Numerical Integration

Trapezoidal Approximation
Trapezoidal Method
Used to estimate area under a curve
divide a region under a curve into trapezoids

x0, x1, x2,… represent the beginning of each sub-interval
Trapezoidal Rule
b

∫
a

b−a
( f ( x0 ) + 2 f ( x1 ) + 2 f ( x2 ) +  + f ( xn ) )
f ( x ) dx =
2n

Where n is the number of sub-intervals between a and b

Parts:

b−a
2n

x0 , x1 , , xn

→ calculate from given intervals

→ the starting x-value of each sub-interval

1, 2, 2, 2,…, 1 → coefficients in trapezoidal rule
Example: Approximate area under y = 1 + x3 using
n=4
1


1
1
 3
2 −1 
1 + x dx =
 f ( 0) + 2 f  ÷+ 2 f  ÷+ 2 f  ÷+ f ( 1) ÷=
4
2
4
2 ×4 

0

∫

3

1   65   9   92  
= 1+  ÷+  ÷+  ÷+ 2 ÷=
8   32   4   32  

1 325 325
×
=
=
8 32
256
0 ¼ ½ ¾ 1

≈ 1.26953125
Let’s Practice
8

Estimate the area

∫

3

x dx

using n = 8

0

8

∫

3

x dx =

0

8− 0
( f ( 0) + 2 f ( 1) + 2 f ( 2) + 2 f ( 3) + 2 f ( 4) + 2 f ( 5) + 2 f ( 6) + 2 f ( 7) + f ( 8) ) =
2 ×8

(

)

1
0+ 2+23 2 + 23 3+ 23 4 +23 5 +23 6 +23 7 +2 ≈
2

11.56978
Let’s Practice
8

Estimate the area

∫

3

x dx

using n = 8

0

8

∫

3

x dx =

0

8− 0
( f ( 0) + 2 f ( 1) + 2 f ( 2) + 2 f ( 3) + 2 f ( 4) + 2 f ( 5) + 2 f ( 6) + 2 f ( 7) + f ( 8) ) =
2 ×8

(

)

1
0+ 2+23 2 + 23 3+ 23 4 +23 5 +23 6 +23 7 +2 ≈
2

11.56978

8.7 numerical integration

  • 1.
  • 2.
    Trapezoidal Method Used toestimate area under a curve divide a region under a curve into trapezoids x0, x1, x2,… represent the beginning of each sub-interval
  • 3.
    Trapezoidal Rule b ∫ a b−a ( f( x0 ) + 2 f ( x1 ) + 2 f ( x2 ) +  + f ( xn ) ) f ( x ) dx = 2n Where n is the number of sub-intervals between a and b Parts: b−a 2n x0 , x1 , , xn → calculate from given intervals → the starting x-value of each sub-interval 1, 2, 2, 2,…, 1 → coefficients in trapezoidal rule
  • 4.
    Example: Approximate areaunder y = 1 + x3 using n=4 1  1 1  3 2 −1  1 + x dx =  f ( 0) + 2 f  ÷+ 2 f  ÷+ 2 f  ÷+ f ( 1) ÷= 4 2 4 2 ×4   0 ∫ 3 1   65   9   92   = 1+  ÷+  ÷+  ÷+ 2 ÷= 8   32   4   32   1 325 325 × = = 8 32 256 0 ¼ ½ ¾ 1 ≈ 1.26953125
  • 5.
    Let’s Practice 8 Estimate thearea ∫ 3 x dx using n = 8 0 8 ∫ 3 x dx = 0 8− 0 ( f ( 0) + 2 f ( 1) + 2 f ( 2) + 2 f ( 3) + 2 f ( 4) + 2 f ( 5) + 2 f ( 6) + 2 f ( 7) + f ( 8) ) = 2 ×8 ( ) 1 0+ 2+23 2 + 23 3+ 23 4 +23 5 +23 6 +23 7 +2 ≈ 2 11.56978
  • 6.
    Let’s Practice 8 Estimate thearea ∫ 3 x dx using n = 8 0 8 ∫ 3 x dx = 0 8− 0 ( f ( 0) + 2 f ( 1) + 2 f ( 2) + 2 f ( 3) + 2 f ( 4) + 2 f ( 5) + 2 f ( 6) + 2 f ( 7) + f ( 8) ) = 2 ×8 ( ) 1 0+ 2+23 2 + 23 3+ 23 4 +23 5 +23 6 +23 7 +2 ≈ 2 11.56978