )(   )(G Reconstruction Filter Sampled signal tTs0 g(t) g(t) t )( 1 tg Ts
  • 6. Sampling Example: Musical CD 3/11/2019 6 Dr Naim R Kidwai, Professor, Integral University, Lucknow www.nrkidwai.wordpress.com Audio frequency range is 20Hz-20KHz. Musical CD consists of two channels of music (for stereo sound) sampled at 44.1 KHz (oversampling satisfying Nyquist criterion) and quantized to 16 bit. Compute the data size of CD for 70 minutes music. CD data= 2 x (44.1 x 103) x 16 x 60 x70 bits = 740.88 MB
  • 7. Aliasing 3/11/2019 7 Dr Naim R Kidwai, Professor, Integral University, Lucknow www.nrkidwai.wordpress.com g(t) Signal t g(t) Sampled signal tTs 2Ts0 3Ts G() m-m A   F[g(t)] s 2s0 As -s-2s s> 2m In case of under sampling (s<2m), shifted versions of signal spectrum shall overlap resulting in spectral distortions. In such case, signal can not be recovered from its samples. This effect is known as ALIASING. To avoid aliasing effect due to spurious frequencies, a pre alias filter is applied before sampling F[g(t)] s 2s0 As -s-2s s= 2m s <2m F[g(t)] s 2s0 As -s-2s g(t) Sampled signal tTs 2Ts0 3Ts g(t) Sampled signal tTs 2Ts0 3Ts 
  • 8. Flat Top Sampling 3/11/2019 8 Dr Naim R Kidwai, Professor, Integral University, Lucknow www.nrkidwai.wordpress.com As ideal impulse can’t be generated, practical sampling pulse will exist for a duration. In Flat top sampling, for each sample, the value is hold for a duration T. Flat top sampling may be thought of as output of a system with impulse response h(t) shown in figure to the input of ideal samples. Ideal SamplingContinuous time signal g(t) Sampling frequency S t g(t) tTs0 p(t) tTs0 1 System with impulse response h(t) tT 1 Ideal samples g(t) Flat top samples gF(t) gF(t) tTs0 T
  • 9. Flat Top Sampling 3/11/2019 9 Dr Naim R Kidwai, Professor, Integral University, Lucknow www.nrkidwai.wordpress.com                              22 exp)( 0 22 12)(responseInput T Sa Tj TH otherwise T t T T Tt rectth   )( 22 exp)( )()()(                  n s s F F nG T Sa Tj T T tG tGHtG         )( 22 exp2 1 )(Thus                             n s ss s n sF nG T Sa Tj T T T Tnt rectnTgtg   FTofpropertyshifttimeand 2 pairFTUsing             T SaT T t rect 
  • 10. Flat Top Sampling 3/11/2019 10 Dr Naim R Kidwai, Professor, Integral University, Lucknow www.nrkidwai.wordpress.com g(t) Signal t g(t) Sampled signal tTs 2Ts0 3Ts p(t) Impulse train tTs 2Ts0 3Ts 1 p()  s 2s0 s -s-2s G() m-m A    F[g(t)] s 2s0 As -s-2s s> 2m  F[gF(t)] s 2s0 As -s-2s s> 2m gF(t) tTs0 T Flat top sampling, introduces aperture effect as per sample function
  • 11. Flat Top Sampling: Reconstruction 3/11/2019 11 Dr Naim R Kidwai, Professor, Integral University, Lucknow www.nrkidwai.wordpress.com Low Pass filter Cut-off m Equalizer      otherwise H m L 0 1 )(   )(G Reconstruction Filter g(t) t m s T Sa T T H            2 1 )( )( 22 exp)(                 n s s F nG T Sa Tj T T tg   gF(t) tT s 0 T H() t -m m       2 1 T Sa T Ts 
  • 12. Natural Sampling 3/11/2019 12 Dr Naim R Kidwai, Professor, Integral University, Lucknow www.nrkidwai.wordpress.com In Natural sampling, each sample is pulse of duration T with amplitude varying in accordance to signal value. Natural sampling may be thought of multiplication of signal with pulse train. Natural SamplingContinuous time signal g(t) Sampling frequency S t Natural samples gN(t) gN(t) tTs0 T tTs0 T
  • 13. Natural Sampling 3/11/2019 13 Dr Naim R Kidwai, Professor, Integral University, Lucknow www.nrkidwai.wordpress.com  s n s s n s n TjTn SaT T TnTt rect                               2 exp 2 2trainpulse   )( 22 exp)( 2 exp 2 *)( 2 1 )( 2)()(                                              n s s s N s n s sN n s N nG Tn Sa T T T tG n TjTn SaTGtG T TnTt recttgtg       )( 22 exp)(Thus                 n s s s F nG Tn Sa T T T tg  
  • 14. Natural Sampling 3/11/2019 14 Dr Naim R Kidwai, Professor, Integral University, Lucknow www.nrkidwai.wordpress.com g(t) Signal t  s 2s0 sT -s-2s G() m-m A    F[gN(t)] s 2s0 As -s-2s s> 2m tTs0 T Pulse Train Natural sampling, introduces amplitude scaling as per sample function at every shifted version of G(), and not the aperture effect as in Flat top sampling. gN(t) Natural Sampling tTs0 T
  • 15. Natural Sampling: Reconstruction 3/11/2019 15 Dr Naim R Kidwai, Professor, Integral University, Lucknow www.nrkidwai.wordpress.com )(G Low Pass filter Cut-off m Amplifier with gain T/Ts      otherwise H m L 0 1 )(   Reconstruction Filter g(t) t )( 22 exp)(                 n s s s N nG Tn Sa T T T tg   gN(t) Natural Sampling tTs0 T
  • 16. Zero Order Hold Reconstruction of Signals 3/11/2019 16 Dr Naim R Kidwai, Professor, Integral University, Lucknow www.nrkidwai.wordpress.com g(t) Signal tg(t) Sampled signal tTs 2Ts0 3Ts gZ(t) Zero order hold reconstruction tTs 2Ts0 3Ts Zero order hold reconstruction involve holding the sampling value till next sample. It makes a staircase approximation of the signal. i.e. Zero order hold is special case of flat top sampling with pulse width equal to sampling period gz(t)gF(t)TTs   )( 22 exp)(g 2 1 )()()(g                       n s ss z n s s sTTFz nG T Sa Tj t T Tnt rectnTgtgt s   Exponential term in Spectrum of Zero order hold reflects delay by Ts/2, while sample function term results in aperture effect causing distortion.
  • 17. Zero Order Hold Reconstruction of Signals 3/11/2019 17 Dr Naim R Kidwai, Professor, Integral University, Lucknow www.nrkidwai.wordpress.com Zero order hold can be achieved by simple holding circuit which holds sample value till next sample Low Pass filter Cut-off m Equalizer      otherwise H m L 0 1 )(   )(G Reconstruction Filter g(t) t m sT Sa H            2 1 )( H() t -m m       2 1 sT Sa  gZ(t) Zero order hold tTs 2Ts0 3Ts )( 22 exp)(g                 n s ss z nG T Sa Tj t  
  • 18. Up Sampling and Down sampling 3/11/2019 18 Dr Naim R Kidwai, Professor, Integral University, Lucknow www.nrkidwai.wordpress.com Up-sampling: introducing zeros between samples to create a longer signal Down-sampling (decimation): sub-sampling a discrete signal g(t) Signal t g(t) Sampled signal tTs 2Ts0 3Ts gd(t) down sampling g(t) by 2 tTs 2Ts0 3Ts g(t) up-sampling gd(t) by 2 tTs 2Ts0 3Ts
  • 19. Discrete Time Processing of Continuous time Signals 3/11/2019 19 Dr Naim R Kidwai, Professor, Integral University, Lucknow www.nrkidwai.wordpress.com Continuous time signals can be converted into discrete time using sampling and quantized to make it digital. These discrete time signals can be processed using computer based discrete time systems and output can be reconstructed as continuous time signal. g(t) A/D converter (Sampling/ Quantization) Discrete time system D/A converter (Reconstruction) g(nTs) =g[n] y(nTs) =y[n] y(t)