This document discusses integration by substitution. It provides an example of recognizing a composite function and rewriting the integral in terms of the inside and outside functions. Specifically, it shows rewriting the integral of (x2 +1)2x dx as the integral of the outside function (x2 + 1) with the inside function (x) plugged in, plus a constant. It then provides additional practice problems applying the technique of substitution to rewrite integrals in terms of u-substitutions.