SlideShare a Scribd company logo
VECTOR CALCULUS
1.10 GRADIENT OF A SCALAR
1.11 DIVERGENCE OF A VECTOR
1.12 DIVERGENCE THEOREM
1.13 CURL OF A VECTOR
1.14 STOKES’S THEOREM
1.15 LAPLACIAN OF A SCALAR
1.10 GRADIENT OF A
SCALAR
Suppose is the temperature at ,
and is the temperature at
as shown.
( )zyxT ,,1 ( )zyxP ,,1
2P( )dzzdyydxxT +++ ,,2
The differential distances are the
components of the differential distance
vector :
dzdydx ,,
zyx dzdydxd aaaL ++=
Ld
However, from differential calculus, the
differential temperature:
dz
z
T
dy
y
T
dx
x
T
TTdT
∂
∂
+
∂
∂
+
∂
∂
=−= 12
GRADIENT OF A SCALAR (Cont’d)
But,
z
y
x
ddz
ddy
ddx
aL
aL
aL
•=
•=
•=
So, previous equation can be rewritten as:
Laaa
LaLaLa
d
z
T
y
T
x
T
d
z
T
d
y
T
d
x
T
dT
zyx
zyx
•





∂
∂
+
∂
∂
+
∂
∂
=
•
∂
∂
+•
∂
∂
+•
∂
∂
=
GRADIENT OF A SCALAR (Cont’d)
The vector inside square brackets defines the
change of temperature corresponding to a
vector change in position .
This vector is called Gradient of Scalar T.
Ld
dT
GRADIENT OF A SCALAR (Cont’d)
For Cartesian coordinate:
zyx
z
V
y
V
x
V
V aaa
∂
∂
+
∂
∂
+
∂
∂
=∇
GRADIENT OF A SCALAR (Cont’d)
For Circular cylindrical coordinate:
z
z
VVV
V aaa
∂
∂
+
∂
∂
+
∂
∂
=∇ φρ
φρρ
1
For Spherical coordinate:
φθ
φθθ
aaa
∂
∂
+
∂
∂
+
∂
∂
=∇
V
r
V
rr
V
V r
sin
11
EXAMPLE
10
Find gradient of these scalars:
yxeV z
cosh2sin−
=
φρ 2cos2
zU =
φθ cossin10 2
rW =
(a)
(b)
(c)
SOLUTION TO EXAMPLE 10
(a) Use gradient for Cartesian coordinate:
z
z
y
z
x
z
zyx
yxe
yxeyxe
z
V
y
V
x
V
V
a
aa
aaa
cosh2sin
sinh2sincosh2cos2
−
−−
−
+=
∂
∂
+
∂
∂
+
∂
∂
=∇
SOLUTION TO EXAMPLE 10
(Cont’d)
(b) Use gradient for Circular cylindrical
coordinate:
z
z
zz
z
UUU
U
a
aa
aaa
φρ
φρφρ
φρρ
φρ
φρ
2cos
2sin22cos2
1
2
+
−=
∂
∂
+
∂
∂
+
∂
∂
=∇
SOLUTION TO EXAMPLE 10
(Cont’d)
(c) Use gradient for Spherical coordinate:
φ
θ
φθ
φθ
φθφθ
φθθ
a
aa
aaa
sinsin10
cos2sin10cossin10
sin
11
2
−
+=
∂
∂
+
∂
∂
+
∂
∂
=∇
r
r
W
r
W
rr
W
W
1.11 DIVERGENCE OF A VECTOR
Illustration of the divergence of a vector
field at point P:
Positive
Divergence
Negative
Divergence
Zero
Divergence
DIVERGENCE OF A VECTOR
(Cont’d)
The divergence of A at a given point P
is the outward flux per unit volume:
v
dS
div s
v ∆
•
=•∇=
∫
→∆
A
AA lim
0
DIVERGENCE OF A VECTOR
(Cont’d)
What is ??∫ •
s
dSA Vector field A at
closed surface S
Where,
dSdS
bottomtoprightleftbackfronts
•








+++++=• ∫∫∫∫∫∫∫ AA
And, v is volume enclosed by surface S
DIVERGENCE OF A VECTOR
(Cont’d)
For Cartesian coordinate:
z
A
y
A
x
A zyx
∂
∂
+
∂
∂
+
∂
∂
=•∇ A
For Circular cylindrical coordinate:
( ) z
AA
A z
∂
∂
+
∂
∂
+
∂
∂
=•∇
φρ
ρ
ρρ
φ
ρ
11
A
DIVERGENCE OF A VECTOR
(Cont’d)
For Spherical coordinate:
( ) ( )
φθθ
θ
θ
φθ
∂
∂
+
∂
∂
+
∂
∂
=•∇
A
r
A
r
Ar
rr
r
sin
1sin
sin
11 2
2
A
DIVERGENCE OF A VECTOR
(Cont’d)
EXAMPLE
11
Find divergence of these vectors:
zx xzyzxP aa += 2
zzzQ aaa φρφρ φρ cossin 2
++=
φθ θφθθ aaa coscossincos
1
2
++= r
r
W r
(a)
(b)
(c)
18
(a) Use divergence for Cartesian
coordinate:
SOLUTION TO EXAMPLE 11
( ) ( ) ( )
xxyz
xz
zy
yzx
x
z
P
y
P
x
P zyx
+=
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
+
∂
∂
+
∂
∂
=•∇
2
02
P
(b) Use divergence for Circular cylindrical
coordinate:
( )
( ) ( ) ( )
φφ
φρ
φρ
φρ
ρρ
φρ
ρ
ρρ
φ
ρ
cossin2
cos
1
sin
1
11
22
+=
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
+
∂
∂
+
∂
∂
=•∇ Q
z
z
z
z
QQ
Q z
SOLUTION TO EXAMPLE 11
(Cont’d)
SOLUTION TO EXAMPLE 11
(Cont’d)
(c) Use divergence for Spherical coordinate:
( ) ( )
( ) ( )
( )
φθ
θ
φθ
φθ
θθ
θ
φθθ
θ
θ
φθ
coscos2
cos
sin
1
cossin
sin
1
cos
1
sin
1sin
sin
11
2
2
2
2
=
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
+
∂
∂
+
∂
∂
=•∇ W
r
r
rrr
W
r
W
r
Wr
rr
r
It states that the total outward flux of
a vector field A at the closed surface S
is the same as volume integral of
divergence of A.
∫∫ •∇=•
VV
dVdS AA
1.12 DIVERGENCE THEOREM
EXAMPLE
12
A vector field exists in the region
between two concentric cylindrical surfaces
defined by ρ = 1 and ρ = 2, with both cylinders
extending between z = 0 and z = 5. Verify the
divergence theorem by evaluating:
ρρ aD 3
=
→
∫ •
S
dsD
∫ •∇
V
DdV
(a)
(b)
SOLUTION TO EXAMPLE 12
(a) For two concentric cylinder, the left side:
topbottomouterinner
S
d DDDDSD +++=•∫
Where,
πφρ
φρρ
π
φ
ρ
ρρ
π
φ
ρ
ρρ
10)(
)(
2
0
5
0
1
4
2
0
5
0
1
3
−=•−=
−•=
∫ ∫
∫ ∫
= =
=
= =
=
z
z
inner
dzd
dzdD
aa
aa
πφρ
φρρ
π
φ
ρ
ρρ
π
φ
ρ
ρρ
160)(
)(
2
0
5
0
2
4
2
0
5
0
2
3
=•=
•=
∫ ∫
∫ ∫
= =
=
= =
=
z
z
outer
dzd
dzdD
aa
aa
∫ ∫
∫ ∫
= =
=
= =
=
=•=
=−•=
2
1
2
0
5
3
2
1
2
0
0
3
0)(
0)(
ρ
π
φ
ρ
ρ
π
φ
ρ
ρφρρ
ρφρρ
z
ztop
z
zbottom
ddD
ddD
aa
aa
SOLUTION TO EXAMPLE 12
Cont’d)
Therefore
π
ππ
150
0016010
=
+++−=•∫ SD
S
d
SOLUTION TO EXAMPLE 12
Cont’d)
SOLUTION TO EXAMPLE 12
Cont’d)
(b) For the right side of Divergence Theorem,
evaluate divergence of D
( ) 23
4
1
ρρρ
ρρ
=
∂
∂
=•∇ D
So,
πρ
φρρρ
π
φ
π
φ ρ
150
4
5
0
2
0
2
1
4
5
0
2
0
2
1
2
=























=
=•∇
=
=
=
= = =
∫ ∫ ∫∫∫∫
z
r
z
dzdddVD
1.13 CURL OF A VECTOR
The curl of vector A is an axial
(rotational) vector whose magnitude is
the maximum circulation of A per unit
area tends to zero and whose direction
is the normal direction of the area
when the area is oriented so as to
make the circulation maximum.
maxlim
0
a
A
AA n
s
s s
dl
Curl










∆
•
=×∇=
∫
→∆
Where,
CURL OF A VECTOR (Cont’d)
dldl
dacdbcabs
•







+++=• ∫∫∫∫∫ AA
CURL OF A VECTOR (Cont’d)
The curl of the vector field is concerned
with rotation of the vector field. Rotation
can be used to measure the uniformity
of the field, the more non uniform the
field, the larger value of curl.
For Cartesian coordinate:
CURL OF A VECTOR (Cont’d)
zyx
zyx
AAA
zyx ∂
∂
∂
∂
∂
∂
=×∇
aaa
A
z
xy
y
xz
x
yz
y
A
x
A
z
A
x
A
z
A
y
A
aaaA 





∂
∂
−
∂
∂
+



∂
∂
−
∂
∂
−





∂
∂
−
∂
∂
=×∇
z
z
AAA
z
φρ
φρ
ρ
φρ
ρ
ρ ∂
∂
∂
∂
∂
∂
=×∇
aaa
A
1
( )
z
zz
AA
z
AA
z
AA
a
aaA






∂
∂
−
∂
∂
+






∂
∂
−
∂
∂
−





∂
∂
−
∂
∂
=×∇
φρ
ρ
ρ
ρφρ
ρφ
φ
ρ
ρ
φ
1
1
For Circular cylindrical coordinate:
CURL OF A VECTOR (Cont’d)
CURL OF A VECTOR (Cont’d)
For Spherical coordinate:
( ) φθ
φθ
θ
φθθ
ArrAA
rr
r
r
sin
sin
1
2
∂
∂
∂
∂
∂
∂
=×∇
aaa
A
( ) ( )
( )
φ
θ
θ
φθφ
θ
φθφθ
θ
θ
a
aaA






∂
∂
−
∂
∂
+






∂
∂
−
∂
∂
+





∂
∂
−
∂
∂
=×∇
r
r
r
A
r
rA
r
r
rAA
r
AA
r
)(1
sin
11sin
sin
1
EXAMPLE
13
zx xzyzxP aa += 2
zzzQ aaa φρφρ φρ cossin 2
++=
φθ θφθθ aaa coscossincos
1
2
++= r
r
W r
(a)
(b)
(c)
Find curl of these vectors:
SOLUTION TO EXAMPLE 13
(a) Use curl for Cartesian coordinate:
( ) ( ) ( )
( ) zy
zyx
z
xy
y
xz
x
yz
zxzyx
zxzyx
y
P
x
P
z
P
x
P
z
P
y
P
aa
aaa
aaaP
22
22
000
−−=
−+−+−=






∂
∂
−
∂
∂
+



∂
∂
−
∂
∂
−





∂
∂
−
∂
∂
=×∇
(b) Use curl for Circular cylindrical coordinate
( )
( )
( )
( ) ( ) z
z
z
zz
zz
z
z
y
Q
x
QQ
z
Q
z
QQ
aa
a
aa
aaaQ
φρρφ
ρ
φρρ
ρ
ρφ
ρ
ρ
ρρφρ
ρ
φρ
ρφ
φ
ρ
ρ
φ
cos3sin
1
cos3
1
00sin
11
3
2
2
−++−=
−+
−+





−
−
=






∂
∂
−
∂
∂
+





∂
∂
−
∂
∂
+





∂
∂
−
∂
∂
=×∇
SOLUTION TO EXAMPLE 13
(Cont’d)
(c) Use curl for Spherical coordinate:
( ) ( )
( )
( ) ( ) ( )
φ
θ
φ
θ
θ
φθφ
θ
θ
φθ
θ
φ
θ
θφ
φθ
θ
θθ
θ
θ
φθφθ
θ
θ
a
aa
a
aaW










∂




∂
−
∂
∂
+










∂
∂
−
∂




∂
+





∂
∂
−
∂
∂
=






∂
∂
−
∂
∂
+






∂
∂
−
∂
∂
+





∂
∂
−
∂
∂
=×∇
22
2
cos
)cossin(1
cos
cos
sin
11cossinsincos
sin
1
)(1
sin
11sin
sin
1
r
r
r
r
r
rr
r
r
r
W
r
rW
r
r
rWW
r
WW
r
r
r
r
r
SOLUTION TO EXAMPLE 13
(Cont’d)
SOLUTION TO EXAMPLE 13
(Cont’d)
( ) ( )
a
aa
a
aa
φ
θ
φ
θ
θφ
θ
φ
θ
θ
θ
φθ
θφθθ
θ
sin
1
cos2
cos
sin
sin
2cos
sin
cossin2
1
cos0
1
sinsin2cos
sin
1
3
2






++
+





+=






++
−++=
r
rr
r
r
r
r
r
r
r
r
1.14 STOKE’S THEOREM
The circulation of a vector field A around
a closed path L is equal to the surface
integral of the curl of A over the open
surface S bounded by L that A and curl
of A are continuous on S.
( )∫∫ •×∇=•
SL
dSdl AA
STOKE’S THEOREM (Cont’d)
EXAMPLE
14
By using Stoke’s Theorem, evaluate
for
∫ • dlA
φρ φφρ aaA sincos +=
→
EXAMPLE 14 (Cont’d)
SOLUTION TO EXAMPLE 14
Stoke’s Theorem,
( )∫∫ •×∇=•
SL
dSdl AA
where, andzddd aS ρφρ=
Evaluate right side to get left side,
( ) zaA φρ
ρ
sin1
1
+=×∇
SOLUTION TO EXAMPLE 14
(Cont’d)
( ) ( )
941.4
sin1
1
0
0
60
30
5
2
=
+=•×∇ ∫ ∫∫
= =
aA z
S
dddS ρφφρρ
ρφ ρ
EXAMPLE
15
Verify Stoke’s theorem for the vector field
for given figure by evaluating:φρ φφρ aaB sincos +=
→
(a) over the
semicircular contour.
∫ • LB d
(b) over the
surface of semicircular
contour.
( )∫ •×∇ SB d
SOLUTION TO EXAMPLE 15
(a) To find∫ • LB d
∫∫∫∫ •+•+•=•
321 LLL
dddd LBLBLBLB
Where,
( ) ( )
φφρρφρ
φρρφφρ φρφρ
dd
dzddd z
sincos
sincos
+=
++•+=• aaaaaLB
So
20
2
1
sincos
2
0
2
0
0
0
0,0
2
01
=+





=








+








=•
=
=
=
==
=
∫∫∫
ρ
φφρ
ρ
φφρρφρLB
zz
L
ddd
( ) 4cos20
sincos
0
0,2
0
0
2
22
=−+=








+








=•
=
==
=
=
=
∫∫∫
π
φ
ρ
π
φρ
φ
φφρρφρLB
zz
L
ddd
SOLUTION TO EXAMPLE 15
(Cont’d)
20
2
1
sincos
0
2
2
00,0
0
23
=+





−=








+








=•
=
=
=
==
=
∫∫∫
r
zz
L
ddd
ρ
φφρρφρ
π
πφφρ
LB
SOLUTION TO EXAMPLE 15
(Cont’d)
Therefore the closed integral,
8242 =++=•∫ LB d
SOLUTION TO EXAMPLE 15
(Cont’d)
(b) To find ( )∫ •×∇ SB d
( )
( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( )
z
z
z
zz
a
aaa
a
aa
aaB






+=
+++=






∂
∂
−
∂
∂
+






∂
∂
−
∂
∂
+





∂
∂
−
∂
∂
=
+×∇=×∇
ρ
φ
φρφ
ρ
φρ
φ
φρ
ρρ
ρ
φρφ
φρ
φφρ
φρ
φρ
φρ
1
1sin
sinsin
1
00
cossin
1
0cossin0
1
sincos
SOLUTION TO EXAMPLE 15
(Cont’d)
Therefore
( )
8
2
1
cos
1sin
1
1sin
0
2
0
2
0
2
0
0
2
0
=




















+−=
+=
•











+=•×∇
=
=
= =
= =
∫ ∫
∫ ∫∫∫
π
φ
ρ
π
φ ρ
π
φ ρ
ρρφ
φρρφ
φρρ
ρ
φ aaSB
dd
ddd zz
1.15 LAPLACIAN OF A SCALAR
The Laplacian of a scalar field, V
written as:
V2
∇
Where, Laplacian V is:






∂
∂
+
∂
∂
+
∂
∂
•





∂
∂
+
∂
∂
+
∂
∂
=
∇•∇=∇
zyxzyx
z
V
y
V
x
V
zyx
VV
aaaaaa
2
For Cartesian coordinate:
2
2
2
2
2
2
2
z
V
y
V
x
V
V
∂
∂
+
∂
∂
+
∂
∂
=∇
For Circular cylindrical coordinate:
2
22
2
2 11
z
VVV
V
∂
∂
+
∂
∂
+





∂
∂
∂
∂
=∇
φρρ
ρ
ρρ
LAPLACIAN OF A SCALAR (Cont’d)
LAPLACIAN OF A SCALAR (Cont’d)
For Spherical coordinate:
2
2
22
2
2
2
2
sin
1
sin
sin
11
φθ
θ
θ
θθ
∂
∂
+






∂
∂
∂
∂
+





∂
∂
∂
∂
=∇
V
r
V
rr
V
r
rr
V
EXAMPLE
16
Find Laplacian of these scalars:
yxeV z
cosh2sin−
=
φρ 2cos2
zU =
φθ cossin10 2
rW =
(a)
(b)
(c)
You should try this!!
SOLUTION TO EXAMPLE 16
yxeV z
cosh2sin22 −
−=∇
02
=∇ U
( )θ
φ
2cos21
cos102
+=∇
r
W
(a)
(b)
(c)
Yea, unto God belong all things in the
heavens and on earth, and enough is God
to carry through all affairs
Quran:4:132
END

More Related Content

What's hot

LINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
LINER SURFACE AND VOLUM INTERGRALS Karishma mansuriLINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
LINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
Rai Saheb Bhanwar Singh College Nasrullaganj
 
Gauss Divergence Therom
Gauss Divergence TheromGauss Divergence Therom
Gauss Divergence Therom
VC Infotech
 
Matrices ppt
Matrices pptMatrices ppt
Matrices ppt
aakashray33
 
Fourier series
Fourier seriesFourier series
Fourier series
kishor pokar
 
Tensor 1
Tensor  1Tensor  1
Tensor 1
BAIJU V
 
Differential equations
Differential equationsDifferential equations
Differential equations
Seyid Kadher
 
Beta gamma functions
Beta gamma functionsBeta gamma functions
Beta gamma functions
Dr. Nirav Vyas
 
Vector space
Vector spaceVector space
Vector space
Mehedi Hasan Raju
 
Vector space
Vector spaceVector space
Vector space
Jaimin Patel
 
Vector calculus
Vector calculusVector calculus
Vector calculusKumar
 
Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus
garghanish
 
Integrals and its applications
Integrals  and  its applicationsIntegrals  and  its applications
Integrals and its applications
Poojith Chowdhary
 
Laplace transform
Laplace  transform   Laplace  transform
Laplace transform
001Abhishek1
 
Vector calculus
Vector calculusVector calculus
Vector calculus
ARJUN RASTOGI
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
Nisarg Amin
 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and Eigenvectors
Vinod Srivastava
 
Integration in the complex plane
Integration in the complex planeIntegration in the complex plane
Integration in the complex plane
Amit Amola
 
Laurent's Series & Types of Singularities
Laurent's Series & Types of SingularitiesLaurent's Series & Types of Singularities
Laurent's Series & Types of Singularities
Aakash Singh
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradient
Kunj Patel
 

What's hot (20)

LINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
LINER SURFACE AND VOLUM INTERGRALS Karishma mansuriLINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
LINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
 
Gauss Divergence Therom
Gauss Divergence TheromGauss Divergence Therom
Gauss Divergence Therom
 
Matrices ppt
Matrices pptMatrices ppt
Matrices ppt
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Tensor 1
Tensor  1Tensor  1
Tensor 1
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Beta gamma functions
Beta gamma functionsBeta gamma functions
Beta gamma functions
 
Vector space
Vector spaceVector space
Vector space
 
Vector space
Vector spaceVector space
Vector space
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus
 
Integrals and its applications
Integrals  and  its applicationsIntegrals  and  its applications
Integrals and its applications
 
Laplace transform
Laplace  transform   Laplace  transform
Laplace transform
 
Directional derivative and gradient
Directional derivative and gradientDirectional derivative and gradient
Directional derivative and gradient
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and Eigenvectors
 
Integration in the complex plane
Integration in the complex planeIntegration in the complex plane
Integration in the complex plane
 
Laurent's Series & Types of Singularities
Laurent's Series & Types of SingularitiesLaurent's Series & Types of Singularities
Laurent's Series & Types of Singularities
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradient
 

Similar to Vector calculus

5. lec5 curl of a vector
5. lec5 curl of a vector5. lec5 curl of a vector
5. lec5 curl of a vector
shabdrang
 
EMI_Chapter3_p2.pdf
EMI_Chapter3_p2.pdfEMI_Chapter3_p2.pdf
EMI_Chapter3_p2.pdf
MagedAldhaeebi
 
math vysh.pptx
math vysh.pptxmath vysh.pptx
math vysh.pptx
Vyshali6
 
Ultrasound lecture 1 post
Ultrasound lecture 1 postUltrasound lecture 1 post
Ultrasound lecture 1 post
lucky shumail
 
Divrgence theorem with example
Divrgence theorem with exampleDivrgence theorem with example
Divrgence theorem with example
Dhwanil Champaneria
 
Divrgence theorem with example
Divrgence theorem with exampleDivrgence theorem with example
Divrgence theorem with example
Dhwanil Champaneria
 
Differential geometry three dimensional space
Differential geometry   three dimensional spaceDifferential geometry   three dimensional space
Differential geometry three dimensional space
Solo Hermelin
 
Emfbook
EmfbookEmfbook
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
amnahnura
 
Solution of ps02 cmth03apr13
Solution of ps02 cmth03apr13Solution of ps02 cmth03apr13
Solution of ps02 cmth03apr13
Prakash Dabhi
 
Stoke’s theorem
Stoke’s theoremStoke’s theorem
Stoke’s theorem
Abhishek Chauhan
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
NiccoloAaronMendozaA
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
HelpWithAssignment.com
 
Capitulo 5, 7ma edición
Capitulo 5, 7ma ediciónCapitulo 5, 7ma edición
Capitulo 5, 7ma edición
Sohar Carr
 
VECTOR CALCULUS
VECTOR CALCULUS VECTOR CALCULUS
VECTOR CALCULUS
MANJULAKAMALANATHAN
 
Sistemas de control para ingenieria 3ra edicion norman s. nise sol
Sistemas de control para ingenieria  3ra edicion  norman s. nise solSistemas de control para ingenieria  3ra edicion  norman s. nise sol
Sistemas de control para ingenieria 3ra edicion norman s. nise sol
Nielsy Quiroga
 

Similar to Vector calculus (20)

5. lec5 curl of a vector
5. lec5 curl of a vector5. lec5 curl of a vector
5. lec5 curl of a vector
 
EMI_Chapter3_p2.pdf
EMI_Chapter3_p2.pdfEMI_Chapter3_p2.pdf
EMI_Chapter3_p2.pdf
 
math vysh.pptx
math vysh.pptxmath vysh.pptx
math vysh.pptx
 
Ultrasound lecture 1 post
Ultrasound lecture 1 postUltrasound lecture 1 post
Ultrasound lecture 1 post
 
Divrgence theorem with example
Divrgence theorem with exampleDivrgence theorem with example
Divrgence theorem with example
 
Divrgence theorem with example
Divrgence theorem with exampleDivrgence theorem with example
Divrgence theorem with example
 
Differential geometry three dimensional space
Differential geometry   three dimensional spaceDifferential geometry   three dimensional space
Differential geometry three dimensional space
 
Contour
ContourContour
Contour
 
Emfbook
EmfbookEmfbook
Emfbook
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
7
77
7
 
Solution of ps02 cmth03apr13
Solution of ps02 cmth03apr13Solution of ps02 cmth03apr13
Solution of ps02 cmth03apr13
 
Stoke’s theorem
Stoke’s theoremStoke’s theorem
Stoke’s theorem
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
Ps02 cmth03 unit 1
Ps02 cmth03 unit 1Ps02 cmth03 unit 1
Ps02 cmth03 unit 1
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Shell theory
Shell theoryShell theory
Shell theory
 
Capitulo 5, 7ma edición
Capitulo 5, 7ma ediciónCapitulo 5, 7ma edición
Capitulo 5, 7ma edición
 
VECTOR CALCULUS
VECTOR CALCULUS VECTOR CALCULUS
VECTOR CALCULUS
 
Sistemas de control para ingenieria 3ra edicion norman s. nise sol
Sistemas de control para ingenieria  3ra edicion  norman s. nise solSistemas de control para ingenieria  3ra edicion  norman s. nise sol
Sistemas de control para ingenieria 3ra edicion norman s. nise sol
 

Recently uploaded

"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
Fwdays
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
Product School
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
Elena Simperl
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
Safe Software
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
Product School
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
RTTS
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
Ralf Eggert
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
Paul Groth
 
Search and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical FuturesSearch and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical Futures
Bhaskar Mitra
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 

Recently uploaded (20)

"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
Search and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical FuturesSearch and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical Futures
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 

Vector calculus

  • 1. VECTOR CALCULUS 1.10 GRADIENT OF A SCALAR 1.11 DIVERGENCE OF A VECTOR 1.12 DIVERGENCE THEOREM 1.13 CURL OF A VECTOR 1.14 STOKES’S THEOREM 1.15 LAPLACIAN OF A SCALAR
  • 2. 1.10 GRADIENT OF A SCALAR Suppose is the temperature at , and is the temperature at as shown. ( )zyxT ,,1 ( )zyxP ,,1 2P( )dzzdyydxxT +++ ,,2
  • 3. The differential distances are the components of the differential distance vector : dzdydx ,, zyx dzdydxd aaaL ++= Ld However, from differential calculus, the differential temperature: dz z T dy y T dx x T TTdT ∂ ∂ + ∂ ∂ + ∂ ∂ =−= 12 GRADIENT OF A SCALAR (Cont’d)
  • 4. But, z y x ddz ddy ddx aL aL aL •= •= •= So, previous equation can be rewritten as: Laaa LaLaLa d z T y T x T d z T d y T d x T dT zyx zyx •      ∂ ∂ + ∂ ∂ + ∂ ∂ = • ∂ ∂ +• ∂ ∂ +• ∂ ∂ = GRADIENT OF A SCALAR (Cont’d)
  • 5. The vector inside square brackets defines the change of temperature corresponding to a vector change in position . This vector is called Gradient of Scalar T. Ld dT GRADIENT OF A SCALAR (Cont’d) For Cartesian coordinate: zyx z V y V x V V aaa ∂ ∂ + ∂ ∂ + ∂ ∂ =∇
  • 6. GRADIENT OF A SCALAR (Cont’d) For Circular cylindrical coordinate: z z VVV V aaa ∂ ∂ + ∂ ∂ + ∂ ∂ =∇ φρ φρρ 1 For Spherical coordinate: φθ φθθ aaa ∂ ∂ + ∂ ∂ + ∂ ∂ =∇ V r V rr V V r sin 11
  • 7. EXAMPLE 10 Find gradient of these scalars: yxeV z cosh2sin− = φρ 2cos2 zU = φθ cossin10 2 rW = (a) (b) (c)
  • 8. SOLUTION TO EXAMPLE 10 (a) Use gradient for Cartesian coordinate: z z y z x z zyx yxe yxeyxe z V y V x V V a aa aaa cosh2sin sinh2sincosh2cos2 − −− − += ∂ ∂ + ∂ ∂ + ∂ ∂ =∇
  • 9. SOLUTION TO EXAMPLE 10 (Cont’d) (b) Use gradient for Circular cylindrical coordinate: z z zz z UUU U a aa aaa φρ φρφρ φρρ φρ φρ 2cos 2sin22cos2 1 2 + −= ∂ ∂ + ∂ ∂ + ∂ ∂ =∇
  • 10. SOLUTION TO EXAMPLE 10 (Cont’d) (c) Use gradient for Spherical coordinate: φ θ φθ φθ φθφθ φθθ a aa aaa sinsin10 cos2sin10cossin10 sin 11 2 − += ∂ ∂ + ∂ ∂ + ∂ ∂ =∇ r r W r W rr W W
  • 11. 1.11 DIVERGENCE OF A VECTOR Illustration of the divergence of a vector field at point P: Positive Divergence Negative Divergence Zero Divergence
  • 12. DIVERGENCE OF A VECTOR (Cont’d) The divergence of A at a given point P is the outward flux per unit volume: v dS div s v ∆ • =•∇= ∫ →∆ A AA lim 0
  • 13. DIVERGENCE OF A VECTOR (Cont’d) What is ??∫ • s dSA Vector field A at closed surface S
  • 15. For Cartesian coordinate: z A y A x A zyx ∂ ∂ + ∂ ∂ + ∂ ∂ =•∇ A For Circular cylindrical coordinate: ( ) z AA A z ∂ ∂ + ∂ ∂ + ∂ ∂ =•∇ φρ ρ ρρ φ ρ 11 A DIVERGENCE OF A VECTOR (Cont’d)
  • 16. For Spherical coordinate: ( ) ( ) φθθ θ θ φθ ∂ ∂ + ∂ ∂ + ∂ ∂ =•∇ A r A r Ar rr r sin 1sin sin 11 2 2 A DIVERGENCE OF A VECTOR (Cont’d)
  • 17. EXAMPLE 11 Find divergence of these vectors: zx xzyzxP aa += 2 zzzQ aaa φρφρ φρ cossin 2 ++= φθ θφθθ aaa coscossincos 1 2 ++= r r W r (a) (b) (c)
  • 18. 18 (a) Use divergence for Cartesian coordinate: SOLUTION TO EXAMPLE 11 ( ) ( ) ( ) xxyz xz zy yzx x z P y P x P zyx += ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ + ∂ ∂ + ∂ ∂ =•∇ 2 02 P
  • 19. (b) Use divergence for Circular cylindrical coordinate: ( ) ( ) ( ) ( ) φφ φρ φρ φρ ρρ φρ ρ ρρ φ ρ cossin2 cos 1 sin 1 11 22 += ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ + ∂ ∂ + ∂ ∂ =•∇ Q z z z z QQ Q z SOLUTION TO EXAMPLE 11 (Cont’d)
  • 20. SOLUTION TO EXAMPLE 11 (Cont’d) (c) Use divergence for Spherical coordinate: ( ) ( ) ( ) ( ) ( ) φθ θ φθ φθ θθ θ φθθ θ θ φθ coscos2 cos sin 1 cossin sin 1 cos 1 sin 1sin sin 11 2 2 2 2 = ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ + ∂ ∂ + ∂ ∂ =•∇ W r r rrr W r W r Wr rr r
  • 21. It states that the total outward flux of a vector field A at the closed surface S is the same as volume integral of divergence of A. ∫∫ •∇=• VV dVdS AA 1.12 DIVERGENCE THEOREM
  • 22. EXAMPLE 12 A vector field exists in the region between two concentric cylindrical surfaces defined by ρ = 1 and ρ = 2, with both cylinders extending between z = 0 and z = 5. Verify the divergence theorem by evaluating: ρρ aD 3 = → ∫ • S dsD ∫ •∇ V DdV (a) (b)
  • 23. SOLUTION TO EXAMPLE 12 (a) For two concentric cylinder, the left side: topbottomouterinner S d DDDDSD +++=•∫ Where, πφρ φρρ π φ ρ ρρ π φ ρ ρρ 10)( )( 2 0 5 0 1 4 2 0 5 0 1 3 −=•−= −•= ∫ ∫ ∫ ∫ = = = = = = z z inner dzd dzdD aa aa
  • 24. πφρ φρρ π φ ρ ρρ π φ ρ ρρ 160)( )( 2 0 5 0 2 4 2 0 5 0 2 3 =•= •= ∫ ∫ ∫ ∫ = = = = = = z z outer dzd dzdD aa aa ∫ ∫ ∫ ∫ = = = = = = =•= =−•= 2 1 2 0 5 3 2 1 2 0 0 3 0)( 0)( ρ π φ ρ ρ π φ ρ ρφρρ ρφρρ z ztop z zbottom ddD ddD aa aa SOLUTION TO EXAMPLE 12 Cont’d)
  • 26. SOLUTION TO EXAMPLE 12 Cont’d) (b) For the right side of Divergence Theorem, evaluate divergence of D ( ) 23 4 1 ρρρ ρρ = ∂ ∂ =•∇ D So, πρ φρρρ π φ π φ ρ 150 4 5 0 2 0 2 1 4 5 0 2 0 2 1 2 =                        = =•∇ = = = = = = ∫ ∫ ∫∫∫∫ z r z dzdddVD
  • 27. 1.13 CURL OF A VECTOR The curl of vector A is an axial (rotational) vector whose magnitude is the maximum circulation of A per unit area tends to zero and whose direction is the normal direction of the area when the area is oriented so as to make the circulation maximum.
  • 28. maxlim 0 a A AA n s s s dl Curl           ∆ • =×∇= ∫ →∆ Where, CURL OF A VECTOR (Cont’d) dldl dacdbcabs •        +++=• ∫∫∫∫∫ AA
  • 29. CURL OF A VECTOR (Cont’d) The curl of the vector field is concerned with rotation of the vector field. Rotation can be used to measure the uniformity of the field, the more non uniform the field, the larger value of curl.
  • 30. For Cartesian coordinate: CURL OF A VECTOR (Cont’d) zyx zyx AAA zyx ∂ ∂ ∂ ∂ ∂ ∂ =×∇ aaa A z xy y xz x yz y A x A z A x A z A y A aaaA       ∂ ∂ − ∂ ∂ +    ∂ ∂ − ∂ ∂ −      ∂ ∂ − ∂ ∂ =×∇
  • 32. CURL OF A VECTOR (Cont’d) For Spherical coordinate: ( ) φθ φθ θ φθθ ArrAA rr r r sin sin 1 2 ∂ ∂ ∂ ∂ ∂ ∂ =×∇ aaa A ( ) ( ) ( ) φ θ θ φθφ θ φθφθ θ θ a aaA       ∂ ∂ − ∂ ∂ +       ∂ ∂ − ∂ ∂ +      ∂ ∂ − ∂ ∂ =×∇ r r r A r rA r r rAA r AA r )(1 sin 11sin sin 1
  • 33. EXAMPLE 13 zx xzyzxP aa += 2 zzzQ aaa φρφρ φρ cossin 2 ++= φθ θφθθ aaa coscossincos 1 2 ++= r r W r (a) (b) (c) Find curl of these vectors:
  • 34. SOLUTION TO EXAMPLE 13 (a) Use curl for Cartesian coordinate: ( ) ( ) ( ) ( ) zy zyx z xy y xz x yz zxzyx zxzyx y P x P z P x P z P y P aa aaa aaaP 22 22 000 −−= −+−+−=       ∂ ∂ − ∂ ∂ +    ∂ ∂ − ∂ ∂ −      ∂ ∂ − ∂ ∂ =×∇
  • 35. (b) Use curl for Circular cylindrical coordinate ( ) ( ) ( ) ( ) ( ) z z z zz zz z z y Q x QQ z Q z QQ aa a aa aaaQ φρρφ ρ φρρ ρ ρφ ρ ρ ρρφρ ρ φρ ρφ φ ρ ρ φ cos3sin 1 cos3 1 00sin 11 3 2 2 −++−= −+ −+      − − =       ∂ ∂ − ∂ ∂ +      ∂ ∂ − ∂ ∂ +      ∂ ∂ − ∂ ∂ =×∇ SOLUTION TO EXAMPLE 13 (Cont’d)
  • 36. (c) Use curl for Spherical coordinate: ( ) ( ) ( ) ( ) ( ) ( ) φ θ φ θ θ φθφ θ θ φθ θ φ θ θφ φθ θ θθ θ θ φθφθ θ θ a aa a aaW           ∂     ∂ − ∂ ∂ +           ∂ ∂ − ∂     ∂ +      ∂ ∂ − ∂ ∂ =       ∂ ∂ − ∂ ∂ +       ∂ ∂ − ∂ ∂ +      ∂ ∂ − ∂ ∂ =×∇ 22 2 cos )cossin(1 cos cos sin 11cossinsincos sin 1 )(1 sin 11sin sin 1 r r r r r rr r r r W r rW r r rWW r WW r r r r r SOLUTION TO EXAMPLE 13 (Cont’d)
  • 37. SOLUTION TO EXAMPLE 13 (Cont’d) ( ) ( ) a aa a aa φ θ φ θ θφ θ φ θ θ θ φθ θφθθ θ sin 1 cos2 cos sin sin 2cos sin cossin2 1 cos0 1 sinsin2cos sin 1 3 2       ++ +      +=       ++ −++= r rr r r r r r r r r
  • 38. 1.14 STOKE’S THEOREM The circulation of a vector field A around a closed path L is equal to the surface integral of the curl of A over the open surface S bounded by L that A and curl of A are continuous on S. ( )∫∫ •×∇=• SL dSdl AA
  • 40. EXAMPLE 14 By using Stoke’s Theorem, evaluate for ∫ • dlA φρ φφρ aaA sincos += →
  • 42. SOLUTION TO EXAMPLE 14 Stoke’s Theorem, ( )∫∫ •×∇=• SL dSdl AA where, andzddd aS ρφρ= Evaluate right side to get left side, ( ) zaA φρ ρ sin1 1 +=×∇
  • 43. SOLUTION TO EXAMPLE 14 (Cont’d) ( ) ( ) 941.4 sin1 1 0 0 60 30 5 2 = +=•×∇ ∫ ∫∫ = = aA z S dddS ρφφρρ ρφ ρ
  • 44. EXAMPLE 15 Verify Stoke’s theorem for the vector field for given figure by evaluating:φρ φφρ aaB sincos += → (a) over the semicircular contour. ∫ • LB d (b) over the surface of semicircular contour. ( )∫ •×∇ SB d
  • 45. SOLUTION TO EXAMPLE 15 (a) To find∫ • LB d ∫∫∫∫ •+•+•=• 321 LLL dddd LBLBLBLB Where, ( ) ( ) φφρρφρ φρρφφρ φρφρ dd dzddd z sincos sincos += ++•+=• aaaaaLB
  • 48. SOLUTION TO EXAMPLE 15 (Cont’d) (b) To find ( )∫ •×∇ SB d ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) z z z zz a aaa a aa aaB       += +++=       ∂ ∂ − ∂ ∂ +       ∂ ∂ − ∂ ∂ +      ∂ ∂ − ∂ ∂ = +×∇=×∇ ρ φ φρφ ρ φρ φ φρ ρρ ρ φρφ φρ φφρ φρ φρ φρ 1 1sin sinsin 1 00 cossin 1 0cossin0 1 sincos
  • 49. SOLUTION TO EXAMPLE 15 (Cont’d) Therefore ( ) 8 2 1 cos 1sin 1 1sin 0 2 0 2 0 2 0 0 2 0 =                     +−= += •            +=•×∇ = = = = = = ∫ ∫ ∫ ∫∫∫ π φ ρ π φ ρ π φ ρ ρρφ φρρφ φρρ ρ φ aaSB dd ddd zz
  • 50. 1.15 LAPLACIAN OF A SCALAR The Laplacian of a scalar field, V written as: V2 ∇ Where, Laplacian V is:       ∂ ∂ + ∂ ∂ + ∂ ∂ •      ∂ ∂ + ∂ ∂ + ∂ ∂ = ∇•∇=∇ zyxzyx z V y V x V zyx VV aaaaaa 2
  • 51. For Cartesian coordinate: 2 2 2 2 2 2 2 z V y V x V V ∂ ∂ + ∂ ∂ + ∂ ∂ =∇ For Circular cylindrical coordinate: 2 22 2 2 11 z VVV V ∂ ∂ + ∂ ∂ +      ∂ ∂ ∂ ∂ =∇ φρρ ρ ρρ LAPLACIAN OF A SCALAR (Cont’d)
  • 52. LAPLACIAN OF A SCALAR (Cont’d) For Spherical coordinate: 2 2 22 2 2 2 2 sin 1 sin sin 11 φθ θ θ θθ ∂ ∂ +       ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ =∇ V r V rr V r rr V
  • 53. EXAMPLE 16 Find Laplacian of these scalars: yxeV z cosh2sin− = φρ 2cos2 zU = φθ cossin10 2 rW = (a) (b) (c) You should try this!!
  • 54. SOLUTION TO EXAMPLE 16 yxeV z cosh2sin22 − −=∇ 02 =∇ U ( )θ φ 2cos21 cos102 +=∇ r W (a) (b) (c)
  • 55. Yea, unto God belong all things in the heavens and on earth, and enough is God to carry through all affairs Quran:4:132 END