Approximations To Areas
(1) Trapezoidal Rule

y

y = f(x)

a

b

x
Approximations To Areas
(1) Trapezoidal Rule

y

y = f(x)

a

b

x
Approximations To Areas
(1) Trapezoidal Rule

y

y = f(x)

a

b

x

ba
A
 f a   f b 
2
Approximations To Areas
(1) Trapezoidal Rule

y

y = f(x)

ba
A
 f a   f b 
2

y
a

b

y = f(x)

x

a

b

x
Approximations To Areas
(1) Trapezoidal Rule

y

y = f(x)

ba
A
 f a   f b 
2

y
a

b

y = f(x)

x

a

c

b

x
Approximations To Areas
(1) Trapezoidal Rule

y

y = f(x)

ba
A
 f a   f b 
2

y
a

b

y = f(x)

x

ca
bc
A
 f a   f c  
 f c   f b 
2
2

a

c

b

x
Approximations To Areas
(1) Trapezoidal Rule

y

y = f(x)

ba
A
 f a   f b 
2

y
a

b

y = f(x)

x

ca
bc
A
 f a   f c  
 f c   f b 
2
2
ca

 f a   2 f c   f b 
2

a

c

b

x
y

y = f(x)

a

b

x
y

y = f(x)

a

c

d

b

x
y

y = f(x)

ca
d c
A
 f a   f c  
 f c   f d 
2
2
bd

 f d   f b 
2

a

c

d

b

x
y

y = f(x)

a

c

d

b

ca
d c
A
 f a   f c  
 f c   f d 
2
2
bd

 f d   f b 
2
x  c  a  f a   2 f c   2 f d   f b 
2
y

y = f(x)

a

c

In general;

d

b

ca
d c
A
 f a   f c  
 f c   f d 
2
2
bd

 f d   f b 
2
x  c  a  f a   2 f c   2 f d   f b 
2
y

y = f(x)

a

c

In general;

d

ca
d c
A
 f a   f c  
 f c   f d 
2
2
bd

 f d   f b 
2
x  c  a  f a   2 f c   2 f d   f b 
2

b
b

Area   f  x dx
a
y

y = f(x)

a

c

In general;

d

ca
d c
A
 f a   f c  
 f c   f d 
2
2
bd

 f d   f b 
2
x  c  a  f a   2 f c   2 f d   f b 
2

b
b

Area   f  x dx
a

h
 y0  2 yothers  yn 
2
y

y = f(x)

a

c

In general;

d

ca
d c
A
 f a   f c  
 f c   f d 
2
2
bd

 f d   f b 
2
x  c  a  f a   2 f c   2 f d   f b 
2

b
b

Area   f  x dx
a

h
 y0  2 yothers  yn 
2

ba
n
n  number of trapeziums

where h 
y

y = f(x)

a

c

In general;

d

ca
d c
A
 f a   f c  
 f c   f d 
2
2
bd

 f d   f b 
2
x  c  a  f a   2 f c   2 f d   f b 
2

b
b

Area   f  x dx
a

h
 y0  2 yothers  yn 
2

ba
n
n  number of trapeziums

where h 

NOTE: there is
always one more
function value
than interval
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the
area under the curve y  4  x

correct to 3 decimal points 

 , between x  0 and x  2

1
2 2
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the
area under the curve y  4  x

correct to 3 decimal points 
ba
h
n
20

4
 0.5

 , between x  0 and x  2

1
2 2
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the
area under the curve y  4  x

correct to 3 decimal points 
ba
h
n
20

4
 0.5

x
y

0
2

 , between x  0 and x  2

1
2 2

0.5
1.9365

1
1.7321

1.5
1.3229

2
0
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the
area under the curve y  4  x

correct to 3 decimal points 
ba
h
n
20

4
 0.5

x
y

0
2

 , between x  0 and x  2

1
2 2

0.5
1.9365

1
1.7321

h
Area  y0  2 yothers  yn 
2

1.5
1.3229

2
0
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the
area under the curve y  4  x

correct to 3 decimal points 
ba
h
n
20

4
 0.5

 , between x  0 and x  2

1
2 2

1
x
y

0
2

1
0.5
1.9365

1
1.7321

h
Area  y0  2 yothers  yn 
2

1.5
1.3229

2
0
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the
area under the curve y  4  x

correct to 3 decimal points 
ba
h
n
20

4
 0.5

1
x
y

0
2

 , between x  0 and x  2

1
2 2

2

2

2

1

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

h
Area  y0  2 yothers  yn 
2
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the
area under the curve y  4  x

correct to 3 decimal points 
ba
h
n
20

4
 0.5

1
x
y

0
2

 , between x  0 and x  2

1
2 2

2

2

2

1

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

h
Area  y0  2 yothers  yn 
2
0.5

2  21.9365  1.7321  1.3229  0
2
 2.996 units 2
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the
area under the curve y  4  x

correct to 3 decimal points 
ba
h
n
20

4
 0.5

1
x
y

0
2

 , between x  0 and x  2

1
2 2

2

2

2

1

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

h
Area  y0  2 yothers  yn 
2
0.5

2  21.9365  1.7321  1.3229  0
2
exact value  π 
 2.996 units 2
e.g. Use the Trapezoida l Rule with 4 intervals to estimate the
area under the curve y  4  x

correct to 3 decimal points 
ba
h
n
20

4
 0.5

1
x
y

0
2

 , between x  0 and x  2

1
2 2

2

2

2

1

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

h
Area  y0  2 yothers  yn 
2
0.5

2  21.9365  1.7321  1.3229  0
2
exact value  π 
 2.996 units 2
3.142  2.996
100
3.142
 4.6%

% error 
(2) Simpson’s Rule
(2) Simpson’s Rule
b

Area   f  x dx
a
(2) Simpson’s Rule
b

Area   f  x dx
a

h
 y0  4 yodd  2 yeven  yn 
3
(2) Simpson’s Rule
b

Area   f  x dx
a

h
 y0  4 yodd  2 yeven  yn 
3

ba
n
n  number of intervals

where h 
(2) Simpson’s Rule
b

Area   f  x dx
a

h
 y0  4 yodd  2 yeven  yn 
3

ba
n
n  number of intervals

where h 

e.g.
x
y

0
2

0.5
1.9365

1
1.7321

1.5
1.3229

2
0
(2) Simpson’s Rule
b

Area   f  x dx
a

h
 y0  4 yodd  2 yeven  yn 
3

ba
n
n  number of intervals

where h 

e.g.
x
y

0
2

0.5
1.9365

1
1.7321

h
Area  y0  4 yodd  2 yeven  yn 
3

1.5
1.3229

2
0
(2) Simpson’s Rule
b

Area   f  x dx
a

h
 y0  4 yodd  2 yeven  yn 
3

ba
n
n  number of intervals

where h 

1

e.g.
x
y

0
2

1
0.5
1.9365

1
1.7321

h
Area  y0  4 yodd  2 yeven  yn 
3

1.5
1.3229

2
0
(2) Simpson’s Rule
b

Area   f  x dx
a

h
 y0  4 yodd  2 yeven  yn 
3

ba
n
n  number of intervals

where h 

1

e.g.
x
y

4

0
2

0.5
1.9365

4
1
1.7321

h
Area  y0  4 yodd  2 yeven  yn 
3

1

1.5
1.3229

2
0
(2) Simpson’s Rule
b

Area   f  x dx
a

h
 y0  4 yodd  2 yeven  yn 
3

ba
n
n  number of intervals

where h 

1

e.g.
x
y

4

2

4

1

0
2

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

h
Area  y0  4 yodd  2 yeven  yn 
3
(2) Simpson’s Rule
b

Area   f  x dx
a

h
 y0  4 yodd  2 yeven  yn 
3

ba
n
n  number of intervals

where h 

1

e.g.
x
y

4

2

4

1

0
2

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

h
Area  y0  4 yodd  2 yeven  yn 
3
0.5

2  41.9365  1.3229  21.7321  0
3
 3.084 units 2
(2) Simpson’s Rule
b

Area   f  x dx
a

h
 y0  4 yodd  2 yeven  yn 
3

ba
n
n  number of intervals

where h 

1

e.g.
x
y

4

2

4

1

0
2

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

h
Area  y0  4 yodd  2 yeven  yn 
3
0.5

2  41.9365  1.3229  21.7321  0 3.142  3.084
3
% error 
100
3.142
 3.084 units 2
 1.8%
Alternative working out!!!
(1) Trapezoidal Rule
Alternative working out!!!
(1) Trapezoidal Rule
1
x
y

0
2

2

2

2

1

0.5
1.9365

1
1.7321

1.5
1.3229

2
0
Alternative working out!!!
(1) Trapezoidal Rule
1
x
y

Area 

0
2

2

2

2

1

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

2  2 1.9365  1.7321  1.3229   0

1 2  2  2 1
 2.996 units 2

  2  0
(2) Simpson’s Rule
1
x
y

0
2

4

2

4

1

0.5
1.9365

1
1.7321

1.5
1.3229

2
0
(2) Simpson’s Rule
1
x
y

Area 

0
2

4

2

4

1

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

2  4 1.9365  1.3229   2 1.7321  0
1 4  2  4 1

 3.084 units 2

  2  0
(2) Simpson’s Rule
1
x
y

Area 

0
2

4

2

4

1

0.5
1.9365

1
1.7321

1.5
1.3229

2
0

2  4 1.9365  1.3229   2 1.7321  0
1 4  2  4 1

 3.084 units 2

Exercise 11I; odds
Exercise 11J; evens

  2  0

11 x1 t16 07 approximations (2013)

  • 1.
    Approximations To Areas (1)Trapezoidal Rule y y = f(x) a b x
  • 2.
    Approximations To Areas (1)Trapezoidal Rule y y = f(x) a b x
  • 3.
    Approximations To Areas (1)Trapezoidal Rule y y = f(x) a b x ba A  f a   f b  2
  • 4.
    Approximations To Areas (1)Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y a b y = f(x) x a b x
  • 5.
    Approximations To Areas (1)Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y a b y = f(x) x a c b x
  • 6.
    Approximations To Areas (1)Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y a b y = f(x) x ca bc A  f a   f c    f c   f b  2 2 a c b x
  • 7.
    Approximations To Areas (1)Trapezoidal Rule y y = f(x) ba A  f a   f b  2 y a b y = f(x) x ca bc A  f a   f c    f c   f b  2 2 ca   f a   2 f c   f b  2 a c b x
  • 8.
  • 9.
  • 10.
    y y = f(x) ca dc A  f a   f c    f c   f d  2 2 bd   f d   f b  2 a c d b x
  • 11.
    y y = f(x) a c d b ca dc A  f a   f c    f c   f d  2 2 bd   f d   f b  2 x  c  a  f a   2 f c   2 f d   f b  2
  • 12.
    y y = f(x) a c Ingeneral; d b ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 x  c  a  f a   2 f c   2 f d   f b  2
  • 13.
    y y = f(x) a c Ingeneral; d ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 x  c  a  f a   2 f c   2 f d   f b  2 b b Area   f  x dx a
  • 14.
    y y = f(x) a c Ingeneral; d ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 x  c  a  f a   2 f c   2 f d   f b  2 b b Area   f  x dx a h  y0  2 yothers  yn  2
  • 15.
    y y = f(x) a c Ingeneral; d ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 x  c  a  f a   2 f c   2 f d   f b  2 b b Area   f  x dx a h  y0  2 yothers  yn  2 ba n n  number of trapeziums where h 
  • 16.
    y y = f(x) a c Ingeneral; d ca d c A  f a   f c    f c   f d  2 2 bd   f d   f b  2 x  c  a  f a   2 f c   2 f d   f b  2 b b Area   f  x dx a h  y0  2 yothers  yn  2 ba n n  number of trapeziums where h  NOTE: there is always one more function value than interval
  • 17.
    e.g. Use theTrapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x correct to 3 decimal points   , between x  0 and x  2 1 2 2
  • 18.
    e.g. Use theTrapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x correct to 3 decimal points  ba h n 20  4  0.5  , between x  0 and x  2 1 2 2
  • 19.
    e.g. Use theTrapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x correct to 3 decimal points  ba h n 20  4  0.5 x y 0 2  , between x  0 and x  2 1 2 2 0.5 1.9365 1 1.7321 1.5 1.3229 2 0
  • 20.
    e.g. Use theTrapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x correct to 3 decimal points  ba h n 20  4  0.5 x y 0 2  , between x  0 and x  2 1 2 2 0.5 1.9365 1 1.7321 h Area  y0  2 yothers  yn  2 1.5 1.3229 2 0
  • 21.
    e.g. Use theTrapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x correct to 3 decimal points  ba h n 20  4  0.5  , between x  0 and x  2 1 2 2 1 x y 0 2 1 0.5 1.9365 1 1.7321 h Area  y0  2 yothers  yn  2 1.5 1.3229 2 0
  • 22.
    e.g. Use theTrapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x correct to 3 decimal points  ba h n 20  4  0.5 1 x y 0 2  , between x  0 and x  2 1 2 2 2 2 2 1 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 h Area  y0  2 yothers  yn  2
  • 23.
    e.g. Use theTrapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x correct to 3 decimal points  ba h n 20  4  0.5 1 x y 0 2  , between x  0 and x  2 1 2 2 2 2 2 1 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 h Area  y0  2 yothers  yn  2 0.5  2  21.9365  1.7321  1.3229  0 2  2.996 units 2
  • 24.
    e.g. Use theTrapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x correct to 3 decimal points  ba h n 20  4  0.5 1 x y 0 2  , between x  0 and x  2 1 2 2 2 2 2 1 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 h Area  y0  2 yothers  yn  2 0.5  2  21.9365  1.7321  1.3229  0 2 exact value  π   2.996 units 2
  • 25.
    e.g. Use theTrapezoida l Rule with 4 intervals to estimate the area under the curve y  4  x correct to 3 decimal points  ba h n 20  4  0.5 1 x y 0 2  , between x  0 and x  2 1 2 2 2 2 2 1 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 h Area  y0  2 yothers  yn  2 0.5  2  21.9365  1.7321  1.3229  0 2 exact value  π   2.996 units 2 3.142  2.996 100 3.142  4.6% % error 
  • 26.
  • 27.
    (2) Simpson’s Rule b Area  f  x dx a
  • 28.
    (2) Simpson’s Rule b Area  f  x dx a h  y0  4 yodd  2 yeven  yn  3
  • 29.
    (2) Simpson’s Rule b Area  f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba n n  number of intervals where h 
  • 30.
    (2) Simpson’s Rule b Area  f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba n n  number of intervals where h  e.g. x y 0 2 0.5 1.9365 1 1.7321 1.5 1.3229 2 0
  • 31.
    (2) Simpson’s Rule b Area  f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba n n  number of intervals where h  e.g. x y 0 2 0.5 1.9365 1 1.7321 h Area  y0  4 yodd  2 yeven  yn  3 1.5 1.3229 2 0
  • 32.
    (2) Simpson’s Rule b Area  f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba n n  number of intervals where h  1 e.g. x y 0 2 1 0.5 1.9365 1 1.7321 h Area  y0  4 yodd  2 yeven  yn  3 1.5 1.3229 2 0
  • 33.
    (2) Simpson’s Rule b Area  f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba n n  number of intervals where h  1 e.g. x y 4 0 2 0.5 1.9365 4 1 1.7321 h Area  y0  4 yodd  2 yeven  yn  3 1 1.5 1.3229 2 0
  • 34.
    (2) Simpson’s Rule b Area  f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba n n  number of intervals where h  1 e.g. x y 4 2 4 1 0 2 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 h Area  y0  4 yodd  2 yeven  yn  3
  • 35.
    (2) Simpson’s Rule b Area  f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba n n  number of intervals where h  1 e.g. x y 4 2 4 1 0 2 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 h Area  y0  4 yodd  2 yeven  yn  3 0.5  2  41.9365  1.3229  21.7321  0 3  3.084 units 2
  • 36.
    (2) Simpson’s Rule b Area  f  x dx a h  y0  4 yodd  2 yeven  yn  3 ba n n  number of intervals where h  1 e.g. x y 4 2 4 1 0 2 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 h Area  y0  4 yodd  2 yeven  yn  3 0.5  2  41.9365  1.3229  21.7321  0 3.142  3.084 3 % error  100 3.142  3.084 units 2  1.8%
  • 37.
  • 38.
    Alternative working out!!! (1)Trapezoidal Rule 1 x y 0 2 2 2 2 1 0.5 1.9365 1 1.7321 1.5 1.3229 2 0
  • 39.
    Alternative working out!!! (1)Trapezoidal Rule 1 x y Area  0 2 2 2 2 1 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 2  2 1.9365  1.7321  1.3229   0 1 2  2  2 1  2.996 units 2   2  0
  • 40.
  • 41.
    (2) Simpson’s Rule 1 x y Area 0 2 4 2 4 1 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 2  4 1.9365  1.3229   2 1.7321  0 1 4  2  4 1  3.084 units 2   2  0
  • 42.
    (2) Simpson’s Rule 1 x y Area 0 2 4 2 4 1 0.5 1.9365 1 1.7321 1.5 1.3229 2 0 2  4 1.9365  1.3229   2 1.7321  0 1 4  2  4 1  3.084 units 2 Exercise 11I; odds Exercise 11J; evens   2  0