Absolute Maxima and Minima
Absolute Extrema on Closet Intervals [ a, b ]
4
3

1
3

Find the absolute extrema of f (x) = 6x - 3x
on the interval [ -1, 1 ], and determine where
these values occur.

1
3

f '(x) = 8x - x

-2
3

=x

-2
3

(8x -1)

(8x -1)
f '(x) =
x

f (-1) = 9

2
3

abs. max

f (0) = 0

Points to consider:

æ1ö
9
f ç ÷=è8ø
8

1/8
critical points
0

-1
endpoints of the interval
1

f (1) = 3

abs. min
Absolute Extrema on Infinite Intervals
LIMITS

lim f (x) = +¥ lim f (x) = -¥

x®-¥

x®-¥

lim f (x) = +¥ lim f (x) = -¥

x®+¥

CONCLUSION

GRAPH

abs min
no max

x®+¥

abs max
no min

lim f (x) = -¥ lim f (x) = +¥

x®-¥

x®-¥

lim f (x) = +¥ lim f (x) = -¥

x®+¥

no max
no min

x®+¥

no max
no min
Determine by inspection whether
p(x) = 3x 4 + 4x 3 has any absolute extrema.
If so, find them and state where they occur.

p(-1) = -1
p(0) = 0

lim 3x + 4x = +¥
4

3

x®-¥

lim 3x 4 + 4x 3 = +¥

min
exists

x®+¥

p'(x) =12x 3 +12x 2 = 0
12x 3 +12x 2 = 0

12x ( x +1) = 0
2

cp = -1, 0

·

abs min
Absolute Extrema on Open Intervals
lim f (x) = +¥ lim f (x) = -¥
+

x®a+

lim f (x) = +¥ lim f (x) = -¥
-

LIMITS

x®b-

x®a+
x®b-

CONCLUSION

GRAPH

abs min
no max

x®a
x®b

abs max
no min

lim f (x) = -¥ lim f (x) = +¥
+
x®a

lim f (x) = +¥ lim f (x) = -¥
-

no max
no min

x®b

no max
no min
Determine by inspection whether

p(x) =

1
x2 - x

has any absolute extrema

On the interval ( 0, 1 ). If so, find them and
state where they occur.

1
1
lim 2
= lim
= -¥
+
+
x®0 x - x
x®0 x x -1
( )
1
1
lim 2
= lim
= -¥
x®1 x - x
x®1 x x -1
( )
f '(x) = -

2x -1

(x

2

1
cp = 0, ,1
2

- x)

2

max
exists

f (0) = DNE
æ1ö
f ç ÷ = -4
è2ø
f (1) = DNE

=0

·
How about some
practice?
Find the absolute extrema for the following:

1. f (x) =1+

1
x

( 0,+¥)

2. f (x) = x 3e-2 x

[1, 4]

3. f (x) = sin x - cos x

( 0, p ]

5.4 absolute maxima and minima

  • 1.
  • 3.
    Absolute Extrema onCloset Intervals [ a, b ]
  • 4.
    4 3 1 3 Find the absoluteextrema of f (x) = 6x - 3x on the interval [ -1, 1 ], and determine where these values occur. 1 3 f '(x) = 8x - x -2 3 =x -2 3 (8x -1) (8x -1) f '(x) = x f (-1) = 9 2 3 abs. max f (0) = 0 Points to consider: æ1ö 9 f ç ÷=è8ø 8 1/8 critical points 0 -1 endpoints of the interval 1 f (1) = 3 abs. min
  • 5.
    Absolute Extrema onInfinite Intervals LIMITS lim f (x) = +¥ lim f (x) = -¥ x®-¥ x®-¥ lim f (x) = +¥ lim f (x) = -¥ x®+¥ CONCLUSION GRAPH abs min no max x®+¥ abs max no min lim f (x) = -¥ lim f (x) = +¥ x®-¥ x®-¥ lim f (x) = +¥ lim f (x) = -¥ x®+¥ no max no min x®+¥ no max no min
  • 6.
    Determine by inspectionwhether p(x) = 3x 4 + 4x 3 has any absolute extrema. If so, find them and state where they occur. p(-1) = -1 p(0) = 0 lim 3x + 4x = +¥ 4 3 x®-¥ lim 3x 4 + 4x 3 = +¥ min exists x®+¥ p'(x) =12x 3 +12x 2 = 0 12x 3 +12x 2 = 0 12x ( x +1) = 0 2 cp = -1, 0 · abs min
  • 7.
    Absolute Extrema onOpen Intervals lim f (x) = +¥ lim f (x) = -¥ + x®a+ lim f (x) = +¥ lim f (x) = -¥ - LIMITS x®b- x®a+ x®b- CONCLUSION GRAPH abs min no max x®a x®b abs max no min lim f (x) = -¥ lim f (x) = +¥ + x®a lim f (x) = +¥ lim f (x) = -¥ - no max no min x®b no max no min
  • 8.
    Determine by inspectionwhether p(x) = 1 x2 - x has any absolute extrema On the interval ( 0, 1 ). If so, find them and state where they occur. 1 1 lim 2 = lim = -¥ + + x®0 x - x x®0 x x -1 ( ) 1 1 lim 2 = lim = -¥ x®1 x - x x®1 x x -1 ( ) f '(x) = - 2x -1 (x 2 1 cp = 0, ,1 2 - x) 2 max exists f (0) = DNE æ1ö f ç ÷ = -4 è2ø f (1) = DNE =0 ·
  • 9.
    How about some practice? Findthe absolute extrema for the following: 1. f (x) =1+ 1 x ( 0,+¥) 2. f (x) = x 3e-2 x [1, 4] 3. f (x) = sin x - cos x ( 0, p ]