Integration by Substitution
Recognizing the “Outside-Inside” Pattern

∫(x

2

+1) 2x dx
2

From doing derivatives we need to recognize the integrand above
is a composite function from the “derivative of the outside times
the derivative of the inside” (chain rule).

3
1 2
= ( x + 1) + C
3

“+ C” since this is an
indefinite integral
Think of this function as 2 functions: f(x) and g(x)

f ( x) = x

g ( x) = x + 1
2

2

As a composite function then:

(

)

f ( g ( x) ) = x + 1
outside

2

2

inside

Now look at the original integral:

∫(x

2

+1) 2x dx

f(g(x))

2

g’(x)
Read this as “the
antiderivative of the outside
function with the inside
function plugged in…plus
C”
Let’s Practice !!!
3x 2 sin x 3 dx =
∫

3x 2 sin x 3 dx =
∫
du

Let u = x3
du = 3x2

sin u

∫ sin u du =

− cosu + C =

−cos x + C
3
More Practice !!!

∫x

1/4
3

x + 2 dx =
4

Let u = x4 + 2

(x

4

x 4 + 2 x 3 dx = 1
4
u
du

∫

1
4

du = 4 x3

4

∫

u du =

3
2

3
2

1u
1 2u
∫ u du = 4 3 + C = 4 3 + C =
2

+ 2)
6

1
2

3
2

+C =

(x

4

+ 2)

6

3

+C
Here are some problems for
you to work on!!!
dx
1. ∫
=
2
1+ 3x
1 2 
2. ∫  sin π x ÷dx =
x


3. ∫ sin 2 x cos x dx =
e x
4. ∫
dx =
x
43
5
5. ∫ t 3− 5t dt =
Less Apparent
Substitution
1. ∫ x 2 x −1 dx =

∫

x 2 x −1 dx =

(u + 1)
Let u = x – 1
du = dx

x=u+1
x2 = (u + !)2
7
2

∫ ( u +1)

∫(
5
2

u

2

du

u du =

∫ ( u +1)

2

1
2

u du =

3
1
 5
2
 u 2 + 2u 2 + u 2 ÷du =
u + 2u +1 u du = ∫



)

3
2

1
2

7
2

5
2

3
2

2 ( x −1)
4 ( x −1)
2 ( x −1)
2u 2 ×2u 2u
+
+
+C =
+
+
+C
7
5
3
7
5
3
Less Apparent
Substitution
1. ∫ x 2 x −1 dx =

∫

x 2 x −1 dx =

(u + 1)
Let u = x – 1
du = dx

x=u+1
x2 = (u + !)2
7
2

∫ ( u +1)

∫(
5
2

u

2

du

u du =

∫ ( u +1)

2

1
2

u du =

3
1
 5
2
 u 2 + 2u 2 + u 2 ÷du =
u + 2u +1 u du = ∫



)

3
2

1
2

7
2

5
2

3
2

2 ( x −1)
4 ( x −1)
2 ( x −1)
2u 2 ×2u 2u
+
+
+C =
+
+
+C
7
5
3
7
5
3

6.3 integration by substitution

  • 1.
  • 2.
    Recognizing the “Outside-Inside”Pattern ∫(x 2 +1) 2x dx 2 From doing derivatives we need to recognize the integrand above is a composite function from the “derivative of the outside times the derivative of the inside” (chain rule). 3 1 2 = ( x + 1) + C 3 “+ C” since this is an indefinite integral
  • 3.
    Think of thisfunction as 2 functions: f(x) and g(x) f ( x) = x g ( x) = x + 1 2 2 As a composite function then: ( ) f ( g ( x) ) = x + 1 outside 2 2 inside Now look at the original integral: ∫(x 2 +1) 2x dx f(g(x)) 2 g’(x)
  • 4.
    Read this as“the antiderivative of the outside function with the inside function plugged in…plus C”
  • 6.
    Let’s Practice !!! 3x2 sin x 3 dx = ∫ 3x 2 sin x 3 dx = ∫ du Let u = x3 du = 3x2 sin u ∫ sin u du = − cosu + C = −cos x + C 3
  • 7.
    More Practice !!! ∫x 1/4 3 x+ 2 dx = 4 Let u = x4 + 2 (x 4 x 4 + 2 x 3 dx = 1 4 u du ∫ 1 4 du = 4 x3 4 ∫ u du = 3 2 3 2 1u 1 2u ∫ u du = 4 3 + C = 4 3 + C = 2 + 2) 6 1 2 3 2 +C = (x 4 + 2) 6 3 +C
  • 8.
    Here are someproblems for you to work on!!! dx 1. ∫ = 2 1+ 3x 1 2  2. ∫  sin π x ÷dx = x  3. ∫ sin 2 x cos x dx = e x 4. ∫ dx = x 43 5 5. ∫ t 3− 5t dt =
  • 9.
    Less Apparent Substitution 1. ∫x 2 x −1 dx = ∫ x 2 x −1 dx = (u + 1) Let u = x – 1 du = dx x=u+1 x2 = (u + !)2 7 2 ∫ ( u +1) ∫( 5 2 u 2 du u du = ∫ ( u +1) 2 1 2 u du = 3 1  5 2  u 2 + 2u 2 + u 2 ÷du = u + 2u +1 u du = ∫   ) 3 2 1 2 7 2 5 2 3 2 2 ( x −1) 4 ( x −1) 2 ( x −1) 2u 2 ×2u 2u + + +C = + + +C 7 5 3 7 5 3
  • 10.
    Less Apparent Substitution 1. ∫x 2 x −1 dx = ∫ x 2 x −1 dx = (u + 1) Let u = x – 1 du = dx x=u+1 x2 = (u + !)2 7 2 ∫ ( u +1) ∫( 5 2 u 2 du u du = ∫ ( u +1) 2 1 2 u du = 3 1  5 2  u 2 + 2u 2 + u 2 ÷du = u + 2u +1 u du = ∫   ) 3 2 1 2 7 2 5 2 3 2 2 ( x −1) 4 ( x −1) 2 ( x −1) 2u 2 ×2u 2u + + +C = + + +C 7 5 3 7 5 3