SlideShare a Scribd company logo
Local Linear Approximation
The equation of the tangent line to the graph of the function f(x)
at the point x0 is y − f (x0 ) = f ′(x0 ) (x − x0 )

f(x)
f(x0) + f ′(x0 ) (x − x0 )
f(x0)

P(x0, f(x0))

x0
f(x)
f(x0) + f ′(x0 ) (x − x0 )
x0

x

If x is close to x0, then the value of the function f(x) at x (the
height of the original curve at x), is very close to the value of the
function f(x0) + f ′(x0 ) (x − x0 ) at x, (the height that the tangent
line to f at x0 achieves at the point x).
( ) ( )(

)

The function f x0 + f ′ x0 x − x0 is called the local linear
approximation to f at x0. This function is a good approximation
to f(x) if x is close to x0, and the closer the two points are, the
better the approximation becomes.
Example. Find the local linear approximation to the function
y = x3 at x0 = 1.
Solution.

( )

2
If f (x) = x3, then f ′(x ) = 3 x0 . Therefore,
0
2
x3 ≈ x 3 + 3 x0 x − x0 . If x0 = 1, then
0
x3 ≈1+ 3 x −1 = 3x − 2 for x close to 1.

( )(
( )

)
3x - 2

x3

(1.01)3 =1.0303

3(1.01) −2 =1.03

(1.004)3 =1.01204

3(1.004) −2 =1.012

(0.997)3 =.991027

3(.997) − 2 = .991
Example. Find the local linear approximation to the function
1
y = at x0 = 2
x
Solution.
If f (x) = 1 , then f ′(x ) = −1 . Therefore,
0
2
x
( x0 )

(

)

1 ≈ 1 − 1 x − x . If x = 2, then
0
0
x x0 x 2
( 0)

(

)

1 ≈ 1 −1 x − 2 =1− x for x close to 2.
x 2 4
4
1/x
1-x/4
1 =.4995
2.002

1− 2.002 =.4995
4

1 =.55075
1.997

1−1.997 =.55075
4
In practice, we use the idea of local linear
approximation in the following way.
1. We are given some value to calculate, say f(x), and the
calculation is difficult.
2. We see that there is a nearby point x0 where the
calculation of both f(x0) and f(x0)′ is relatively easy.
3. We approximate f(x) by f(x0)+ f(x0)′ (x − x0)
Example.Use local linear approximations to approximate the
quantity(1.98)3
Solution.
(a) A nearby point where the function x3 and its derivative are
easily evaluated is x0 = 2.
Near x0 = 2, the function x3 is approximated by the function

( ) ( )(

)

x0 3 + 3 x 0 2 x − x0 =8 +12( x − 2) =12x −16
Thus (1.98)3 is approximately 12(1.98) − 16 = 7.76
The true value is 7.762392.
Example.Use local linear approximations to approximate the
quantity 80.9
Solution.
(a) A nearby point where the function x and its derivative are
easily evaluated is 81.
Near x0 = 81, the function x is approximated by the function

(

)

x0 + 1 x − x0 = 9 + 1 ( x −81) = 9 + x
18
2 18
2 x0
Thus 80.9 is approximately 9 + 80.9 = 8.994444444
2 18
The true value is 8.994442729.
Example.Use local linear approximations to approximate the
quantity sin(.1) (.1 radians is about 5.7 degrees)
Solution.
(a) A nearby point where the function and its derivative are
easily evaluated is 0.
Near x0 = 0, the function sin(x) is approximated by the function

(

)

sin(x ) + cos(x ) x − x0 = 0 +1( x −0) = x
0
0
Thus sin(.1) is approximately 0.1.
The true value is .099833.
Approximating Changes - Differentials
The second use of the derivative is to approximate small
changes in a function. Start at a point x and move a small
distance given by the independent variable ∆x. Then define ∆y
to be the corresponding change in the value of y = f(x). We see
that ∆y = f(x + ∆x) – f(x).
y + ∆y = f(x +∆x)
∆y
y = f(x)
x + ∆x

x
∆x
Now let us move away from x another small distance given
by the independent variable dx, and define the dependent
variable dy to be the corresponding change of the height of
the tangent line at x. Then dy = f′(x)dx

dy
f(x)

x

x + dx
dx
Definition. Let dx be an arbitrary variable, and define dy to
dy .
be f ′(x)dx. Then the ratio of dy to dx is the derivative
dx
dx and dy are called differentials.
If we set dx = ∆x and combine the two diagrams, we see that dy
is a good approximation to ∆y when ∆x is small.
y + ∆y = f(x + ∆x)

y = f(x)

∆y
dy
y = f(x)

x + ∆x

x
dx = ∆x
Example. Find an expression for dy for each of the following
functions:
(a) f(x) = x4

(b) f ( x) = x

(c) f(x) = sin(x)

Solution.
(a) dy = d[x4] = (4 x3)dx
(c ) dy = d[sin(x)] = cos(x)dx

(b) dy = d[ x ] =  1  dx
2 x 



Example. (a) Find the differential dy if y = x−17
(b) What is dy when x = 1?
Solution. (a) dy = (−17)x−18dx

(b) dy = (−17)dx
Example. Let

y = 2 + 2x

let x = 2, and let dx = ∆x = 0.1. Compute dy and ∆y.

Solution.

(

∆y = f ( x +∆x) − f (x) = f (2.1) − f (2)

)(

)

= 2 + 4.2 − 2 + 4 ≈ 4.049 − 4 =.049
On the other hand
dy = f ′( x)dx = 1 dx = 1 (.1) =.05
2
2x
Example. Let y = x 2 +8 . Use dy to approximate ∆y when
x changes from 1 to 0.97
Solution. Here x0 = 1, and dx = ∆x is 0.97 –1 = – 0.03.
 x2 +8 ′
 2 ′
 dx = 2 x dx = x dx


dy =  x + 8  dx = 


2 x 2 +8
2 x 2 +8
x 2 +8

At x = 1, we have

dy = 1 dx = 1(−.03) =−.01
3
3

[The true value of ∆y is (.97)2 +8 − 9 =−.009866
Example. Let y = x 8x +1 . Use dy to approximate ∆y when
x changes from 3 to 3.05
Solution. Here x = 3, and dx = ∆x is 3.05 –3 = 0.05.

′
4x 
 8


dy =  x 8x +1  dx =  8x +1 + x
dx =  8x +1 +

 dx


8x +1 
 2 8x +1 


12 

At x = 3, we have dy = 25 +
dx = 37 (.05) =.37

25 
5


The true value of ∆y is
3.05 8(3.05) +1− 3 25 =15.372 −15 =.372
Example. A metal rod 15 cm. Long and 5 cm. in diameter is to
be covered (except for the ends) with insulation that is
0.001 cm thick. Use differentials to estimate the volume of
insulation needed.
Solution. Let V be the volume of the rod, R the radius, and L
the length.
Then V =π R2L. Thus dV = 2π RLdR
We estimate the volume of insulation to be the change in the
volume of the cylinder when its radius changes from 2.5 cm.
to 2.501 cm., that is dR = .001 cm.
Then dV = 2π RLdR = 2π (2.5)(15)(.001) ≅ 0.236cm3
Estimating Errors in Computations
Suppose that some quantity x is measured in an experiment.
There is always the possibility that the measurement is in
error to some extent, and the maximum amount of such error
is often specified in the literature that accompanies the
measuring device or program.
Frequently a computation is performed on the measured
value x, producing the result f(x). The question is:
What is the maximum error present in the computed
quantity f(x)?
Suppose that the maximum error in a measurement x is known to
be ∆x. We reason as follows:
Suppose that the true value of the quantity measured is x0. Then
the distance between x and x0 is no more than ∆x, and therefore
the maximum error in the computed value f(x) is estimated by
f(x0) − f(x) = f(x + ∆x) − f(x) = ∆y. We approximate this by dy.

In general we know the magnitude of the maximum
measurement error, but not the sign. Thus we use the symbol ±
in front of errors.
Sometimes, instead of estimating the absolute error, we are more
interested in the relative errors
dx and dy = d [ f (x )]
y
f ( x)
x
If these are multiplied by 100 to express them as percents, we
call them the percentage errors.If we are given the maximum
percentage error of the measurement, then we want to estimate
the maximum percentage error in the computed result.
Example. The side of a cube is measured to be 25 cm. With a
possible error of ± 1 cm.
(a) Use differentials to estimate the error in the calculated
volume.
(b) Estimate the percentage errors in the side and volume.
Example. The side of a cube is measured to be 25 cm. With a
possible error of ± 1 cm.
(a) Use differentials to estimate the error in the calculated
volume.
(b) Estimate the percentage errors in the side and volume.
Solution. (a) Let s stand for the length of the side of the cube,
and V stand for the volume. Then we know that

V = s3
It follows that dV = 3s2ds. The measured value of s is 25,
and we are given that the maximum value of ds is ± 1.
Thus
dV = 3(25)2 (±1) =±1875cm3.
Solution. (b) The relative error in measurement is
ds = ±1 =±.04
s 25

which is ± 4 percent.

The relative error in the computed volume is therefore
dV = 3s 2 ds = 3ds = 3(± .04) =±.12 Or 12 percent.
V
s
s3
Example. The electrical resistance of a certain wire is given by
R= k
r2
Where k is a constant and r is the radius of the wire. Assuming
that the listed radius r has a possible percentage error of
±5%, use differentials to estimate the percentage error in R
(assume k to be exact.)
Solution. dR = −2k dr
r3
Since

dR = r 2 × −2k dr =−2dr
so
R k r3
r

dr
dR
is ±5%,
is ±10%.
r
R
Example. The area of a circle is computed from the measured
value of its diameter. Estimate the maximum permissable
percentage error in the measurement, if the percentage
error in the area must be kept within ±1%.
π D 2 . Thus dA = π D dD
Solution. A =π R2 =
4
2
so dA = 4 ×π D dD = 2 dD
A π D2 2
D

If dA is to be less than or equal to ±1%, it follows that the
A
maximum value for dD is ±.5%.
D

More Related Content

What's hot

Arc length, area of a sector and segments of a circle
Arc length, area of a sector and segments of a circleArc length, area of a sector and segments of a circle
Arc length, area of a sector and segments of a circle
Joey Valdriz
 
Function Operations
Function OperationsFunction Operations
Function Operationsswartzje
 
Relations and functions
Relations and functionsRelations and functions
Relations and functions
cannout
 
Dividing polynomials
Dividing polynomialsDividing polynomials
Dividing polynomials
salvie alvaro
 
Function transformations
Function transformationsFunction transformations
Function transformationsTerry Gastauer
 
Domain and range (linear, quadratic, rational functions)
Domain and range (linear, quadratic, rational functions)Domain and range (linear, quadratic, rational functions)
Domain and range (linear, quadratic, rational functions)
Rose Mary Tania Arini
 
Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor
Mohd. Noor Abdul Hamid
 
3.5 Rational Functions
3.5 Rational Functions3.5 Rational Functions
3.5 Rational Functions
smiller5
 
Zeros of p(x)
Zeros of p(x)Zeros of p(x)
3 2 Polynomial Functions And Their Graphs
3 2 Polynomial Functions And Their Graphs3 2 Polynomial Functions And Their Graphs
3 2 Polynomial Functions And Their Graphssilvia
 
Exponential functions
Exponential functionsExponential functions
Exponential functions
omar_egypt
 
Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3Ron Eick
 
Dividing Polynomials Slide Share
Dividing Polynomials Slide ShareDividing Polynomials Slide Share
Dividing Polynomials Slide Share
Kristen T
 
3.5 extrema and the second derivative
3.5 extrema and the second derivative3.5 extrema and the second derivative
3.5 extrema and the second derivativemath265
 
Math presentation on domain and range
Math presentation on domain and rangeMath presentation on domain and range
Math presentation on domain and range
Touhidul Shawan
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite IntegralSilvius
 
4.2 more derivatives as rates
4.2 more derivatives as rates4.2 more derivatives as rates
4.2 more derivatives as ratesmath265
 
1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1math265
 
5.1 anti derivatives
5.1 anti derivatives5.1 anti derivatives
5.1 anti derivativesmath265
 

What's hot (20)

Arc length, area of a sector and segments of a circle
Arc length, area of a sector and segments of a circleArc length, area of a sector and segments of a circle
Arc length, area of a sector and segments of a circle
 
Function Operations
Function OperationsFunction Operations
Function Operations
 
Relations and functions
Relations and functionsRelations and functions
Relations and functions
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
Dividing polynomials
Dividing polynomialsDividing polynomials
Dividing polynomials
 
Function transformations
Function transformationsFunction transformations
Function transformations
 
Domain and range (linear, quadratic, rational functions)
Domain and range (linear, quadratic, rational functions)Domain and range (linear, quadratic, rational functions)
Domain and range (linear, quadratic, rational functions)
 
Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor
 
3.5 Rational Functions
3.5 Rational Functions3.5 Rational Functions
3.5 Rational Functions
 
Zeros of p(x)
Zeros of p(x)Zeros of p(x)
Zeros of p(x)
 
3 2 Polynomial Functions And Their Graphs
3 2 Polynomial Functions And Their Graphs3 2 Polynomial Functions And Their Graphs
3 2 Polynomial Functions And Their Graphs
 
Exponential functions
Exponential functionsExponential functions
Exponential functions
 
Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3
 
Dividing Polynomials Slide Share
Dividing Polynomials Slide ShareDividing Polynomials Slide Share
Dividing Polynomials Slide Share
 
3.5 extrema and the second derivative
3.5 extrema and the second derivative3.5 extrema and the second derivative
3.5 extrema and the second derivative
 
Math presentation on domain and range
Math presentation on domain and rangeMath presentation on domain and range
Math presentation on domain and range
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
 
4.2 more derivatives as rates
4.2 more derivatives as rates4.2 more derivatives as rates
4.2 more derivatives as rates
 
1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1
 
5.1 anti derivatives
5.1 anti derivatives5.1 anti derivatives
5.1 anti derivatives
 

Viewers also liked

Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integration
Tarun Gehlot
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theory
Tarun Gehlot
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
Tarun Gehlot
 
Graphing inverse functions
Graphing inverse functionsGraphing inverse functions
Graphing inverse functions
Tarun Gehlot
 
Lesson 13: Linear Approximation
Lesson 13: Linear ApproximationLesson 13: Linear Approximation
Lesson 13: Linear Approximation
Matthew Leingang
 
Top 5 pontoon boat reviews 2017
Top 5 pontoon boat reviews 2017Top 5 pontoon boat reviews 2017
Top 5 pontoon boat reviews 2017
Rose L. Rayner
 
YOGA ASANA (RAJEEV TYAGI)
YOGA ASANA (RAJEEV TYAGI)YOGA ASANA (RAJEEV TYAGI)
YOGA ASANA (RAJEEV TYAGI)
Yashika Gupta
 
사설토토 사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토
사설토토 사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토사설토토 사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토
사설토토 사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토
dsefdtgfgrsdgrdfh
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentials
Tarun Gehlot
 
Proving quads are parralelograms
Proving quads are parralelogramsProving quads are parralelograms
Proving quads are parralelogramsjbianco9910
 
3002 a more with parrallel lines and anglesupdated 10 22-13
3002 a  more with parrallel lines and anglesupdated 10 22-133002 a  more with parrallel lines and anglesupdated 10 22-13
3002 a more with parrallel lines and anglesupdated 10 22-13jbianco9910
 
Olivia’s math problem2
Olivia’s math problem2Olivia’s math problem2
Olivia’s math problem2
jbianco9910
 
사설토토 사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토
사설토토 사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토사설토토 사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토
사설토토 사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토
dsefdtgfgrsdgrdfh
 
사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토
사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토
사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토
dsefdtgfgrsdgrdfh
 
Maths activity
Maths activity Maths activity
Maths activity
gilem488
 
Oliviamath problem
Oliviamath problemOliviamath problem
Oliviamath problem
jbianco9910
 
Effectiveness of an innovative mHealth intervention to improve coverage of pr...
Effectiveness of an innovative mHealth intervention to improve coverage of pr...Effectiveness of an innovative mHealth intervention to improve coverage of pr...
Effectiveness of an innovative mHealth intervention to improve coverage of pr...
POSHAN
 
ExpoPrint Latin America 2018: The Largest Printing Event in Latin America
ExpoPrint Latin America 2018:  The Largest Printing Event in Latin AmericaExpoPrint Latin America 2018:  The Largest Printing Event in Latin America
ExpoPrint Latin America 2018: The Largest Printing Event in Latin America
Depo Consulting
 
YOGA asana by TARUN SHARMA
YOGA asana by TARUN SHARMAYOGA asana by TARUN SHARMA
YOGA asana by TARUN SHARMA
RAJAT KUMAR
 
Math project
Math projectMath project
Math project
jnguyen20
 

Viewers also liked (20)

Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integration
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theory
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
 
Graphing inverse functions
Graphing inverse functionsGraphing inverse functions
Graphing inverse functions
 
Lesson 13: Linear Approximation
Lesson 13: Linear ApproximationLesson 13: Linear Approximation
Lesson 13: Linear Approximation
 
Top 5 pontoon boat reviews 2017
Top 5 pontoon boat reviews 2017Top 5 pontoon boat reviews 2017
Top 5 pontoon boat reviews 2017
 
YOGA ASANA (RAJEEV TYAGI)
YOGA ASANA (RAJEEV TYAGI)YOGA ASANA (RAJEEV TYAGI)
YOGA ASANA (RAJEEV TYAGI)
 
사설토토 사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토
사설토토 사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토사설토토 사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토
사설토토 사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentials
 
Proving quads are parralelograms
Proving quads are parralelogramsProving quads are parralelograms
Proving quads are parralelograms
 
3002 a more with parrallel lines and anglesupdated 10 22-13
3002 a  more with parrallel lines and anglesupdated 10 22-133002 a  more with parrallel lines and anglesupdated 10 22-13
3002 a more with parrallel lines and anglesupdated 10 22-13
 
Olivia’s math problem2
Olivia’s math problem2Olivia’s math problem2
Olivia’s math problem2
 
사설토토 사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토
사설토토 사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토사설토토 사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토
사설토토 사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토
 
사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토
사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토
사설토토 <&&>∃‰∩kid85⊇∬△ <&&>사설토토 사설토토
 
Maths activity
Maths activity Maths activity
Maths activity
 
Oliviamath problem
Oliviamath problemOliviamath problem
Oliviamath problem
 
Effectiveness of an innovative mHealth intervention to improve coverage of pr...
Effectiveness of an innovative mHealth intervention to improve coverage of pr...Effectiveness of an innovative mHealth intervention to improve coverage of pr...
Effectiveness of an innovative mHealth intervention to improve coverage of pr...
 
ExpoPrint Latin America 2018: The Largest Printing Event in Latin America
ExpoPrint Latin America 2018:  The Largest Printing Event in Latin AmericaExpoPrint Latin America 2018:  The Largest Printing Event in Latin America
ExpoPrint Latin America 2018: The Largest Printing Event in Latin America
 
YOGA asana by TARUN SHARMA
YOGA asana by TARUN SHARMAYOGA asana by TARUN SHARMA
YOGA asana by TARUN SHARMA
 
Math project
Math projectMath project
Math project
 

Similar to Local linear approximation

Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
OlooPundit
 
Calculus Assignment Help
Calculus Assignment HelpCalculus Assignment Help
Calculus Assignment Help
Maths Assignment Help
 
Calculus Homework Help
Calculus Homework HelpCalculus Homework Help
Calculus Homework Help
Math Homework Solver
 
8.further calculus Further Mathematics Zimbabwe Zimsec Cambridge
8.further calculus   Further Mathematics Zimbabwe Zimsec Cambridge8.further calculus   Further Mathematics Zimbabwe Zimsec Cambridge
8.further calculus Further Mathematics Zimbabwe Zimsec Cambridge
alproelearning
 
Differential Calculus
Differential Calculus Differential Calculus
Differential Calculus
OlooPundit
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Mel Anthony Pepito
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Matthew Leingang
 
limits and continuity
limits and continuitylimits and continuity
limits and continuityElias Dinsa
 
Continuity and Uniform Continuity
Continuity and Uniform ContinuityContinuity and Uniform Continuity
Continuity and Uniform Continuity
DEVTYPE
 
Roots equations
Roots equationsRoots equations
Roots equationsoscar
 
Roots equations
Roots equationsRoots equations
Roots equationsoscar
 
1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio
NoorYassinHJamel
 
25 surface area
25 surface area25 surface area
25 surface areamath267
 
DIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxDIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptx
OchiriaEliasonyait
 
Quadrature
QuadratureQuadrature
Quadrature
Linh Tran
 

Similar to Local linear approximation (20)

Calc 3.9a
Calc 3.9aCalc 3.9a
Calc 3.9a
 
Calc 3.9a
Calc 3.9aCalc 3.9a
Calc 3.9a
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
Calculus Assignment Help
Calculus Assignment HelpCalculus Assignment Help
Calculus Assignment Help
 
Calculus Homework Help
Calculus Homework HelpCalculus Homework Help
Calculus Homework Help
 
8.further calculus Further Mathematics Zimbabwe Zimsec Cambridge
8.further calculus   Further Mathematics Zimbabwe Zimsec Cambridge8.further calculus   Further Mathematics Zimbabwe Zimsec Cambridge
8.further calculus Further Mathematics Zimbabwe Zimsec Cambridge
 
Differential Calculus
Differential Calculus Differential Calculus
Differential Calculus
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
limits and continuity
limits and continuitylimits and continuity
limits and continuity
 
Continuity and Uniform Continuity
Continuity and Uniform ContinuityContinuity and Uniform Continuity
Continuity and Uniform Continuity
 
Roots equations
Roots equationsRoots equations
Roots equations
 
Roots equations
Roots equationsRoots equations
Roots equations
 
1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio
 
Analysis Solutions CVI
Analysis Solutions CVIAnalysis Solutions CVI
Analysis Solutions CVI
 
25 surface area
25 surface area25 surface area
25 surface area
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
DIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxDIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptx
 
Quadrature
QuadratureQuadrature
Quadrature
 

More from Tarun Gehlot

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228
Tarun Gehlot
 
Binary relations
Binary relationsBinary relations
Binary relations
Tarun Gehlot
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behavior
Tarun Gehlot
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)
Tarun Gehlot
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error method
Tarun Gehlot
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
Tarun Gehlot
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
Tarun Gehlot
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
Tarun Gehlot
 
Matlab commands
Matlab commandsMatlab commands
Matlab commands
Tarun Gehlot
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
Tarun Gehlot
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
Tarun Gehlot
 
Propeties of-triangles
Propeties of-trianglesPropeties of-triangles
Propeties of-triangles
Tarun Gehlot
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
Tarun Gehlot
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theory
Tarun Gehlot
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
Tarun Gehlot
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functions
Tarun Gehlot
 
Dependent v. independent variables
Dependent v. independent variablesDependent v. independent variables
Dependent v. independent variables
Tarun Gehlot
 
Intervals of validity
Intervals of validityIntervals of validity
Intervals of validity
Tarun Gehlot
 
Modelling with first order differential equations
Modelling with first order differential equationsModelling with first order differential equations
Modelling with first order differential equations
Tarun Gehlot
 
Review taylor series
Review taylor seriesReview taylor series
Review taylor series
Tarun Gehlot
 

More from Tarun Gehlot (20)

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228
 
Binary relations
Binary relationsBinary relations
Binary relations
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behavior
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error method
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
 
Matlab commands
Matlab commandsMatlab commands
Matlab commands
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
 
Propeties of-triangles
Propeties of-trianglesPropeties of-triangles
Propeties of-triangles
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theory
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functions
 
Dependent v. independent variables
Dependent v. independent variablesDependent v. independent variables
Dependent v. independent variables
 
Intervals of validity
Intervals of validityIntervals of validity
Intervals of validity
 
Modelling with first order differential equations
Modelling with first order differential equationsModelling with first order differential equations
Modelling with first order differential equations
 
Review taylor series
Review taylor seriesReview taylor series
Review taylor series
 

Recently uploaded

UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
Alan Dix
 
ODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User Group
CatarinaPereira64715
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
Ralf Eggert
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Ramesh Iyer
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
Product School
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
Product School
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
Abida Shariff
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
Search and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical FuturesSearch and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical Futures
Bhaskar Mitra
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 

Recently uploaded (20)

UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
 
ODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User Group
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
Search and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical FuturesSearch and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical Futures
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 

Local linear approximation

  • 1. Local Linear Approximation The equation of the tangent line to the graph of the function f(x) at the point x0 is y − f (x0 ) = f ′(x0 ) (x − x0 ) f(x) f(x0) + f ′(x0 ) (x − x0 ) f(x0) P(x0, f(x0)) x0
  • 2. f(x) f(x0) + f ′(x0 ) (x − x0 ) x0 x If x is close to x0, then the value of the function f(x) at x (the height of the original curve at x), is very close to the value of the function f(x0) + f ′(x0 ) (x − x0 ) at x, (the height that the tangent line to f at x0 achieves at the point x).
  • 3. ( ) ( )( ) The function f x0 + f ′ x0 x − x0 is called the local linear approximation to f at x0. This function is a good approximation to f(x) if x is close to x0, and the closer the two points are, the better the approximation becomes. Example. Find the local linear approximation to the function y = x3 at x0 = 1. Solution. ( ) 2 If f (x) = x3, then f ′(x ) = 3 x0 . Therefore, 0 2 x3 ≈ x 3 + 3 x0 x − x0 . If x0 = 1, then 0 x3 ≈1+ 3 x −1 = 3x − 2 for x close to 1. ( )( ( ) )
  • 4. 3x - 2 x3 (1.01)3 =1.0303 3(1.01) −2 =1.03 (1.004)3 =1.01204 3(1.004) −2 =1.012 (0.997)3 =.991027 3(.997) − 2 = .991
  • 5. Example. Find the local linear approximation to the function 1 y = at x0 = 2 x Solution. If f (x) = 1 , then f ′(x ) = −1 . Therefore, 0 2 x ( x0 ) ( ) 1 ≈ 1 − 1 x − x . If x = 2, then 0 0 x x0 x 2 ( 0) ( ) 1 ≈ 1 −1 x − 2 =1− x for x close to 2. x 2 4 4
  • 6. 1/x 1-x/4 1 =.4995 2.002 1− 2.002 =.4995 4 1 =.55075 1.997 1−1.997 =.55075 4
  • 7. In practice, we use the idea of local linear approximation in the following way. 1. We are given some value to calculate, say f(x), and the calculation is difficult. 2. We see that there is a nearby point x0 where the calculation of both f(x0) and f(x0)′ is relatively easy. 3. We approximate f(x) by f(x0)+ f(x0)′ (x − x0)
  • 8. Example.Use local linear approximations to approximate the quantity(1.98)3 Solution. (a) A nearby point where the function x3 and its derivative are easily evaluated is x0 = 2. Near x0 = 2, the function x3 is approximated by the function ( ) ( )( ) x0 3 + 3 x 0 2 x − x0 =8 +12( x − 2) =12x −16 Thus (1.98)3 is approximately 12(1.98) − 16 = 7.76 The true value is 7.762392.
  • 9. Example.Use local linear approximations to approximate the quantity 80.9 Solution. (a) A nearby point where the function x and its derivative are easily evaluated is 81. Near x0 = 81, the function x is approximated by the function ( ) x0 + 1 x − x0 = 9 + 1 ( x −81) = 9 + x 18 2 18 2 x0 Thus 80.9 is approximately 9 + 80.9 = 8.994444444 2 18 The true value is 8.994442729.
  • 10. Example.Use local linear approximations to approximate the quantity sin(.1) (.1 radians is about 5.7 degrees) Solution. (a) A nearby point where the function and its derivative are easily evaluated is 0. Near x0 = 0, the function sin(x) is approximated by the function ( ) sin(x ) + cos(x ) x − x0 = 0 +1( x −0) = x 0 0 Thus sin(.1) is approximately 0.1. The true value is .099833.
  • 11. Approximating Changes - Differentials The second use of the derivative is to approximate small changes in a function. Start at a point x and move a small distance given by the independent variable ∆x. Then define ∆y to be the corresponding change in the value of y = f(x). We see that ∆y = f(x + ∆x) – f(x). y + ∆y = f(x +∆x) ∆y y = f(x) x + ∆x x ∆x
  • 12. Now let us move away from x another small distance given by the independent variable dx, and define the dependent variable dy to be the corresponding change of the height of the tangent line at x. Then dy = f′(x)dx dy f(x) x x + dx dx
  • 13. Definition. Let dx be an arbitrary variable, and define dy to dy . be f ′(x)dx. Then the ratio of dy to dx is the derivative dx dx and dy are called differentials. If we set dx = ∆x and combine the two diagrams, we see that dy is a good approximation to ∆y when ∆x is small.
  • 14. y + ∆y = f(x + ∆x) y = f(x) ∆y dy y = f(x) x + ∆x x dx = ∆x
  • 15. Example. Find an expression for dy for each of the following functions: (a) f(x) = x4 (b) f ( x) = x (c) f(x) = sin(x) Solution. (a) dy = d[x4] = (4 x3)dx (c ) dy = d[sin(x)] = cos(x)dx (b) dy = d[ x ] =  1  dx 2 x    Example. (a) Find the differential dy if y = x−17 (b) What is dy when x = 1? Solution. (a) dy = (−17)x−18dx (b) dy = (−17)dx
  • 16. Example. Let y = 2 + 2x let x = 2, and let dx = ∆x = 0.1. Compute dy and ∆y. Solution. ( ∆y = f ( x +∆x) − f (x) = f (2.1) − f (2) )( ) = 2 + 4.2 − 2 + 4 ≈ 4.049 − 4 =.049 On the other hand dy = f ′( x)dx = 1 dx = 1 (.1) =.05 2 2x
  • 17. Example. Let y = x 2 +8 . Use dy to approximate ∆y when x changes from 1 to 0.97 Solution. Here x0 = 1, and dx = ∆x is 0.97 –1 = – 0.03.  x2 +8 ′  2 ′  dx = 2 x dx = x dx   dy =  x + 8  dx =    2 x 2 +8 2 x 2 +8 x 2 +8 At x = 1, we have dy = 1 dx = 1(−.03) =−.01 3 3 [The true value of ∆y is (.97)2 +8 − 9 =−.009866
  • 18. Example. Let y = x 8x +1 . Use dy to approximate ∆y when x changes from 3 to 3.05 Solution. Here x = 3, and dx = ∆x is 3.05 –3 = 0.05.  ′ 4x   8   dy =  x 8x +1  dx =  8x +1 + x dx =  8x +1 +   dx   8x +1   2 8x +1    12   At x = 3, we have dy = 25 + dx = 37 (.05) =.37  25  5   The true value of ∆y is 3.05 8(3.05) +1− 3 25 =15.372 −15 =.372
  • 19. Example. A metal rod 15 cm. Long and 5 cm. in diameter is to be covered (except for the ends) with insulation that is 0.001 cm thick. Use differentials to estimate the volume of insulation needed. Solution. Let V be the volume of the rod, R the radius, and L the length. Then V =π R2L. Thus dV = 2π RLdR We estimate the volume of insulation to be the change in the volume of the cylinder when its radius changes from 2.5 cm. to 2.501 cm., that is dR = .001 cm. Then dV = 2π RLdR = 2π (2.5)(15)(.001) ≅ 0.236cm3
  • 20. Estimating Errors in Computations Suppose that some quantity x is measured in an experiment. There is always the possibility that the measurement is in error to some extent, and the maximum amount of such error is often specified in the literature that accompanies the measuring device or program. Frequently a computation is performed on the measured value x, producing the result f(x). The question is: What is the maximum error present in the computed quantity f(x)?
  • 21. Suppose that the maximum error in a measurement x is known to be ∆x. We reason as follows: Suppose that the true value of the quantity measured is x0. Then the distance between x and x0 is no more than ∆x, and therefore the maximum error in the computed value f(x) is estimated by f(x0) − f(x) = f(x + ∆x) − f(x) = ∆y. We approximate this by dy. In general we know the magnitude of the maximum measurement error, but not the sign. Thus we use the symbol ± in front of errors.
  • 22. Sometimes, instead of estimating the absolute error, we are more interested in the relative errors dx and dy = d [ f (x )] y f ( x) x If these are multiplied by 100 to express them as percents, we call them the percentage errors.If we are given the maximum percentage error of the measurement, then we want to estimate the maximum percentage error in the computed result.
  • 23. Example. The side of a cube is measured to be 25 cm. With a possible error of ± 1 cm. (a) Use differentials to estimate the error in the calculated volume. (b) Estimate the percentage errors in the side and volume.
  • 24. Example. The side of a cube is measured to be 25 cm. With a possible error of ± 1 cm. (a) Use differentials to estimate the error in the calculated volume. (b) Estimate the percentage errors in the side and volume. Solution. (a) Let s stand for the length of the side of the cube, and V stand for the volume. Then we know that V = s3 It follows that dV = 3s2ds. The measured value of s is 25, and we are given that the maximum value of ds is ± 1. Thus dV = 3(25)2 (±1) =±1875cm3.
  • 25. Solution. (b) The relative error in measurement is ds = ±1 =±.04 s 25 which is ± 4 percent. The relative error in the computed volume is therefore dV = 3s 2 ds = 3ds = 3(± .04) =±.12 Or 12 percent. V s s3
  • 26. Example. The electrical resistance of a certain wire is given by R= k r2 Where k is a constant and r is the radius of the wire. Assuming that the listed radius r has a possible percentage error of ±5%, use differentials to estimate the percentage error in R (assume k to be exact.) Solution. dR = −2k dr r3 Since dR = r 2 × −2k dr =−2dr so R k r3 r dr dR is ±5%, is ±10%. r R
  • 27. Example. The area of a circle is computed from the measured value of its diameter. Estimate the maximum permissable percentage error in the measurement, if the percentage error in the area must be kept within ±1%. π D 2 . Thus dA = π D dD Solution. A =π R2 = 4 2 so dA = 4 ×π D dD = 2 dD A π D2 2 D If dA is to be less than or equal to ±1%, it follows that the A maximum value for dD is ±.5%. D