ARHAM VEERAYATAN INSTITUTE
OF ENGINEERING, TECHNOLOGY & RESEARCH
NUMERICAL INTEGRATION
1
PRESENTED BY
KOTADIYA URVISH(150920106001)
KATHIRIYA VISHAL(150920106003)
VYAS KEYUR (150920106004)
TOPIC
1. Trapezoidal Rule
2. Simson
1
3
Rule
3. Simson
3
8
Rule
9 May 2017
2
9 May 2017
3
1. Trapezoidal Rule
DEFINITION & FORMULA
 If 𝑥0, 𝑥1, 𝑥2,…. 𝑥 𝑛 be the value of equally spaced x’s and 𝑦0, 𝑦1, 𝑦2,…. 𝑦𝑛
be the corresponding values of y’s then,
𝑥0
𝑥 𝑛
𝑓(𝑥)dx =
ℎ
2
[ (𝑦0+𝑦𝑛)+2(𝑦1+𝑦2+𝑦3+….. 𝑦 𝑛−1) ]
 Where h is difference between two consecutive x’s
9 May 2017
4
9 May 2017
5
2. Simson
𝟏
𝟑
Rule
DEFINITION & FORMULA
 If 𝑥0, 𝑥1, 𝑥2,…. 𝑥 𝑛 be the value of equally spaced x’s and 𝑦0, 𝑦1,
𝑦2,…. 𝑦𝑛 be the corresponding values of y’s then,
𝑥0
𝑥 𝑛
𝑓(𝑥)dx =
ℎ
3
[ (𝑦0+𝑦𝑛)+4(𝑦1+𝑦3+…..+ 𝑦 𝑛−1)+2(𝑦2+𝑦4+…..+𝑦 𝑛−2)]
 Where h is difference between two consecutive x’s
9 May 2017
6
9 May 2017
7
3. Simson
𝟑
𝟖
Rule
DEFINITION & FORMULA
 If 𝑥0, 𝑥1, 𝑥2,…. 𝑥 𝑛 be the value of equally spaced x’s and 𝑦0, 𝑦1, 𝑦2,…. 𝑦𝑛 be
the corresponding values of y’s then,
𝑥0
𝑥 𝑛
𝑓(𝑥)dx =
3ℎ
8
[𝑦0+3(𝑦1+𝑦2+𝑦4+𝑦5+…..+𝑦 𝑛−1)+2(𝑦3+𝑦6+….. 𝑦 𝑛−3)+𝑦𝑛 ]
 Where h is difference between two consecutive x’s
9 May 2017
8
EXAMPLE
 Evaluate 0
1 𝑑𝑥
1+𝑥2 𝑢𝑠𝑖𝑛𝑔
(A) Trapezoidal rule taking h =
1
5
(B) Simson’s
1
3
Rule taking h=
1
4
(C) Simson’s
3
8
Rule taking h=
1
6
9 May 2017
9
(A) Trapezoidal rule taking h =
1
5

𝑥0
𝑥 𝑛
𝑓(𝑥)dx =
ℎ
2
[ (𝑦0+𝑦𝑛)+2(𝑦1+𝑦2+𝑦3+….. 𝑦 𝑛−1) ]
h =
1
5
=0.2
𝑥0 = 0 , 𝑥1 = 0.2 , 𝑥2 = 0.4 , 𝑥3 = 0.6 , 𝑥4 = 0.8 , 𝑥5 = 1
∴ 𝑦0 = f(𝑥0) =
1
1+(0)2 = 1
∴ 𝑦1 = f(𝑥1) =
1
1+(0.2)2 = 0.961
∴ 𝑦2 = f(𝑥2) =
1
1+(0.4)2 = 0.862
∴ 𝑦3 = f(𝑥3) =
1
1+(0.6)2 = 0.7352
∴ 𝑦4 = f(𝑥4) =
1
1+(0.8)2 = 0.6097
∴ 𝑦5 = f(𝑥5) =
1
1+(1)2 = 0.5
9 May 2017
10
9 May 2017
11
𝑥0
𝑥 𝑛
𝑓(𝑥)dx =
ℎ
2
[ (𝑦0+𝑦𝑛)+2(𝑦1+𝑦2+𝑦3+….. 𝑦 𝑛−1) ]
0
1 1
1+𝑥2 =
0.2
2
[ (1+0.5)+2(0+0.961+0.862+0.7352+0.6097+0.5)]
= 0.1 [ 1.5 +6.3358 ]
0
1 1
1+𝑥2 = 0.78358
(B) Simson’s
1
3
Rule taking h=
1
4

𝑥0
𝑥 𝑛
𝑓(𝑥)dx =
ℎ
3
[ (𝑦0+𝑦 𝑛)+4(𝑦1+𝑦3+…..+ 𝑦 𝑛−1)+2(𝑦2+𝑦4+…..+𝑦 𝑛−2)]
h =
1
4
= 0.25
𝑥0 = 0 , 𝑥1 = 0.25 , 𝑥2 = 0.50 , 𝑥3 = 0.75 , 𝑥4 = 1
∴ 𝑦0 = f(𝑥0) =
1
1+(0)2 = 1
∴ 𝑦1 = f(𝑥1) =
1
1+(0.25)2 = 0.9411
∴ 𝑦2 = f(𝑥2) =
1
1+(0.50)2 = 0.8
∴ 𝑦3 = f(𝑥3) =
1
1+(0.75)2 = 0.64
∴ 𝑦4 = f(𝑥4) =
1
1+(1)2 = 0.5
9 May 2017
12
9 May 2017
13𝑥0
𝑥 𝑛
𝑓(𝑥)dx =
ℎ
3
[ (𝑦0+𝑦 𝑛)+4(𝑦1+𝑦3+…..+ 𝑦 𝑛−1)+2(𝑦2+𝑦4+…..+𝑦 𝑛−2)]
0
1 1
1+𝑥2 dx =
0.25
3
[ (1+0.5)+4(0.9411+0.64)+2(0.8+0.5)]
= 0.0833 [ 1.5 +6.3244+2.6 ]
0
1 1
1+𝑥2dx = 0.8686
(C) Simson’s
3
8
Rule taking h=
1
6

𝑥0
𝑥 𝑛
𝑓(𝑥)dx =
3ℎ
8
[𝑦0+3(𝑦1+𝑦2+𝑦4+𝑦5+…..+𝑦 𝑛−1)+2(𝑦3+𝑦6+….. 𝑦 𝑛−3)+𝑦𝑛 ]
h =
1
6
= 0.166
𝑥0 = 0 , 𝑥1 = 0.166 , 𝑥2 = 0.333 , 𝑥3 = 0.499 , 𝑥4 = 0.666 , 𝑥5 = 0.833 , 𝑥6 = 0.999 , 𝑥7 = 0.1.1663
∴ 𝑦0 = f(𝑥0) =
1
1+(0)2 = 1
∴ 𝑦1 = f(𝑥1) =
1
1+(0.166)2 = 0.9731
∴ 𝑦2 = f(𝑥2) =
1
1+(0.333)2 = 0.900
∴ 𝑦3 = f(𝑥3) =
1
1+(0.499)2 = 0.800
∴ 𝑦4 = f(𝑥4) =
1
1+(0.666)2 = 0.6927
∴ 𝑦5 = f(𝑥5) =
1
1+(0.833)2 = 0.59035
∴ 𝑦6 = f(𝑥6) =
1
1+(0.999)2 = 0.5
9 May 2017
14
9 May 2017
15𝑥0
𝑥 𝑛
𝑓(𝑥)dx =
3ℎ
8
[𝑦0+3(𝑦1+𝑦2+𝑦4+𝑦5+…..+𝑦 𝑛−1)+2(𝑦3+𝑦6+….. 𝑦 𝑛−3)+𝑦 𝑛 ]
0
1 1
1+𝑥2 dx =
3(0.166)
3
[ 1+3(0.9731+0.9+0.6927+0.5903)+2(0.8)+0.5]
= 0.06225 [ 1+9.4683+1.6+0.5 ]
0
1 1
1+𝑥2dx = 0.7823
Thank
you
16

Numerical integration

  • 1.
    ARHAM VEERAYATAN INSTITUTE OFENGINEERING, TECHNOLOGY & RESEARCH NUMERICAL INTEGRATION 1 PRESENTED BY KOTADIYA URVISH(150920106001) KATHIRIYA VISHAL(150920106003) VYAS KEYUR (150920106004)
  • 2.
    TOPIC 1. Trapezoidal Rule 2.Simson 1 3 Rule 3. Simson 3 8 Rule 9 May 2017 2
  • 3.
    9 May 2017 3 1.Trapezoidal Rule
  • 4.
    DEFINITION & FORMULA If 𝑥0, 𝑥1, 𝑥2,…. 𝑥 𝑛 be the value of equally spaced x’s and 𝑦0, 𝑦1, 𝑦2,…. 𝑦𝑛 be the corresponding values of y’s then, 𝑥0 𝑥 𝑛 𝑓(𝑥)dx = ℎ 2 [ (𝑦0+𝑦𝑛)+2(𝑦1+𝑦2+𝑦3+….. 𝑦 𝑛−1) ]  Where h is difference between two consecutive x’s 9 May 2017 4
  • 5.
    9 May 2017 5 2.Simson 𝟏 𝟑 Rule
  • 6.
    DEFINITION & FORMULA If 𝑥0, 𝑥1, 𝑥2,…. 𝑥 𝑛 be the value of equally spaced x’s and 𝑦0, 𝑦1, 𝑦2,…. 𝑦𝑛 be the corresponding values of y’s then, 𝑥0 𝑥 𝑛 𝑓(𝑥)dx = ℎ 3 [ (𝑦0+𝑦𝑛)+4(𝑦1+𝑦3+…..+ 𝑦 𝑛−1)+2(𝑦2+𝑦4+…..+𝑦 𝑛−2)]  Where h is difference between two consecutive x’s 9 May 2017 6
  • 7.
    9 May 2017 7 3.Simson 𝟑 𝟖 Rule
  • 8.
    DEFINITION & FORMULA If 𝑥0, 𝑥1, 𝑥2,…. 𝑥 𝑛 be the value of equally spaced x’s and 𝑦0, 𝑦1, 𝑦2,…. 𝑦𝑛 be the corresponding values of y’s then, 𝑥0 𝑥 𝑛 𝑓(𝑥)dx = 3ℎ 8 [𝑦0+3(𝑦1+𝑦2+𝑦4+𝑦5+…..+𝑦 𝑛−1)+2(𝑦3+𝑦6+….. 𝑦 𝑛−3)+𝑦𝑛 ]  Where h is difference between two consecutive x’s 9 May 2017 8
  • 9.
    EXAMPLE  Evaluate 0 1𝑑𝑥 1+𝑥2 𝑢𝑠𝑖𝑛𝑔 (A) Trapezoidal rule taking h = 1 5 (B) Simson’s 1 3 Rule taking h= 1 4 (C) Simson’s 3 8 Rule taking h= 1 6 9 May 2017 9
  • 10.
    (A) Trapezoidal ruletaking h = 1 5  𝑥0 𝑥 𝑛 𝑓(𝑥)dx = ℎ 2 [ (𝑦0+𝑦𝑛)+2(𝑦1+𝑦2+𝑦3+….. 𝑦 𝑛−1) ] h = 1 5 =0.2 𝑥0 = 0 , 𝑥1 = 0.2 , 𝑥2 = 0.4 , 𝑥3 = 0.6 , 𝑥4 = 0.8 , 𝑥5 = 1 ∴ 𝑦0 = f(𝑥0) = 1 1+(0)2 = 1 ∴ 𝑦1 = f(𝑥1) = 1 1+(0.2)2 = 0.961 ∴ 𝑦2 = f(𝑥2) = 1 1+(0.4)2 = 0.862 ∴ 𝑦3 = f(𝑥3) = 1 1+(0.6)2 = 0.7352 ∴ 𝑦4 = f(𝑥4) = 1 1+(0.8)2 = 0.6097 ∴ 𝑦5 = f(𝑥5) = 1 1+(1)2 = 0.5 9 May 2017 10
  • 11.
    9 May 2017 11 𝑥0 𝑥𝑛 𝑓(𝑥)dx = ℎ 2 [ (𝑦0+𝑦𝑛)+2(𝑦1+𝑦2+𝑦3+….. 𝑦 𝑛−1) ] 0 1 1 1+𝑥2 = 0.2 2 [ (1+0.5)+2(0+0.961+0.862+0.7352+0.6097+0.5)] = 0.1 [ 1.5 +6.3358 ] 0 1 1 1+𝑥2 = 0.78358
  • 12.
    (B) Simson’s 1 3 Rule takingh= 1 4  𝑥0 𝑥 𝑛 𝑓(𝑥)dx = ℎ 3 [ (𝑦0+𝑦 𝑛)+4(𝑦1+𝑦3+…..+ 𝑦 𝑛−1)+2(𝑦2+𝑦4+…..+𝑦 𝑛−2)] h = 1 4 = 0.25 𝑥0 = 0 , 𝑥1 = 0.25 , 𝑥2 = 0.50 , 𝑥3 = 0.75 , 𝑥4 = 1 ∴ 𝑦0 = f(𝑥0) = 1 1+(0)2 = 1 ∴ 𝑦1 = f(𝑥1) = 1 1+(0.25)2 = 0.9411 ∴ 𝑦2 = f(𝑥2) = 1 1+(0.50)2 = 0.8 ∴ 𝑦3 = f(𝑥3) = 1 1+(0.75)2 = 0.64 ∴ 𝑦4 = f(𝑥4) = 1 1+(1)2 = 0.5 9 May 2017 12
  • 13.
    9 May 2017 13𝑥0 𝑥𝑛 𝑓(𝑥)dx = ℎ 3 [ (𝑦0+𝑦 𝑛)+4(𝑦1+𝑦3+…..+ 𝑦 𝑛−1)+2(𝑦2+𝑦4+…..+𝑦 𝑛−2)] 0 1 1 1+𝑥2 dx = 0.25 3 [ (1+0.5)+4(0.9411+0.64)+2(0.8+0.5)] = 0.0833 [ 1.5 +6.3244+2.6 ] 0 1 1 1+𝑥2dx = 0.8686
  • 14.
    (C) Simson’s 3 8 Rule takingh= 1 6  𝑥0 𝑥 𝑛 𝑓(𝑥)dx = 3ℎ 8 [𝑦0+3(𝑦1+𝑦2+𝑦4+𝑦5+…..+𝑦 𝑛−1)+2(𝑦3+𝑦6+….. 𝑦 𝑛−3)+𝑦𝑛 ] h = 1 6 = 0.166 𝑥0 = 0 , 𝑥1 = 0.166 , 𝑥2 = 0.333 , 𝑥3 = 0.499 , 𝑥4 = 0.666 , 𝑥5 = 0.833 , 𝑥6 = 0.999 , 𝑥7 = 0.1.1663 ∴ 𝑦0 = f(𝑥0) = 1 1+(0)2 = 1 ∴ 𝑦1 = f(𝑥1) = 1 1+(0.166)2 = 0.9731 ∴ 𝑦2 = f(𝑥2) = 1 1+(0.333)2 = 0.900 ∴ 𝑦3 = f(𝑥3) = 1 1+(0.499)2 = 0.800 ∴ 𝑦4 = f(𝑥4) = 1 1+(0.666)2 = 0.6927 ∴ 𝑦5 = f(𝑥5) = 1 1+(0.833)2 = 0.59035 ∴ 𝑦6 = f(𝑥6) = 1 1+(0.999)2 = 0.5 9 May 2017 14
  • 15.
    9 May 2017 15𝑥0 𝑥𝑛 𝑓(𝑥)dx = 3ℎ 8 [𝑦0+3(𝑦1+𝑦2+𝑦4+𝑦5+…..+𝑦 𝑛−1)+2(𝑦3+𝑦6+….. 𝑦 𝑛−3)+𝑦 𝑛 ] 0 1 1 1+𝑥2 dx = 3(0.166) 3 [ 1+3(0.9731+0.9+0.6927+0.5903)+2(0.8)+0.5] = 0.06225 [ 1+9.4683+1.6+0.5 ] 0 1 1 1+𝑥2dx = 0.7823
  • 16.