Integration by parts is a technique for evaluating integrals of the form ∫udv, where u and v are differentiable functions. It works by expressing the integral as uv - ∫vdu. Some examples of integrals solved using integration by parts include ∫xe^xdx, ∫lnxdx, and ∫xe^-xdx. The technique can also be used repeatedly and for definite integrals between limits a and b using the formula ∫abudv = uv|_a^b - ∫avdu.