SlideShare a Scribd company logo
Numerical Methods - Finite Differences
Dr. N. B. Vyas
Department of Mathematics,
Atmiya Institute of Tech. and Science,
Rajkot (Guj.)
niravbvyas@gmail.com
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Forward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Forward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
The constant difference between two consecutive values of x is
called the interval of differences and is denoted by h.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Forward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
The constant difference between two consecutive values of x is
called the interval of differences and is denoted by h.
The operator ∆ defined by
∆y0 = y1 − y0
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Forward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
The constant difference between two consecutive values of x is
called the interval of differences and is denoted by h.
The operator ∆ defined by
∆y0 = y1 − y0
∆y1 = y2 − y1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Forward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
The constant difference between two consecutive values of x is
called the interval of differences and is denoted by h.
The operator ∆ defined by
∆y0 = y1 − y0
∆y1 = y2 − y1
.......
.......
∆yn−1 = yn − yn−1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Forward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
The constant difference between two consecutive values of x is
called the interval of differences and is denoted by h.
The operator ∆ defined by
∆y0 = y1 − y0
∆y1 = y2 − y1
.......
.......
∆yn−1 = yn − yn−1
is called Forward difference operator.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
The first forward difference is ∆yn = yn+1 − yn
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
The first forward difference is ∆yn = yn+1 − yn
The second forward difference are defined as the difference of
the first differences.
∆2y0 = ∆(∆y0) = ∆(y1 − y0) = ∆y1 − ∆y0
= y2 − y1 − (y1 − y0) = y2 − 2y1 + y0
∆2y1 = ∆y2 − ∆y1
∆2yi = ∆yi+1 − ∆yi
In general nth forward difference of f is defined by
∆n
yi = ∆n−1
yi+1 − ∆n−1
yi
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Forward Difference Table:
x y ∆y ∆2y ∆3y ∆4y ∆5y
x0 y0
∆y0
x1 y1 ∆2y0
∆y1 ∆3y0
x2 y2 ∆2y1 ∆4y0
∆y2 ∆3y1 ∆5y0
x3 y3 ∆2y2 ∆4y1
∆y3 ∆3y2
x4 y4 ∆2y3
∆y4
x5 y5
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
The operator ∆ satisfies the following properties:
1 ∆[f(x) ± g(x)] = ∆f(x) ± ∆g(x)
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
The operator ∆ satisfies the following properties:
1 ∆[f(x) ± g(x)] = ∆f(x) ± ∆g(x)
2 ∆[cf(x)] = c∆f(x)
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
The operator ∆ satisfies the following properties:
1 ∆[f(x) ± g(x)] = ∆f(x) ± ∆g(x)
2 ∆[cf(x)] = c∆f(x)
3 ∆m∆nf(x) = ∆m+nf(x), m, n are positive integers
4 Since ∆nyn is a constant, ∆n+1yn = 0 , ∆n+2yn = 0, . . .
i.e. (n + 1)th and higher differences are zero.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Backward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Backward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
The operator defined by
y1 = y1 − y0
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Backward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
The operator defined by
y1 = y1 − y0
y2 = y2 − y1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Backward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
The operator defined by
y1 = y1 − y0
y2 = y2 − y1
.......
.......
yn = yn − yn−1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Backward difference
Suppose that a function y = f(x) is tabulated for the equally
spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the
functional values y0, y1, y2, ..., yn.
The operator defined by
y1 = y1 − y0
y2 = y2 − y1
.......
.......
yn = yn − yn−1
is called Backward difference operator.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
The first backward difference is yn = yn − yn−1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
The first backward difference is yn = yn − yn−1
The second backward difference are obtain by the difference
of the first differences.
2y2 = ( y2) = (y2 − y1) = y2 − y1
= y2 − y1 − (y1 − y0) = y2 − 2y1 + y0
2y3 = y3 − y2
2yn = yn − yn−1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
The first backward difference is yn = yn − yn−1
The second backward difference are obtain by the difference
of the first differences.
2y2 = ( y2) = (y2 − y1) = y2 − y1
= y2 − y1 − (y1 − y0) = y2 − 2y1 + y0
2y3 = y3 − y2
2yn = yn − yn−1
In general nth backward difference of f is defined by
n
yi = n−1
yi − n−1
yi−1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Backward Difference Table:
x y y 2y 3y 4y 5y
x0 y0
y1
x1 y1
2y2
y2
3y3
x2 y2
2y3
4y4
y3
3y4
5y5
x3 y3
2y4
4y5
y4
3y5
x4 y4
2y5
y5
x5 y5
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Central difference
The operator δ defined by
δy1
2
= y1 − y0
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Central difference
The operator δ defined by
δy1
2
= y1 − y0
δy3
2
= y2 − y1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Central difference
The operator δ defined by
δy1
2
= y1 − y0
δy3
2
= y2 − y1
.......
.......
δyn−1
2
= yn − yn−1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Central difference
The operator δ defined by
δy1
2
= y1 − y0
δy3
2
= y2 − y1
.......
.......
δyn−1
2
= yn − yn−1
is called Central difference operator.
Similarly, higher order central differences are defined as
δ2y1 = δy3
2
− δy1
2
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Central difference
The operator δ defined by
δy1
2
= y1 − y0
δy3
2
= y2 − y1
.......
.......
δyn−1
2
= yn − yn−1
is called Central difference operator.
Similarly, higher order central differences are defined as
δ2y1 = δy3
2
− δy1
2
δ2y2 = δy5
2
− δy3
2
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Central difference
The operator δ defined by
δy1
2
= y1 − y0
δy3
2
= y2 − y1
.......
.......
δyn−1
2
= yn − yn−1
is called Central difference operator.
Similarly, higher order central differences are defined as
δ2y1 = δy3
2
− δy1
2
δ2y2 = δy5
2
− δy3
2
.......
δ3y3
2
= δ2y2 − δ2y1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Central difference
The operator δ defined by
δy1
2
= y1 − y0
δy3
2
= y2 − y1
.......
.......
δyn−1
2
= yn − yn−1
is called Central difference operator.
Similarly, higher order central differences are defined as
δ2y1 = δy3
2
− δy1
2
δ2y2 = δy5
2
− δy3
2
.......
δ3y3
2
= δ2y2 − δ2y1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Central Difference Table:
x y δy δ2y δ3y δ4y δ5y
x0 y0
δy1
2
x1 y1 δ2y1
δy3
2
δ3y3
2
x2 y2 δ2y2 δ4y2
δy5
2
δ3y5
2
δ5y5
2
x3 y3 δ2y3 δ4y3
δy7
2
δ3y7
2
x4 y4 δ2y4
δy9
2
x5 y5
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
NOTE:
From all three difference tables, we can see that only the
notations changes not the differences.
y1 − y0 = ∆y0 = y1 = δy1
2
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
NOTE:
From all three difference tables, we can see that only the
notations changes not the differences.
y1 − y0 = ∆y0 = y1 = δy1
2
Alternative notations for the function y = f(x).
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
NOTE:
From all three difference tables, we can see that only the
notations changes not the differences.
y1 − y0 = ∆y0 = y1 = δy1
2
Alternative notations for the function y = f(x).
For two consecutive values of x differing by h.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
NOTE:
From all three difference tables, we can see that only the
notations changes not the differences.
y1 − y0 = ∆y0 = y1 = δy1
2
Alternative notations for the function y = f(x).
For two consecutive values of x differing by h.
∆yx = yx+h − yx = f(x + h) − f(x)
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
NOTE:
From all three difference tables, we can see that only the
notations changes not the differences.
y1 − y0 = ∆y0 = y1 = δy1
2
Alternative notations for the function y = f(x).
For two consecutive values of x differing by h.
∆yx = yx+h − yx = f(x + h) − f(x)
yx = yx − yx−h = f(x) − f(x − h)
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
NOTE:
From all three difference tables, we can see that only the
notations changes not the differences.
y1 − y0 = ∆y0 = y1 = δy1
2
Alternative notations for the function y = f(x).
For two consecutive values of x differing by h.
∆yx = yx+h − yx = f(x + h) − f(x)
yx = yx − yx−h = f(x) − f(x − h)
δyx = yx+h
2
− yx−h
2
= f(x + h
2 ) − f(xh
2 )
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Evaluate the following. The interval of difference being h.
1 ∆nex
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Evaluate the following. The interval of difference being h.
1 ∆nex
2 ∆logf(x)
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Evaluate the following. The interval of difference being h.
1 ∆nex
2 ∆logf(x)
3 ∆(tan−1x)
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Evaluate the following. The interval of difference being h.
1 ∆nex
2 ∆logf(x)
3 ∆(tan−1x)
4 ∆2cos2x
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Enf(x) = f(x + nh);
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Enf(x) = f(x + nh);
The inverse operator E−1 is defined as
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Enf(x) = f(x + nh);
The inverse operator E−1 is defined as
E−1f(x) = f(x − h);
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Enf(x) = f(x + nh);
The inverse operator E−1 is defined as
E−1f(x) = f(x − h);
E−nf(x) = f(x − nh);
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Enf(x) = f(x + nh);
The inverse operator E−1 is defined as
E−1f(x) = f(x − h);
E−nf(x) = f(x − nh);
If yx is the function f(x), then
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Enf(x) = f(x + nh);
The inverse operator E−1 is defined as
E−1f(x) = f(x − h);
E−nf(x) = f(x − nh);
If yx is the function f(x), then
Eyx = yx+h;
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Enf(x) = f(x + nh);
The inverse operator E−1 is defined as
E−1f(x) = f(x − h);
E−nf(x) = f(x − nh);
If yx is the function f(x), then
Eyx = yx+h;
E−1yx = yx−h;
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Enf(x) = f(x + nh);
The inverse operator E−1 is defined as
E−1f(x) = f(x − h);
E−nf(x) = f(x − nh);
If yx is the function f(x), then
Eyx = yx+h;
E−1yx = yx−h;
Enyx = yx+nh;
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Other Difference Operator
1. Shift Operator E:
E does the operation of increasing the argument x by h so that
Ef(x) = f(x + h);
E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h);
E3f(x) = f(x + 3h);
Enf(x) = f(x + nh);
The inverse operator E−1 is defined as
E−1f(x) = f(x − h);
E−nf(x) = f(x − nh);
If yx is the function f(x), then
Eyx = yx+h;
E−1yx = yx−h;
Enyx = yx+nh;
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
2. Averaging Operator µ:
It is defined as
µf(x) =
1
2
f x +
h
2
+ f x −
h
2
;
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
2. Averaging Operator µ:
It is defined as
µf(x) =
1
2
f x +
h
2
+ f x −
h
2
;
i.e. µyx =
1
2
yx+h
2
+ yx−h
2
;
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
2. Averaging Operator µ:
It is defined as
µf(x) =
1
2
f x +
h
2
+ f x −
h
2
;
i.e. µyx =
1
2
yx+h
2
+ yx−h
2
;
3. Differential Operator D:
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
2. Averaging Operator µ:
It is defined as
µf(x) =
1
2
f x +
h
2
+ f x −
h
2
;
i.e. µyx =
1
2
yx+h
2
+ yx−h
2
;
3. Differential Operator D:
It is defined as
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
2. Averaging Operator µ:
It is defined as
µf(x) =
1
2
f x +
h
2
+ f x −
h
2
;
i.e. µyx =
1
2
yx+h
2
+ yx−h
2
;
3. Differential Operator D:
It is defined as
Df(x) =
d
dx
f(x) = f (x);
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Relation between the operators
1 ∆ = E − 1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Relation between the operators
1 ∆ = E − 1
2 = 1 − E−1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Relation between the operators
1 ∆ = E − 1
2 = 1 − E−1
3 δ = E
1
2 − E−1
2
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Relation between the operators
1 ∆ = E − 1
2 = 1 − E−1
3 δ = E
1
2 − E−1
2
4 µ =
1
2
{E
1
2 + E−1
2 }
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Relation between the operators
1 ∆ = E − 1
2 = 1 − E−1
3 δ = E
1
2 − E−1
2
4 µ =
1
2
{E
1
2 + E−1
2 }
5 ∆ = E = E = δE
1
2
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Relation between the operators
1 ∆ = E − 1
2 = 1 − E−1
3 δ = E
1
2 − E−1
2
4 µ =
1
2
{E
1
2 + E−1
2 }
5 ∆ = E = E = δE
1
2
6 E = ehD
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Relation between the operators
1 ∆ = E − 1
2 = 1 − E−1
3 δ = E
1
2 − E−1
2
4 µ =
1
2
{E
1
2 + E−1
2 }
5 ∆ = E = E = δE
1
2
6 E = ehD
7 (1 + ∆)(1 − ) = 1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
Relation between the operators
1 ∆ = E − 1
2 = 1 − E−1
3 δ = E
1
2 − E−1
2
4 µ =
1
2
{E
1
2 + E−1
2 }
5 ∆ = E = E = δE
1
2
6 E = ehD
7 (1 + ∆)(1 − ) = 1
8 ∆ − = ∆ = δ2
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
9 1 + µ2δ2 = 1 +
1
2
δ2
2
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
9 1 + µ2δ2 = 1 +
1
2
δ2
2
10 µ2 = 1 +
1
4
δ2
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
9 1 + µ2δ2 = 1 +
1
2
δ2
2
10 µ2 = 1 +
1
4
δ2
11 E
1
2 = µ +
1
2
δ
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
9 1 + µ2δ2 = 1 +
1
2
δ2
2
10 µ2 = 1 +
1
4
δ2
11 E
1
2 = µ +
1
2
δ
12 E−1
2 = µ −
1
2
δ
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
9 1 + µ2δ2 = 1 +
1
2
δ2
2
10 µ2 = 1 +
1
4
δ2
11 E
1
2 = µ +
1
2
δ
12 E−1
2 = µ −
1
2
δ
13 ∆ =
1
2
δ2 + δ 1 +
δ2
4
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
9 1 + µ2δ2 = 1 +
1
2
δ2
2
10 µ2 = 1 +
1
4
δ2
11 E
1
2 = µ +
1
2
δ
12 E−1
2 = µ −
1
2
δ
13 ∆ =
1
2
δ2 + δ 1 +
δ2
4
14 µδ =
1
2
∆E−1 +
1
2
∆
Dr. N. B. Vyas Numerical Methods - Finite Differences
Finite Differences
9 1 + µ2δ2 = 1 +
1
2
δ2
2
10 µ2 = 1 +
1
4
δ2
11 E
1
2 = µ +
1
2
δ
12 E−1
2 = µ −
1
2
δ
13 ∆ =
1
2
δ2 + δ 1 +
δ2
4
14 µδ =
1
2
∆E−1 +
1
2
∆
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Forward Interpolation Formula
To estimate the value of a function near the beginning a table,
the forward difference interpolation formula in used.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Forward Interpolation Formula
To estimate the value of a function near the beginning a table,
the forward difference interpolation formula in used.
Let yx = f(x) be a function which takes the values
yx0 , yx0+h, yx0+2h, . . . corresponding to the values
x0, x0 + h, x0 + 2h, . . . of x.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Forward Interpolation Formula
To estimate the value of a function near the beginning a table,
the forward difference interpolation formula in used.
Let yx = f(x) be a function which takes the values
yx0 , yx0+h, yx0+2h, . . . corresponding to the values
x0, x0 + h, x0 + 2h, . . . of x.
Suppose we want to evaluate yx when x = x0 + ph, where p is
any real number.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Forward Interpolation Formula
To estimate the value of a function near the beginning a table,
the forward difference interpolation formula in used.
Let yx = f(x) be a function which takes the values
yx0 , yx0+h, yx0+2h, . . . corresponding to the values
x0, x0 + h, x0 + 2h, . . . of x.
Suppose we want to evaluate yx when x = x0 + ph, where p is
any real number.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Forward Interpolation Formula
Let it be yp. For any real number n, we have defined operator E
such that Enf(x) = f(x + nh).
∴ yx = yx0+ph = f (x0 + ph) = Epyx0 = (1 + ∆)p
y0
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Forward Interpolation Formula
Let it be yp. For any real number n, we have defined operator E
such that Enf(x) = f(x + nh).
∴ yx = yx0+ph = f (x0 + ph) = Epyx0 = (1 + ∆)p
y0
= 1 + p∆ +
p(p − 1)
2!
∆2 +
p(p − 1)(p − 2)
3!
∆3 + ... y0
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Forward Interpolation Formula
Let it be yp. For any real number n, we have defined operator E
such that Enf(x) = f(x + nh).
∴ yx = yx0+ph = f (x0 + ph) = Epyx0 = (1 + ∆)p
y0
= 1 + p∆ +
p(p − 1)
2!
∆2 +
p(p − 1)(p − 2)
3!
∆3 + ... y0
yx = y0 + p∆y0 +
p(p − 1)
2!
∆2
y0 +
p(p − 1)(p − 2)
3!
∆3
y0 + ...
is called Newton’s forward interpolation formula.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Example
Ex. For the data construct the forward difference formula. Hence,
find f(0.5).
x -2 -1 0 1 2 3
f(x) 15 5 1 3 11 25
Dr. N. B. Vyas Numerical Methods - Finite Differences
Example
Ex. The population of the town in decennial census was as given
below estimate the population for the year 1895.
Year: 1891 1901 1911 1921 1931
Population(in thousand): 46 66 81 93 101
Dr. N. B. Vyas Numerical Methods - Finite Differences
Example
Ex. Estimate the value of production for the year 1984 using
Newton’s forward method for the following data:
Year: 1976 1978 1980 1982
Production: 20 27 38 50
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Backward Interpolation Formula
To estimate the value of a function near the end of a table, the
backward difference interpolation formula in used.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Backward Interpolation Formula
To estimate the value of a function near the end of a table, the
backward difference interpolation formula in used.
Let yx = f(x) be a function which takes the values
yx0 , yx0+h, yx0+2h, . . . corresponding to the values
x0, x0 + h, x0 + 2h, . . . of x.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Backward Interpolation Formula
To estimate the value of a function near the end of a table, the
backward difference interpolation formula in used.
Let yx = f(x) be a function which takes the values
yx0 , yx0+h, yx0+2h, . . . corresponding to the values
x0, x0 + h, x0 + 2h, . . . of x.
Suppose we want to evaluate yx when x = xn + ph, where p is
any real number.
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Backward Interpolation Formula
Let it be yp. For any real number n, we have defined operator E
such that Enf(x) = f(x + nh).
∴ yx = yxn+ph = f (xn + ph) = Epyxn = (1 − )−p
yn
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Backward Interpolation Formula
Let it be yp. For any real number n, we have defined operator E
such that Enf(x) = f(x + nh).
∴ yx = yxn+ph = f (xn + ph) = Epyxn = (1 − )−p
yn
= 1 + p +
p(p + 1)
2!
2 +
p(p + 1)(p + 2)
3!
3 + ... yn
Dr. N. B. Vyas Numerical Methods - Finite Differences
Gregory - Newton Backward Interpolation Formula
Let it be yp. For any real number n, we have defined operator E
such that Enf(x) = f(x + nh).
∴ yx = yxn+ph = f (xn + ph) = Epyxn = (1 − )−p
yn
= 1 + p +
p(p + 1)
2!
2 +
p(p + 1)(p + 2)
3!
3 + ... yn
yx = yn + p yn +
p(p + 1)
2!
2
yn +
p(p + 1)(p + 2)
3!
3
yn + ...
is called Newton’s backward interpolation formula
Dr. N. B. Vyas Numerical Methods - Finite Differences
Example
Ex. Using Newtons backward difference interpolation, interpolate at
x = 1 from the following data.
x 0.1 0.2 0.3 0.4 0.5 0.6
f(x) 1.699 1.073 0.375 0.443 1.429 2.631
Dr. N. B. Vyas Numerical Methods - Finite Differences
Example
Ex. The table gives the distance in nautical miles of the visible
horizon for the given heights in feet above the earth’s surface.
Find the value of y when x=390 ft.
Height(x): 100 150 200 250 300 350 400
Distance(y): 10.63 13.03 15.04 16.81 18.42 19.90 21.47
Dr. N. B. Vyas Numerical Methods - Finite Differences
Stirling’s Interpolation Formula
To estimate the value of a function near the middle a table, the
central difference interpolation formula in used.
Let yx = f(x) be a functional relation between x and y.
If x takes the values x0 − 2h, x0 − h, x0, x0 + h, x0 + 2h, . . . and
the corresponding values of y are y−2, y−1, y0, y1, y2 . . . then we
can form a central difference table as follows:
Dr. N. B. Vyas Numerical Methods - Finite Differences
Stirling’s Interpolation Formula
x y
1st
difference
2nd
difference
3rd
difference
x0 − 2h y−2
∆y−2(= δy−3/2)
x0 − h y−1 ∆2y−2(= δ2y−1)
∆y−1(= δy−1/2) ∆3y−2(= δ3y−1/2)
x0 y0 ∆2y−1(= δ2y0) ∆
∆y0(= δy1/2) ∆3y−1(= δ3y1/2)
x0 + h y1 ∆2y0(= δ2y1)
∆y1(= δy3/2)
x0 + 2h y2
Dr. N. B. Vyas Numerical Methods - Finite Differences
Stirling’s Interpolation Formula
The Stirling’s formula in forward difference notation is
Dr. N. B. Vyas Numerical Methods - Finite Differences
Stirling’s Interpolation Formula
The Stirling’s formula in forward difference notation is
yp = y0 + p
∆y0 + ∆y−1
2
+
p2
2!
∆2y−1
Dr. N. B. Vyas Numerical Methods - Finite Differences
Stirling’s Interpolation Formula
The Stirling’s formula in forward difference notation is
yp = y0 + p
∆y0 + ∆y−1
2
+
p2
2!
∆2y−1
+
p(p2 − 12)
3!
∆3y−1 + ∆3y−2
2
+
p2(p2 − 12)
4!
∆4y−2 + . . .
Dr. N. B. Vyas Numerical Methods - Finite Differences
Example
Ex.
Using Stirling’s formula find y35
x: 10 20 30 40 50
y: 600 512 439 346 243
Dr. N. B. Vyas Numerical Methods - Finite Differences
Example
Ex. The function y is given in the table below:
Find y for x=0.0341
x: 0.01 0.02 0.03 0.04 0.05
y: 98.4342 48.4392 31.7775 23.4492 18.4542
Dr. N. B. Vyas Numerical Methods - Finite Differences
Central Difference
Gauss’s Forward interpolation formula:
Dr. N. B. Vyas Numerical Methods - Finite Differences
Central Difference
Gauss’s Forward interpolation formula:
Pn(x) = y0 + p∆y0 +
p(p − 1)
2!
∆2
y−1 +
(p + 1)p(p − 1)
3!
∆3
y−1+
(p + 1)p(p − 1)(p − 2)
4!
∆4
y−2 + ...
Dr. N. B. Vyas Numerical Methods - Finite Differences
Central Difference
Gauss’s Forward interpolation formula:
Pn(x) = y0 + p∆y0 +
p(p − 1)
2!
∆2
y−1 +
(p + 1)p(p − 1)
3!
∆3
y−1+
(p + 1)p(p − 1)(p − 2)
4!
∆4
y−2 + ...
Gauss’s Backward interpolation formula:
Dr. N. B. Vyas Numerical Methods - Finite Differences
Central Difference
Gauss’s Forward interpolation formula:
Pn(x) = y0 + p∆y0 +
p(p − 1)
2!
∆2
y−1 +
(p + 1)p(p − 1)
3!
∆3
y−1+
(p + 1)p(p − 1)(p − 2)
4!
∆4
y−2 + ...
Gauss’s Backward interpolation formula:
Pn(x) = y0 + p∆y−1 +
p(p + 1)
2!
∆2
y−1 +
(p + 1)p(p − 1)
3!
∆3
y−2+
(p + 2)(p + 1)p(p − 1)
4!
∆4
y−2 + ...
Dr. N. B. Vyas Numerical Methods - Finite Differences
Example
Ex. Estimate the value of y(2.5) using Gauss’s forward formula given
that:
x: 1 2 3 4
y: 1 4 9 16
Dr. N. B. Vyas Numerical Methods - Finite Differences
Example
Ex. Interpolate by means of Gauss’s backward formula the
population for the year 1936 given the following table:
Year : 1901 1911 1921 1931 1941 1951
Population(in 1000s): 12 15 20 27 39 52
Dr. N. B. Vyas Numerical Methods - Finite Differences

More Related Content

What's hot

Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolation
Harshad Koshti
 
Newton's forward difference
Newton's forward differenceNewton's forward difference
Newton's forward difference
Raj Parekh
 
Euler and improved euler method
Euler and improved euler methodEuler and improved euler method
Euler and improved euler method
Sohaib Butt
 
Eigen value and eigen vector
Eigen value and eigen vectorEigen value and eigen vector
Eigen value and eigen vector
Rutvij Patel
 
Linear differential equation
Linear differential equationLinear differential equation
Linear differential equationPratik Sudra
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation
Meet Patel
 
Fixed point iteration
Fixed point iterationFixed point iteration
Fixed point iteration
Isaac Yowetu
 
applications of first order non linear partial differential equation
applications of first order non linear partial differential equationapplications of first order non linear partial differential equation
applications of first order non linear partial differential equation
Dhananjaysinh Jhala
 
Complex analysis
Complex analysisComplex analysis
Complex analysis
sujathavvv
 
presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve
Mukuldev Khunte
 
Newton’s Divided Difference Formula
Newton’s Divided Difference FormulaNewton’s Divided Difference Formula
Newton’s Divided Difference Formula
Jas Singh Bhasin
 
Fuzzy Logic ppt
Fuzzy Logic pptFuzzy Logic ppt
Fuzzy Logic ppt
Ritu Bafna
 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectors
Jaydev Kishnani
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
AMINULISLAM439
 
Interpolation
InterpolationInterpolation
Interpolation
Bhavik A Shah
 
Gauss jordan and Guass elimination method
Gauss jordan and Guass elimination methodGauss jordan and Guass elimination method
Gauss jordan and Guass elimination method
Meet Nayak
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen values
Dr. Nirav Vyas
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equationsAhmed Haider
 

What's hot (20)

Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolation
 
Newton's forward difference
Newton's forward differenceNewton's forward difference
Newton's forward difference
 
Euler and improved euler method
Euler and improved euler methodEuler and improved euler method
Euler and improved euler method
 
Eigen value and eigen vector
Eigen value and eigen vectorEigen value and eigen vector
Eigen value and eigen vector
 
Linear differential equation
Linear differential equationLinear differential equation
Linear differential equation
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation
 
Fixed point iteration
Fixed point iterationFixed point iteration
Fixed point iteration
 
applications of first order non linear partial differential equation
applications of first order non linear partial differential equationapplications of first order non linear partial differential equation
applications of first order non linear partial differential equation
 
Complex analysis
Complex analysisComplex analysis
Complex analysis
 
presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve
 
newton raphson method
newton raphson methodnewton raphson method
newton raphson method
 
Gauss sediel
Gauss sedielGauss sediel
Gauss sediel
 
Newton’s Divided Difference Formula
Newton’s Divided Difference FormulaNewton’s Divided Difference Formula
Newton’s Divided Difference Formula
 
Fuzzy Logic ppt
Fuzzy Logic pptFuzzy Logic ppt
Fuzzy Logic ppt
 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectors
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
 
Interpolation
InterpolationInterpolation
Interpolation
 
Gauss jordan and Guass elimination method
Gauss jordan and Guass elimination methodGauss jordan and Guass elimination method
Gauss jordan and Guass elimination method
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen values
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
 

Similar to Interpolation with Finite differences

Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2
Dr. Nirav Vyas
 
Interpolation with unequal interval
Interpolation with unequal intervalInterpolation with unequal interval
Interpolation with unequal interval
Dr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3
Dr. Nirav Vyas
 
Taller 2
Taller 2 Taller 2
Taller 2
mariarivas114
 
Imc2016 day2-solutions
Imc2016 day2-solutionsImc2016 day2-solutions
Imc2016 day2-solutions
Christos Loizos
 
DIFFERENTIAL EQUATION
DIFFERENTIAL EQUATIONDIFFERENTIAL EQUATION
DIFFERENTIAL EQUATION
shahzadebaujiti
 
Econometrics homework help
Econometrics homework helpEconometrics homework help
Econometrics homework help
Mark Austin
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
OlooPundit
 
160280102021 c2 aem (2)
160280102021 c2 aem (2)160280102021 c2 aem (2)
160280102021 c2 aem (2)
L.D. COLLEGE OF ENGINEERING
 
NUMERICAL METHODS
NUMERICAL METHODSNUMERICAL METHODS
NUMERICAL METHODS
mathematicssac
 
Lecture_Slides_Mathematics_06_Optimization.pdf
Lecture_Slides_Mathematics_06_Optimization.pdfLecture_Slides_Mathematics_06_Optimization.pdf
Lecture_Slides_Mathematics_06_Optimization.pdf
SantiagoGarridoBulln
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian Integration
Reza Rahimi
 
Regression analysis by Muthama JM
Regression analysis by Muthama JMRegression analysis by Muthama JM
Regression analysis by Muthama JM
Japheth Muthama
 
Regression Analysis by Muthama JM
Regression Analysis by Muthama JM Regression Analysis by Muthama JM
Regression Analysis by Muthama JM
Japheth Muthama
 
Numerical solution of the Schr¨odinger equation
Numerical solution of the Schr¨odinger equationNumerical solution of the Schr¨odinger equation
Numerical solution of the Schr¨odinger equation
Mohamed Ramadan
 

Similar to Interpolation with Finite differences (20)

Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2
 
Interpolation with unequal interval
Interpolation with unequal intervalInterpolation with unequal interval
Interpolation with unequal interval
 
Unit iv
Unit ivUnit iv
Unit iv
 
Numerical method
Numerical methodNumerical method
Numerical method
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3
 
Taller 2
Taller 2 Taller 2
Taller 2
 
Imc2016 day2-solutions
Imc2016 day2-solutionsImc2016 day2-solutions
Imc2016 day2-solutions
 
DIFFERENTIAL EQUATION
DIFFERENTIAL EQUATIONDIFFERENTIAL EQUATION
DIFFERENTIAL EQUATION
 
Econometrics homework help
Econometrics homework helpEconometrics homework help
Econometrics homework help
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
160280102021 c2 aem (2)
160280102021 c2 aem (2)160280102021 c2 aem (2)
160280102021 c2 aem (2)
 
NUMERICAL METHODS
NUMERICAL METHODSNUMERICAL METHODS
NUMERICAL METHODS
 
Lecture_Slides_Mathematics_06_Optimization.pdf
Lecture_Slides_Mathematics_06_Optimization.pdfLecture_Slides_Mathematics_06_Optimization.pdf
Lecture_Slides_Mathematics_06_Optimization.pdf
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian Integration
 
10.4
10.410.4
10.4
 
Regression analysis by Muthama JM
Regression analysis by Muthama JMRegression analysis by Muthama JM
Regression analysis by Muthama JM
 
Regression Analysis by Muthama JM
Regression Analysis by Muthama JM Regression Analysis by Muthama JM
Regression Analysis by Muthama JM
 
AJMS_389_22.pdf
AJMS_389_22.pdfAJMS_389_22.pdf
AJMS_389_22.pdf
 
Numerical solution of the Schr¨odinger equation
Numerical solution of the Schr¨odinger equationNumerical solution of the Schr¨odinger equation
Numerical solution of the Schr¨odinger equation
 

More from Dr. Nirav Vyas

Reduction forumla
Reduction forumlaReduction forumla
Reduction forumla
Dr. Nirav Vyas
 
Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic Mean
Dr. Nirav Vyas
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressions
Dr. Nirav Vyas
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressions
Dr. Nirav Vyas
 
Combinations
CombinationsCombinations
Combinations
Dr. Nirav Vyas
 
Permutation
PermutationPermutation
Permutation
Dr. Nirav Vyas
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture Notes
Dr. Nirav Vyas
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture Notes
Dr. Nirav Vyas
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture Notes
Dr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1
Dr. Nirav Vyas
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
Dr. Nirav Vyas
 
Special functions
Special functionsSpecial functions
Special functions
Dr. Nirav Vyas
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
Dr. Nirav Vyas
 
Numerical Methods 3
Numerical Methods 3Numerical Methods 3
Numerical Methods 3
Dr. Nirav Vyas
 
Numerical Methods 1
Numerical Methods 1Numerical Methods 1
Numerical Methods 1
Dr. Nirav Vyas
 
Power series
Power seriesPower series
Power series
Dr. Nirav Vyas
 

More from Dr. Nirav Vyas (20)

Reduction forumla
Reduction forumlaReduction forumla
Reduction forumla
 
Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic Mean
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressions
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressions
 
Combinations
CombinationsCombinations
Combinations
 
Permutation
PermutationPermutation
Permutation
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture Notes
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture Notes
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture Notes
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
Special functions
Special functionsSpecial functions
Special functions
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
 
Laplace Transforms
Laplace TransformsLaplace Transforms
Laplace Transforms
 
Fourier series 3
Fourier series 3Fourier series 3
Fourier series 3
 
Fourier series 2
Fourier series 2Fourier series 2
Fourier series 2
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 
Numerical Methods 3
Numerical Methods 3Numerical Methods 3
Numerical Methods 3
 
Numerical Methods 1
Numerical Methods 1Numerical Methods 1
Numerical Methods 1
 
Power series
Power seriesPower series
Power series
 

Recently uploaded

GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
Nguyen Thanh Tu Collection
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
TechSoup
 
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdfESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
Fundacja Rozwoju Społeczeństwa Przedsiębiorczego
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)
rosedainty
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
Col Mukteshwar Prasad
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
PedroFerreira53928
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
PedroFerreira53928
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
AzmatAli747758
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 

Recently uploaded (20)

GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdfESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 

Interpolation with Finite differences

  • 1. Numerical Methods - Finite Differences Dr. N. B. Vyas Department of Mathematics, Atmiya Institute of Tech. and Science, Rajkot (Guj.) niravbvyas@gmail.com Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 2. Finite Differences Forward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 3. Finite Differences Forward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. The constant difference between two consecutive values of x is called the interval of differences and is denoted by h. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 4. Finite Differences Forward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. The constant difference between two consecutive values of x is called the interval of differences and is denoted by h. The operator ∆ defined by ∆y0 = y1 − y0 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 5. Finite Differences Forward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. The constant difference between two consecutive values of x is called the interval of differences and is denoted by h. The operator ∆ defined by ∆y0 = y1 − y0 ∆y1 = y2 − y1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 6. Finite Differences Forward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. The constant difference between two consecutive values of x is called the interval of differences and is denoted by h. The operator ∆ defined by ∆y0 = y1 − y0 ∆y1 = y2 − y1 ....... ....... ∆yn−1 = yn − yn−1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 7. Finite Differences Forward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. The constant difference between two consecutive values of x is called the interval of differences and is denoted by h. The operator ∆ defined by ∆y0 = y1 − y0 ∆y1 = y2 − y1 ....... ....... ∆yn−1 = yn − yn−1 is called Forward difference operator. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 8. Finite Differences The first forward difference is ∆yn = yn+1 − yn Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 9. Finite Differences The first forward difference is ∆yn = yn+1 − yn The second forward difference are defined as the difference of the first differences. ∆2y0 = ∆(∆y0) = ∆(y1 − y0) = ∆y1 − ∆y0 = y2 − y1 − (y1 − y0) = y2 − 2y1 + y0 ∆2y1 = ∆y2 − ∆y1 ∆2yi = ∆yi+1 − ∆yi In general nth forward difference of f is defined by ∆n yi = ∆n−1 yi+1 − ∆n−1 yi Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 10. Finite Differences Forward Difference Table: x y ∆y ∆2y ∆3y ∆4y ∆5y x0 y0 ∆y0 x1 y1 ∆2y0 ∆y1 ∆3y0 x2 y2 ∆2y1 ∆4y0 ∆y2 ∆3y1 ∆5y0 x3 y3 ∆2y2 ∆4y1 ∆y3 ∆3y2 x4 y4 ∆2y3 ∆y4 x5 y5 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 11. Finite Differences The operator ∆ satisfies the following properties: 1 ∆[f(x) ± g(x)] = ∆f(x) ± ∆g(x) Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 12. Finite Differences The operator ∆ satisfies the following properties: 1 ∆[f(x) ± g(x)] = ∆f(x) ± ∆g(x) 2 ∆[cf(x)] = c∆f(x) Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 13. Finite Differences The operator ∆ satisfies the following properties: 1 ∆[f(x) ± g(x)] = ∆f(x) ± ∆g(x) 2 ∆[cf(x)] = c∆f(x) 3 ∆m∆nf(x) = ∆m+nf(x), m, n are positive integers 4 Since ∆nyn is a constant, ∆n+1yn = 0 , ∆n+2yn = 0, . . . i.e. (n + 1)th and higher differences are zero. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 14. Finite Differences Backward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 15. Finite Differences Backward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. The operator defined by y1 = y1 − y0 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 16. Finite Differences Backward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. The operator defined by y1 = y1 − y0 y2 = y2 − y1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 17. Finite Differences Backward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. The operator defined by y1 = y1 − y0 y2 = y2 − y1 ....... ....... yn = yn − yn−1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 18. Finite Differences Backward difference Suppose that a function y = f(x) is tabulated for the equally spaced arguments x0, x0 + h, x0 + 2h, ..., x0 + nh giving the functional values y0, y1, y2, ..., yn. The operator defined by y1 = y1 − y0 y2 = y2 − y1 ....... ....... yn = yn − yn−1 is called Backward difference operator. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 19. Finite Differences The first backward difference is yn = yn − yn−1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 20. Finite Differences The first backward difference is yn = yn − yn−1 The second backward difference are obtain by the difference of the first differences. 2y2 = ( y2) = (y2 − y1) = y2 − y1 = y2 − y1 − (y1 − y0) = y2 − 2y1 + y0 2y3 = y3 − y2 2yn = yn − yn−1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 21. Finite Differences The first backward difference is yn = yn − yn−1 The second backward difference are obtain by the difference of the first differences. 2y2 = ( y2) = (y2 − y1) = y2 − y1 = y2 − y1 − (y1 − y0) = y2 − 2y1 + y0 2y3 = y3 − y2 2yn = yn − yn−1 In general nth backward difference of f is defined by n yi = n−1 yi − n−1 yi−1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 22. Finite Differences Backward Difference Table: x y y 2y 3y 4y 5y x0 y0 y1 x1 y1 2y2 y2 3y3 x2 y2 2y3 4y4 y3 3y4 5y5 x3 y3 2y4 4y5 y4 3y5 x4 y4 2y5 y5 x5 y5 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 23. Finite Differences Central difference The operator δ defined by δy1 2 = y1 − y0 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 24. Finite Differences Central difference The operator δ defined by δy1 2 = y1 − y0 δy3 2 = y2 − y1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 25. Finite Differences Central difference The operator δ defined by δy1 2 = y1 − y0 δy3 2 = y2 − y1 ....... ....... δyn−1 2 = yn − yn−1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 26. Finite Differences Central difference The operator δ defined by δy1 2 = y1 − y0 δy3 2 = y2 − y1 ....... ....... δyn−1 2 = yn − yn−1 is called Central difference operator. Similarly, higher order central differences are defined as δ2y1 = δy3 2 − δy1 2 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 27. Finite Differences Central difference The operator δ defined by δy1 2 = y1 − y0 δy3 2 = y2 − y1 ....... ....... δyn−1 2 = yn − yn−1 is called Central difference operator. Similarly, higher order central differences are defined as δ2y1 = δy3 2 − δy1 2 δ2y2 = δy5 2 − δy3 2 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 28. Finite Differences Central difference The operator δ defined by δy1 2 = y1 − y0 δy3 2 = y2 − y1 ....... ....... δyn−1 2 = yn − yn−1 is called Central difference operator. Similarly, higher order central differences are defined as δ2y1 = δy3 2 − δy1 2 δ2y2 = δy5 2 − δy3 2 ....... δ3y3 2 = δ2y2 − δ2y1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 29. Finite Differences Central difference The operator δ defined by δy1 2 = y1 − y0 δy3 2 = y2 − y1 ....... ....... δyn−1 2 = yn − yn−1 is called Central difference operator. Similarly, higher order central differences are defined as δ2y1 = δy3 2 − δy1 2 δ2y2 = δy5 2 − δy3 2 ....... δ3y3 2 = δ2y2 − δ2y1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 30. Finite Differences Central Difference Table: x y δy δ2y δ3y δ4y δ5y x0 y0 δy1 2 x1 y1 δ2y1 δy3 2 δ3y3 2 x2 y2 δ2y2 δ4y2 δy5 2 δ3y5 2 δ5y5 2 x3 y3 δ2y3 δ4y3 δy7 2 δ3y7 2 x4 y4 δ2y4 δy9 2 x5 y5 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 31. Finite Differences NOTE: From all three difference tables, we can see that only the notations changes not the differences. y1 − y0 = ∆y0 = y1 = δy1 2 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 32. Finite Differences NOTE: From all three difference tables, we can see that only the notations changes not the differences. y1 − y0 = ∆y0 = y1 = δy1 2 Alternative notations for the function y = f(x). Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 33. Finite Differences NOTE: From all three difference tables, we can see that only the notations changes not the differences. y1 − y0 = ∆y0 = y1 = δy1 2 Alternative notations for the function y = f(x). For two consecutive values of x differing by h. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 34. Finite Differences NOTE: From all three difference tables, we can see that only the notations changes not the differences. y1 − y0 = ∆y0 = y1 = δy1 2 Alternative notations for the function y = f(x). For two consecutive values of x differing by h. ∆yx = yx+h − yx = f(x + h) − f(x) Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 35. Finite Differences NOTE: From all three difference tables, we can see that only the notations changes not the differences. y1 − y0 = ∆y0 = y1 = δy1 2 Alternative notations for the function y = f(x). For two consecutive values of x differing by h. ∆yx = yx+h − yx = f(x + h) − f(x) yx = yx − yx−h = f(x) − f(x − h) Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 36. Finite Differences NOTE: From all three difference tables, we can see that only the notations changes not the differences. y1 − y0 = ∆y0 = y1 = δy1 2 Alternative notations for the function y = f(x). For two consecutive values of x differing by h. ∆yx = yx+h − yx = f(x + h) − f(x) yx = yx − yx−h = f(x) − f(x − h) δyx = yx+h 2 − yx−h 2 = f(x + h 2 ) − f(xh 2 ) Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 37. Finite Differences Evaluate the following. The interval of difference being h. 1 ∆nex Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 38. Finite Differences Evaluate the following. The interval of difference being h. 1 ∆nex 2 ∆logf(x) Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 39. Finite Differences Evaluate the following. The interval of difference being h. 1 ∆nex 2 ∆logf(x) 3 ∆(tan−1x) Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 40. Finite Differences Evaluate the following. The interval of difference being h. 1 ∆nex 2 ∆logf(x) 3 ∆(tan−1x) 4 ∆2cos2x Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 41. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 42. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 43. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 44. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Enf(x) = f(x + nh); Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 45. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Enf(x) = f(x + nh); The inverse operator E−1 is defined as Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 46. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Enf(x) = f(x + nh); The inverse operator E−1 is defined as E−1f(x) = f(x − h); Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 47. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Enf(x) = f(x + nh); The inverse operator E−1 is defined as E−1f(x) = f(x − h); E−nf(x) = f(x − nh); Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 48. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Enf(x) = f(x + nh); The inverse operator E−1 is defined as E−1f(x) = f(x − h); E−nf(x) = f(x − nh); If yx is the function f(x), then Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 49. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Enf(x) = f(x + nh); The inverse operator E−1 is defined as E−1f(x) = f(x − h); E−nf(x) = f(x − nh); If yx is the function f(x), then Eyx = yx+h; Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 50. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Enf(x) = f(x + nh); The inverse operator E−1 is defined as E−1f(x) = f(x − h); E−nf(x) = f(x − nh); If yx is the function f(x), then Eyx = yx+h; E−1yx = yx−h; Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 51. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Enf(x) = f(x + nh); The inverse operator E−1 is defined as E−1f(x) = f(x − h); E−nf(x) = f(x − nh); If yx is the function f(x), then Eyx = yx+h; E−1yx = yx−h; Enyx = yx+nh; Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 52. Finite Differences Other Difference Operator 1. Shift Operator E: E does the operation of increasing the argument x by h so that Ef(x) = f(x + h); E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h); E3f(x) = f(x + 3h); Enf(x) = f(x + nh); The inverse operator E−1 is defined as E−1f(x) = f(x − h); E−nf(x) = f(x − nh); If yx is the function f(x), then Eyx = yx+h; E−1yx = yx−h; Enyx = yx+nh; Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 53. Finite Differences 2. Averaging Operator µ: It is defined as µf(x) = 1 2 f x + h 2 + f x − h 2 ; Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 54. Finite Differences 2. Averaging Operator µ: It is defined as µf(x) = 1 2 f x + h 2 + f x − h 2 ; i.e. µyx = 1 2 yx+h 2 + yx−h 2 ; Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 55. Finite Differences 2. Averaging Operator µ: It is defined as µf(x) = 1 2 f x + h 2 + f x − h 2 ; i.e. µyx = 1 2 yx+h 2 + yx−h 2 ; 3. Differential Operator D: Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 56. Finite Differences 2. Averaging Operator µ: It is defined as µf(x) = 1 2 f x + h 2 + f x − h 2 ; i.e. µyx = 1 2 yx+h 2 + yx−h 2 ; 3. Differential Operator D: It is defined as Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 57. Finite Differences 2. Averaging Operator µ: It is defined as µf(x) = 1 2 f x + h 2 + f x − h 2 ; i.e. µyx = 1 2 yx+h 2 + yx−h 2 ; 3. Differential Operator D: It is defined as Df(x) = d dx f(x) = f (x); Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 58. Finite Differences Relation between the operators 1 ∆ = E − 1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 59. Finite Differences Relation between the operators 1 ∆ = E − 1 2 = 1 − E−1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 60. Finite Differences Relation between the operators 1 ∆ = E − 1 2 = 1 − E−1 3 δ = E 1 2 − E−1 2 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 61. Finite Differences Relation between the operators 1 ∆ = E − 1 2 = 1 − E−1 3 δ = E 1 2 − E−1 2 4 µ = 1 2 {E 1 2 + E−1 2 } Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 62. Finite Differences Relation between the operators 1 ∆ = E − 1 2 = 1 − E−1 3 δ = E 1 2 − E−1 2 4 µ = 1 2 {E 1 2 + E−1 2 } 5 ∆ = E = E = δE 1 2 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 63. Finite Differences Relation between the operators 1 ∆ = E − 1 2 = 1 − E−1 3 δ = E 1 2 − E−1 2 4 µ = 1 2 {E 1 2 + E−1 2 } 5 ∆ = E = E = δE 1 2 6 E = ehD Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 64. Finite Differences Relation between the operators 1 ∆ = E − 1 2 = 1 − E−1 3 δ = E 1 2 − E−1 2 4 µ = 1 2 {E 1 2 + E−1 2 } 5 ∆ = E = E = δE 1 2 6 E = ehD 7 (1 + ∆)(1 − ) = 1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 65. Finite Differences Relation between the operators 1 ∆ = E − 1 2 = 1 − E−1 3 δ = E 1 2 − E−1 2 4 µ = 1 2 {E 1 2 + E−1 2 } 5 ∆ = E = E = δE 1 2 6 E = ehD 7 (1 + ∆)(1 − ) = 1 8 ∆ − = ∆ = δ2 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 66. Finite Differences 9 1 + µ2δ2 = 1 + 1 2 δ2 2 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 67. Finite Differences 9 1 + µ2δ2 = 1 + 1 2 δ2 2 10 µ2 = 1 + 1 4 δ2 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 68. Finite Differences 9 1 + µ2δ2 = 1 + 1 2 δ2 2 10 µ2 = 1 + 1 4 δ2 11 E 1 2 = µ + 1 2 δ Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 69. Finite Differences 9 1 + µ2δ2 = 1 + 1 2 δ2 2 10 µ2 = 1 + 1 4 δ2 11 E 1 2 = µ + 1 2 δ 12 E−1 2 = µ − 1 2 δ Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 70. Finite Differences 9 1 + µ2δ2 = 1 + 1 2 δ2 2 10 µ2 = 1 + 1 4 δ2 11 E 1 2 = µ + 1 2 δ 12 E−1 2 = µ − 1 2 δ 13 ∆ = 1 2 δ2 + δ 1 + δ2 4 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 71. Finite Differences 9 1 + µ2δ2 = 1 + 1 2 δ2 2 10 µ2 = 1 + 1 4 δ2 11 E 1 2 = µ + 1 2 δ 12 E−1 2 = µ − 1 2 δ 13 ∆ = 1 2 δ2 + δ 1 + δ2 4 14 µδ = 1 2 ∆E−1 + 1 2 ∆ Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 72. Finite Differences 9 1 + µ2δ2 = 1 + 1 2 δ2 2 10 µ2 = 1 + 1 4 δ2 11 E 1 2 = µ + 1 2 δ 12 E−1 2 = µ − 1 2 δ 13 ∆ = 1 2 δ2 + δ 1 + δ2 4 14 µδ = 1 2 ∆E−1 + 1 2 ∆ Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 73. Gregory - Newton Forward Interpolation Formula To estimate the value of a function near the beginning a table, the forward difference interpolation formula in used. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 74. Gregory - Newton Forward Interpolation Formula To estimate the value of a function near the beginning a table, the forward difference interpolation formula in used. Let yx = f(x) be a function which takes the values yx0 , yx0+h, yx0+2h, . . . corresponding to the values x0, x0 + h, x0 + 2h, . . . of x. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 75. Gregory - Newton Forward Interpolation Formula To estimate the value of a function near the beginning a table, the forward difference interpolation formula in used. Let yx = f(x) be a function which takes the values yx0 , yx0+h, yx0+2h, . . . corresponding to the values x0, x0 + h, x0 + 2h, . . . of x. Suppose we want to evaluate yx when x = x0 + ph, where p is any real number. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 76. Gregory - Newton Forward Interpolation Formula To estimate the value of a function near the beginning a table, the forward difference interpolation formula in used. Let yx = f(x) be a function which takes the values yx0 , yx0+h, yx0+2h, . . . corresponding to the values x0, x0 + h, x0 + 2h, . . . of x. Suppose we want to evaluate yx when x = x0 + ph, where p is any real number. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 77. Gregory - Newton Forward Interpolation Formula Let it be yp. For any real number n, we have defined operator E such that Enf(x) = f(x + nh). ∴ yx = yx0+ph = f (x0 + ph) = Epyx0 = (1 + ∆)p y0 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 78. Gregory - Newton Forward Interpolation Formula Let it be yp. For any real number n, we have defined operator E such that Enf(x) = f(x + nh). ∴ yx = yx0+ph = f (x0 + ph) = Epyx0 = (1 + ∆)p y0 = 1 + p∆ + p(p − 1) 2! ∆2 + p(p − 1)(p − 2) 3! ∆3 + ... y0 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 79. Gregory - Newton Forward Interpolation Formula Let it be yp. For any real number n, we have defined operator E such that Enf(x) = f(x + nh). ∴ yx = yx0+ph = f (x0 + ph) = Epyx0 = (1 + ∆)p y0 = 1 + p∆ + p(p − 1) 2! ∆2 + p(p − 1)(p − 2) 3! ∆3 + ... y0 yx = y0 + p∆y0 + p(p − 1) 2! ∆2 y0 + p(p − 1)(p − 2) 3! ∆3 y0 + ... is called Newton’s forward interpolation formula. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 80. Example Ex. For the data construct the forward difference formula. Hence, find f(0.5). x -2 -1 0 1 2 3 f(x) 15 5 1 3 11 25 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 81. Example Ex. The population of the town in decennial census was as given below estimate the population for the year 1895. Year: 1891 1901 1911 1921 1931 Population(in thousand): 46 66 81 93 101 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 82. Example Ex. Estimate the value of production for the year 1984 using Newton’s forward method for the following data: Year: 1976 1978 1980 1982 Production: 20 27 38 50 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 83. Gregory - Newton Backward Interpolation Formula To estimate the value of a function near the end of a table, the backward difference interpolation formula in used. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 84. Gregory - Newton Backward Interpolation Formula To estimate the value of a function near the end of a table, the backward difference interpolation formula in used. Let yx = f(x) be a function which takes the values yx0 , yx0+h, yx0+2h, . . . corresponding to the values x0, x0 + h, x0 + 2h, . . . of x. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 85. Gregory - Newton Backward Interpolation Formula To estimate the value of a function near the end of a table, the backward difference interpolation formula in used. Let yx = f(x) be a function which takes the values yx0 , yx0+h, yx0+2h, . . . corresponding to the values x0, x0 + h, x0 + 2h, . . . of x. Suppose we want to evaluate yx when x = xn + ph, where p is any real number. Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 86. Gregory - Newton Backward Interpolation Formula Let it be yp. For any real number n, we have defined operator E such that Enf(x) = f(x + nh). ∴ yx = yxn+ph = f (xn + ph) = Epyxn = (1 − )−p yn Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 87. Gregory - Newton Backward Interpolation Formula Let it be yp. For any real number n, we have defined operator E such that Enf(x) = f(x + nh). ∴ yx = yxn+ph = f (xn + ph) = Epyxn = (1 − )−p yn = 1 + p + p(p + 1) 2! 2 + p(p + 1)(p + 2) 3! 3 + ... yn Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 88. Gregory - Newton Backward Interpolation Formula Let it be yp. For any real number n, we have defined operator E such that Enf(x) = f(x + nh). ∴ yx = yxn+ph = f (xn + ph) = Epyxn = (1 − )−p yn = 1 + p + p(p + 1) 2! 2 + p(p + 1)(p + 2) 3! 3 + ... yn yx = yn + p yn + p(p + 1) 2! 2 yn + p(p + 1)(p + 2) 3! 3 yn + ... is called Newton’s backward interpolation formula Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 89. Example Ex. Using Newtons backward difference interpolation, interpolate at x = 1 from the following data. x 0.1 0.2 0.3 0.4 0.5 0.6 f(x) 1.699 1.073 0.375 0.443 1.429 2.631 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 90. Example Ex. The table gives the distance in nautical miles of the visible horizon for the given heights in feet above the earth’s surface. Find the value of y when x=390 ft. Height(x): 100 150 200 250 300 350 400 Distance(y): 10.63 13.03 15.04 16.81 18.42 19.90 21.47 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 91. Stirling’s Interpolation Formula To estimate the value of a function near the middle a table, the central difference interpolation formula in used. Let yx = f(x) be a functional relation between x and y. If x takes the values x0 − 2h, x0 − h, x0, x0 + h, x0 + 2h, . . . and the corresponding values of y are y−2, y−1, y0, y1, y2 . . . then we can form a central difference table as follows: Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 92. Stirling’s Interpolation Formula x y 1st difference 2nd difference 3rd difference x0 − 2h y−2 ∆y−2(= δy−3/2) x0 − h y−1 ∆2y−2(= δ2y−1) ∆y−1(= δy−1/2) ∆3y−2(= δ3y−1/2) x0 y0 ∆2y−1(= δ2y0) ∆ ∆y0(= δy1/2) ∆3y−1(= δ3y1/2) x0 + h y1 ∆2y0(= δ2y1) ∆y1(= δy3/2) x0 + 2h y2 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 93. Stirling’s Interpolation Formula The Stirling’s formula in forward difference notation is Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 94. Stirling’s Interpolation Formula The Stirling’s formula in forward difference notation is yp = y0 + p ∆y0 + ∆y−1 2 + p2 2! ∆2y−1 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 95. Stirling’s Interpolation Formula The Stirling’s formula in forward difference notation is yp = y0 + p ∆y0 + ∆y−1 2 + p2 2! ∆2y−1 + p(p2 − 12) 3! ∆3y−1 + ∆3y−2 2 + p2(p2 − 12) 4! ∆4y−2 + . . . Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 96. Example Ex. Using Stirling’s formula find y35 x: 10 20 30 40 50 y: 600 512 439 346 243 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 97. Example Ex. The function y is given in the table below: Find y for x=0.0341 x: 0.01 0.02 0.03 0.04 0.05 y: 98.4342 48.4392 31.7775 23.4492 18.4542 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 98. Central Difference Gauss’s Forward interpolation formula: Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 99. Central Difference Gauss’s Forward interpolation formula: Pn(x) = y0 + p∆y0 + p(p − 1) 2! ∆2 y−1 + (p + 1)p(p − 1) 3! ∆3 y−1+ (p + 1)p(p − 1)(p − 2) 4! ∆4 y−2 + ... Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 100. Central Difference Gauss’s Forward interpolation formula: Pn(x) = y0 + p∆y0 + p(p − 1) 2! ∆2 y−1 + (p + 1)p(p − 1) 3! ∆3 y−1+ (p + 1)p(p − 1)(p − 2) 4! ∆4 y−2 + ... Gauss’s Backward interpolation formula: Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 101. Central Difference Gauss’s Forward interpolation formula: Pn(x) = y0 + p∆y0 + p(p − 1) 2! ∆2 y−1 + (p + 1)p(p − 1) 3! ∆3 y−1+ (p + 1)p(p − 1)(p − 2) 4! ∆4 y−2 + ... Gauss’s Backward interpolation formula: Pn(x) = y0 + p∆y−1 + p(p + 1) 2! ∆2 y−1 + (p + 1)p(p − 1) 3! ∆3 y−2+ (p + 2)(p + 1)p(p − 1) 4! ∆4 y−2 + ... Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 102. Example Ex. Estimate the value of y(2.5) using Gauss’s forward formula given that: x: 1 2 3 4 y: 1 4 9 16 Dr. N. B. Vyas Numerical Methods - Finite Differences
  • 103. Example Ex. Interpolate by means of Gauss’s backward formula the population for the year 1936 given the following table: Year : 1901 1911 1921 1931 1941 1951 Population(in 1000s): 12 15 20 27 39 52 Dr. N. B. Vyas Numerical Methods - Finite Differences