This document discusses key concepts in vector calculus including:
1) The gradient of a scalar, which is a vector representing the directional derivative/rate of change.
2) Divergence of a vector, which measures the outward flux density at a point.
3) Divergence theorem, relating the outward flux through a closed surface to the volume integral of the divergence.
4) Curl of a vector, which measures the maximum circulation and tendency for rotation.
Formulas are provided for calculating these quantities in Cartesian, cylindrical, and spherical coordinate systems. Examples are worked through applying the concepts and formulas.
VECTOR CALCULUS
1.10 GRADIENTOF A SCALAR
1.11 DIVERGENCE OF A VECTOR
1.12 DIVERGENCE THEOREM
1.13 CURL OF A VECTOR
1.14 STOKES’S THEOREM
1.15 LAPLACIAN OF A SCALAR
2.
1.10 GRADIENT OFA
SCALAR
Suppose is the temperature at ,
and is the temperature at
as shown.
( )zyxT ,,1 ( )zyxP ,,1
2P( )dzzdyydxxT +++ ,,2
3.
The differential distancesare the
components of the differential distance
vector :
dzdydx ,,
zyx dzdydxd aaaL ++=
Ld
However, from differential calculus, the
differential temperature:
dz
z
T
dy
y
T
dx
x
T
TTdT
∂
∂
+
∂
∂
+
∂
∂
=−= 12
GRADIENT OF A SCALAR (Cont’d)
The vector insidesquare brackets defines the
change of temperature corresponding to a
vector change in position .
This vector is called Gradient of Scalar T.
Ld
dT
GRADIENT OF A SCALAR (Cont’d)
For Cartesian coordinate:
zyx
z
V
y
V
x
V
V aaa
∂
∂
+
∂
∂
+
∂
∂
=∇
6.
GRADIENT OF ASCALAR (Cont’d)
For Circular cylindrical coordinate:
z
z
VVV
V aaa
∂
∂
+
∂
∂
+
∂
∂
=∇ φρ
φρρ
1
For Spherical coordinate:
φθ
φθθ
aaa
∂
∂
+
∂
∂
+
∂
∂
=∇
V
r
V
rr
V
V r
sin
11
SOLUTION TO EXAMPLE10
(a) Use gradient for Cartesian coordinate:
z
z
y
z
x
z
zyx
yxe
yxeyxe
z
V
y
V
x
V
V
a
aa
aaa
cosh2sin
sinh2sincosh2cos2
−
−−
−
+=
∂
∂
+
∂
∂
+
∂
∂
=∇
9.
SOLUTION TO EXAMPLE10
(Cont’d)
(b) Use gradient for Circular cylindrical
coordinate:
z
z
zz
z
UUU
U
a
aa
aaa
φρ
φρφρ
φρρ
φρ
φρ
2cos
2sin22cos2
1
2
+
−=
∂
∂
+
∂
∂
+
∂
∂
=∇
10.
SOLUTION TO EXAMPLE10
(Cont’d)
(c) Use gradient for Spherical coordinate:
φ
θ
φθ
φθ
φθφθ
φθθ
a
aa
aaa
sinsin10
cos2sin10cossin10
sin
11
2
−
+=
∂
∂
+
∂
∂
+
∂
∂
=∇
r
r
W
r
W
rr
W
W
11.
1.11 DIVERGENCE OFA VECTOR
Illustration of the divergence of a vector
field at point P:
Positive
Divergence
Negative
Divergence
Zero
Divergence
12.
DIVERGENCE OF AVECTOR
(Cont’d)
The divergence of A at a given point P
is the outward flux per unit volume:
v
dS
div s
v ∆
•
=•∇=
∫
→∆
A
AA lim
0
13.
DIVERGENCE OF AVECTOR
(Cont’d)
What is ??∫ •
s
dSA Vector field A at
closed surface S
For Cartesian coordinate:
z
A
y
A
x
Azyx
∂
∂
+
∂
∂
+
∂
∂
=•∇ A
For Circular cylindrical coordinate:
( ) z
AA
A z
∂
∂
+
∂
∂
+
∂
∂
=•∇
φρ
ρ
ρρ
φ
ρ
11
A
DIVERGENCE OF A VECTOR
(Cont’d)
16.
For Spherical coordinate:
() ( )
φθθ
θ
θ
φθ
∂
∂
+
∂
∂
+
∂
∂
=•∇
A
r
A
r
Ar
rr
r
sin
1sin
sin
11 2
2
A
DIVERGENCE OF A VECTOR
(Cont’d)
17.
EXAMPLE
11
Find divergence ofthese vectors:
zx xzyzxP aa += 2
zzzQ aaa φρφρ φρ cossin 2
++=
φθ θφθθ aaa coscossincos
1
2
++= r
r
W r
(a)
(b)
(c)
18.
18
(a) Use divergencefor Cartesian
coordinate:
SOLUTION TO EXAMPLE 11
( ) ( ) ( )
xxyz
xz
zy
yzx
x
z
P
y
P
x
P zyx
+=
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
+
∂
∂
+
∂
∂
=•∇
2
02
P
19.
(b) Use divergencefor Circular cylindrical
coordinate:
( )
( ) ( ) ( )
φφ
φρ
φρ
φρ
ρρ
φρ
ρ
ρρ
φ
ρ
cossin2
cos
1
sin
1
11
22
+=
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
+
∂
∂
+
∂
∂
=•∇ Q
z
z
z
z
QQ
Q z
SOLUTION TO EXAMPLE 11
(Cont’d)
20.
SOLUTION TO EXAMPLE11
(Cont’d)
(c) Use divergence for Spherical coordinate:
( ) ( )
( ) ( )
( )
φθ
θ
φθ
φθ
θθ
θ
φθθ
θ
θ
φθ
coscos2
cos
sin
1
cossin
sin
1
cos
1
sin
1sin
sin
11
2
2
2
2
=
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
+
∂
∂
+
∂
∂
=•∇ W
r
r
rrr
W
r
W
r
Wr
rr
r
21.
It states thatthe total outward flux of
a vector field A at the closed surface S
is the same as volume integral of
divergence of A.
∫∫ •∇=•
VV
dVdS AA
1.12 DIVERGENCE THEOREM
22.
EXAMPLE
12
A vector fieldexists in the region
between two concentric cylindrical surfaces
defined by ρ = 1 and ρ = 2, with both cylinders
extending between z = 0 and z = 5. Verify the
divergence theorem by evaluating:
ρρ aD 3
=
→
∫ •
S
dsD
∫ •∇
V
DdV
(a)
(b)
23.
SOLUTION TO EXAMPLE12
(a) For two concentric cylinder, the left side:
topbottomouterinner
S
d DDDDSD +++=•∫
Where,
πφρ
φρρ
π
φ
ρ
ρρ
π
φ
ρ
ρρ
10)(
)(
2
0
5
0
1
4
2
0
5
0
1
3
−=•−=
−•=
∫ ∫
∫ ∫
= =
=
= =
=
z
z
inner
dzd
dzdD
aa
aa
SOLUTION TO EXAMPLE12
Cont’d)
(b) For the right side of Divergence Theorem,
evaluate divergence of D
( ) 23
4
1
ρρρ
ρρ
=
∂
∂
=•∇ D
So,
πρ
φρρρ
π
φ
π
φ ρ
150
4
5
0
2
0
2
1
4
5
0
2
0
2
1
2
=
=
=•∇
=
=
=
= = =
∫ ∫ ∫∫∫∫
z
r
z
dzdddVD
27.
1.13 CURL OFA VECTOR
The curl of vector A is an axial
(rotational) vector whose magnitude is
the maximum circulation of A per unit
area tends to zero and whose direction
is the normal direction of the area
when the area is oriented so as to
make the circulation maximum.
CURL OF AVECTOR (Cont’d)
The curl of the vector field is concerned
with rotation of the vector field. Rotation
can be used to measure the uniformity
of the field, the more non uniform the
field, the larger value of curl.
30.
For Cartesian coordinate:
CURLOF A VECTOR (Cont’d)
zyx
zyx
AAA
zyx ∂
∂
∂
∂
∂
∂
=×∇
aaa
A
z
xy
y
xz
x
yz
y
A
x
A
z
A
x
A
z
A
y
A
aaaA
∂
∂
−
∂
∂
+
∂
∂
−
∂
∂
−
∂
∂
−
∂
∂
=×∇
CURL OF AVECTOR (Cont’d)
For Spherical coordinate:
( ) φθ
φθ
θ
φθθ
ArrAA
rr
r
r
sin
sin
1
2
∂
∂
∂
∂
∂
∂
=×∇
aaa
A
( ) ( )
( )
φ
θ
θ
φθφ
θ
φθφθ
θ
θ
a
aaA
∂
∂
−
∂
∂
+
∂
∂
−
∂
∂
+
∂
∂
−
∂
∂
=×∇
r
r
r
A
r
rA
r
r
rAA
r
AA
r
)(1
sin
11sin
sin
1
33.
EXAMPLE
13
zx xzyzxP aa+= 2
zzzQ aaa φρφρ φρ cossin 2
++=
φθ θφθθ aaa coscossincos
1
2
++= r
r
W r
(a)
(b)
(c)
Find curl of these vectors:
34.
SOLUTION TO EXAMPLE13
(a) Use curl for Cartesian coordinate:
( ) ( ) ( )
( ) zy
zyx
z
xy
y
xz
x
yz
zxzyx
zxzyx
y
P
x
P
z
P
x
P
z
P
y
P
aa
aaa
aaaP
22
22
000
−−=
−+−+−=
∂
∂
−
∂
∂
+
∂
∂
−
∂
∂
−
∂
∂
−
∂
∂
=×∇
35.
(b) Use curlfor Circular cylindrical coordinate
( )
( )
( )
( ) ( ) z
z
z
zz
zz
z
z
y
Q
x
QQ
z
Q
z
QQ
aa
a
aa
aaaQ
φρρφ
ρ
φρρ
ρ
ρφ
ρ
ρ
ρρφρ
ρ
φρ
ρφ
φ
ρ
ρ
φ
cos3sin
1
cos3
1
00sin
11
3
2
2
−++−=
−+
−+
−
−
=
∂
∂
−
∂
∂
+
∂
∂
−
∂
∂
+
∂
∂
−
∂
∂
=×∇
SOLUTION TO EXAMPLE 13
(Cont’d)
36.
(c) Use curlfor Spherical coordinate:
( ) ( )
( )
( ) ( ) ( )
φ
θ
φ
θ
θ
φθφ
θ
θ
φθ
θ
φ
θ
θφ
φθ
θ
θθ
θ
θ
φθφθ
θ
θ
a
aa
a
aaW
∂
∂
−
∂
∂
+
∂
∂
−
∂
∂
+
∂
∂
−
∂
∂
=
∂
∂
−
∂
∂
+
∂
∂
−
∂
∂
+
∂
∂
−
∂
∂
=×∇
22
2
cos
)cossin(1
cos
cos
sin
11cossinsincos
sin
1
)(1
sin
11sin
sin
1
r
r
r
r
r
rr
r
r
r
W
r
rW
r
r
rWW
r
WW
r
r
r
r
r
SOLUTION TO EXAMPLE 13
(Cont’d)
37.
SOLUTION TO EXAMPLE13
(Cont’d)
( ) ( )
a
aa
a
aa
φ
θ
φ
θ
θφ
θ
φ
θ
θ
θ
φθ
θφθθ
θ
sin
1
cos2
cos
sin
sin
2cos
sin
cossin2
1
cos0
1
sinsin2cos
sin
1
3
2
++
+
+=
++
−++=
r
rr
r
r
r
r
r
r
r
r
38.
1.14 STOKE’S THEOREM
Thecirculation of a vector field A around
a closed path L is equal to the surface
integral of the curl of A over the open
surface S bounded by L that A and curl
of A are continuous on S.
( )∫∫ •×∇=•
SL
dSdl AA
SOLUTION TO EXAMPLE14
Stoke’s Theorem,
( )∫∫ •×∇=•
SL
dSdl AA
where, andzddd aS ρφρ=
Evaluate right side to get left side,
( ) zaA φρ
ρ
sin1
1
+=×∇
43.
SOLUTION TO EXAMPLE14
(Cont’d)
( ) ( )
941.4
sin1
1
0
0
60
30
5
2
=
+=•×∇ ∫ ∫∫
= =
aA z
S
dddS ρφφρρ
ρφ ρ
44.
EXAMPLE
15
Verify Stoke’s theoremfor the vector field
for given figure by evaluating:φρ φφρ aaB sincos +=
→
(a) over the
semicircular contour.
∫ • LB d
(b) over the
surface of semicircular
contour.
( )∫ •×∇ SB d
45.
SOLUTION TO EXAMPLE15
(a) To find∫ • LB d
∫∫∫∫ •+•+•=•
321 LLL
dddd LBLBLBLB
Where,
( ) ( )
φφρρφρ
φρρφφρ φρφρ
dd
dzddd z
sincos
sincos
+=
++•+=• aaaaaLB
1.15 LAPLACIAN OFA SCALAR
The Laplacian of a scalar field, V
written as:
V2
∇
Where, Laplacian V is:
∂
∂
+
∂
∂
+
∂
∂
•
∂
∂
+
∂
∂
+
∂
∂
=
∇•∇=∇
zyxzyx
z
V
y
V
x
V
zyx
VV
aaaaaa
2
LAPLACIAN OF ASCALAR (Cont’d)
For Spherical coordinate:
2
2
22
2
2
2
2
sin
1
sin
sin
11
φθ
θ
θ
θθ
∂
∂
+
∂
∂
∂
∂
+
∂
∂
∂
∂
=∇
V
r
V
rr
V
r
rr
V
53.
EXAMPLE
16
Find Laplacian ofthese scalars:
yxeV z
cosh2sin−
=
φρ 2cos2
zU =
φθ cossin10 2
rW =
(a)
(b)
(c)
You should try this!!
54.
SOLUTION TO EXAMPLE16
yxeV z
cosh2sin22 −
−=∇
02
=∇ U
( )θ
φ
2cos21
cos102
+=∇
r
W
(a)
(b)
(c)
55.
Yea, unto Godbelong all things in the
heavens and on earth, and enough is God
to carry through all affairs
Quran:4:132
END