There are several numerical methods described for approximating derivatives and integrals:
1) Forward difference formula approximates the derivative as the slope of the secant line through two nearby points.
2) Three-point formulas approximate the derivative using the slopes of secant lines through three evenly spaced points, reducing the error term to O(h^2).
3) Trapezoidal rule approximates the integral of a function as the area of trapezoids formed between the function graph and the x-axis at evenly spaced points, with error term O(h^2).
Focus on numerical differentiation formulas like forward difference and Lagrange interpolating polynomial while estimating derivatives and their accuracy.
Shows Taylor series expansion and how to estimate errors in derivative calculations using forward, first, and second three-point formulas.
Provides examples on calculating derivatives using forward difference and three-point formulas, including error comparisons with exact values.
Describes numerical integration methods, the concept of area under the curve, and the challenges when exact functions are unknown.
Introduces trapezoidal rule for numerical integration; it approximates area with trapezoids by averaging function values at interval endpoints.
Details Simpson's rule for numerical integration, techniques for applying it over multiple intervals, and example calculations for sin(x) using integration. Explains composite Riemann sum, trapezoidal rule, and Simpson's rule for improving integration accuracy over specified intervals.
NUMERICAL DIFFERENTIATION
The derivativeof f (x) at x0 is:
f ′( x 0 ) =
Limit
h→ 0
f ( x0 + h) − f ( x0 )
h
An approximation to this is:
f ( x0 + h) − f ( x0 )
f ′( x 0 ) ≈
h
for small values of h.
Forward Difference
Formula
3.
Let f (x ) = ln x and x0 = 1.8
Find an approximate value for f ′(1.8)
h
f (1.8)
f (1.8 + h)
0.1 0.5877867 0.6418539
f (1.8 + h) − f (1.8)
h
0.5406720
0.01 0.5877867 0.5933268
0.5540100
0.001 0.5877867 0.5883421
0.5554000
The exact value of
f ′(1.8) = 0.55 5
4.
Assume that afunction goes through three points:
( x0 , f ( x0 ) ) , ( x1 , f ( x1 ) ) and ( x2 , f ( x2 ) ) .
f ( x) ≈ P( x)
P ( x ) = L0 ( x ) f ( x0 ) + L1 ( x ) f ( x1 ) + L2 ( x ) f ( x2 )
Lagrange Interpolating Polynomial
5.
P ( x) = L0 ( x ) f ( x0 ) + L1 ( x ) f ( x1 ) + L2 ( x ) f ( x 2 )
( x − x1 )( x − x2 )
P( x) =
f ( x0 )
( x0 − x1 )( x0 − x2 )
( x − x0 )( x − x2 )
+
f ( x1 )
( x1 − x0 )( x1 − x2 )
( x − x0 )( x − x1 )
+
f ( x2 )
( x2 − x0 )( x2 − x1 )
6.
f ′( x) ≈ P ′( x )
2 x − x1 − x2
P ′( x ) =
f ( x0 )
( x0 − x1 )( x0 − x2 )
2 x − x0 − x2
+
f ( x1 )
( x1 − x0 )( x1 − x2 )
2 x − x0 − x1
+
f ( x2 )
( x2 − x0 )( x2 − x1 )
− 3h
− 2h
−h
P′( x 0 ) =
f ( x0 ) +
f ( x1 ) + 2 f ( x 2 )
2
2
2h
−h
2h
1
{ − 3 f ( x0 ) + 4 f ( x1 ) − f ( x2 ) }
P ′( x0 ) =
2h
Three-point formula:
1
{ − 3 f ( x0 ) + 4 f ( x0 + h) − f ( x0 + 2h) }
f ′( x0 ) ≈
2h
9.
If the pointsare equally spaced with x0 in the middle:
x1 = x0 − h and x 2 = x0 + h
2 x0 − ( x0 − h) − ( x0 + h)
P ′( x0 ) =
f ( x0 )
{ x0 − ( x0 − h)}{ ( x0 − ( x0 + h)}
2 x0 − x0 − ( x0 + h)
+
f ( x1 )
{ ( x0 − h) − x0 }{ ( x0 − h) − ( x0 + h)}
2 x0 − x0 − ( x0 − h)
+
f ( x2 )
{ ( x0 + h) − x0 }{ ( x0 + h) − ( x0 − h)}
10.
0
−h
h
P ′( x0 ) =
f ( x0 ) + 2 f ( x1 ) + 2 f ( x 2 )
2
−h
2h
2h
Another Three-point formula:
1
{ f ( x0 + h) − f ( x0 − h) }
f ′( x0 ) ≈
2h
11.
Alternate approach (Errorestimate)
Take Taylor series expansion of f(x+h) about x:
2
3
h ( 2)
h ( 3)
f ( x + h) = f ( x ) + hf ′( x ) +
f ( x) +
f ( x) +
2
3!
h2 ( 2 )
h3 ( 3 )
f ( x + h) − f ( x ) = hf ′( x ) +
f ( x) +
f ( x) +
2
3!
f ( x + h) − f ( x )
h ( 2)
h2 ( 3 )
= f ′( x ) + f ( x ) +
f ( x) +
h
2
3!
.............. (1)
12.
f ( x+ h) − f ( x )
= f ′( x ) + O ( h)
h
f ( x + h) − f ( x )
f ′( x ) =
− O ( h)
h
f ( x + h) − f ( x )
f ′( x ) ≈
h
Forward Difference
Formula
h ( 2)
h2 ( 3 )
O ( h) = f ( x ) +
f ( x) +
2
3!
13.
4h 2 (2 )
8h 3 ( 3 )
f ( x + 2h) = f ( x ) + 2hf ′( x ) +
f ( x) +
f ( x) +
2
3!
4h 2 ( 2 )
8h 3 ( 3 )
f ( x + 2h) − f ( x ) = 2hf ′( x ) +
f ( x) +
f ( x) +
2
3!
f ( x + 2h ) − f ( x )
2h ( 2 )
4h 2 ( 3 )
= f ′( x ) +
f ( x) +
f ( x) +
2h
2
3!
................. (2)
14.
f ( x+ h) − f ( x )
h ( 2)
h ( 3)
= f ′( x ) + f ( x ) +
f ( x) +
h
2
3!
.............. (1)
2
f ( x + 2h ) − f ( x )
2h ( 2 )
4h 2 ( 3 )
= f ′( x ) +
f ( x) +
f ( x) +
2h
2
3!
................. (2)
2 X Eqn. (1) – Eqn. (2)
15.
f ( x+ h) − f ( x ) f ( x + 2h) − f ( x )
2
−
h
2h
2 h2 ( 3 )
6 h3 ( 4 )
= f ′( x ) −
f ( x) −
f ( x) −
3!
4!
− f ( x + 2 h) + 4 f ( x + h) − 3 f ( x )
2h
2
3
2h ( 3 )
6h ( 4 )
′( x ) −
= f
f ( x) −
f ( x) −
3!
4!
= f ′ ( x ) + O h2
( )
16.
− f (x + 2h ) + 4 f ( x + h ) − 3 f ( x )
= f ′( x ) + O h2
2h
( )
− f ( x + 2h ) + 4 f ( x + h ) − 3 f ( x )
f ′( x ) =
− O h2
2h
( )
− f ( x + 2h ) + 4 f ( x + h ) − 3 f ( x )
f ′( x ) ≈
2h
Three-point Formula
( )
2 h2 ( 3 )
6 h3 ( 4 )
O h2 = −
f ( x) −
f ( x) −
3!
4!
17.
The Second Three-pointFormula
Take Taylor series expansion of f(x+h) about x:
h2 ( 2 )
h3 ( 3 )
f ( x + h) = f ( x ) + hf ′( x ) +
f ( x) +
f ( x) +
2
3!
Take Taylor series expansion of f(x-h) about x:
2
3
h ( 2)
h ( 3)
f ( x − h) = f ( x ) − hf ′( x ) +
f ( x) −
f ( x) +
2
3!
Subtract one expression from another
2h 3 ( 3 )
2h 6 ( 6 )
f ( x + h) − f ( x − h) = 2hf ′( x ) +
f ( x) +
f ( x) +
3!
6!
18.
2h 3 (3 )
2h 6 ( 6 )
f ( x + h) − f ( x − h) = 2hf ′( x ) +
f ( x) +
f ( x) +
3!
6!
f ( x + h) − f ( x − h)
h2 ( 3)
h5 ( 6 )
= f ′( x ) +
f ( x) +
f ( x) +
2h
3!
6!
f ( x + h) − f ( x − h) h 2 ( 3 )
h5 ( 6 )
f ′( x ) =
−
f ( x) −
f ( x) −
2h
3!
6!
19.
f ′( x) =
f ( x + h ) − f ( x − h)
+ O h2
2h
( )
( )
h2 ( 3)
h5 ( 6 )
O h2 = −
f ( x) −
f ( x) −
3!
6!
f ( x + h) − f ( x − h )
f ′( x ) ≈
2h
Second Three-point Formula
20.
Summary of Errors
f( x + h) − f ( x )
f ′( x ) ≈
h
Error term
Forward Difference
Formula
h ( 2)
h2 ( 3 )
O ( h) = f ( x ) +
f ( x) +
2
3!
21.
Summary of Errorscontinued
First Three-point Formula
− f ( x + 2h ) + 4 f ( x + h ) − 3 f ( x )
f ′( x ) ≈
2h
( )
2 h2 ( 3 )
6 h3 ( 4 )
Error term O h2 = −
f ( x) −
f ( x) −
3!
4!
22.
Summary of Errorscontinued
Second Three-point Formula
f ( x + h) − f ( x − h )
f ′( x ) ≈
2h
( )
h2 ( 3)
h5 ( 6 )
O h2 = −
f ( x) −
f ( x) −
Error term
3!
6!
23.
Example:
f ( x) = xe
x
Find the approximate value of
x
f ( x)
1.9
12.703199
2.0
14.778112
2.1
2.2
17.148957
19.855030
f ′( 2 )
with
h = 0.1
24.
Using the ForwardDifference formula:
1
f ′ ( x0 ) ≈ { f ( x0 + h ) − f ( x0 ) }
h
1
f ′ ( 2) ≈
{ f ( 2.1) − f ( 2 ) }
0.1
1
=
{ 17.148957 − 14.778112}
0.1
= 23.708450
25.
Using the 1stThree-point formula:
1
{ − 3 f ( x0 ) + 4 f ( x0 + h) − f ( x0 + 2h) }
f ′( x0 ) ≈
2h
1
[ − 3 f ( 2) + 4 f ( 2.1) − f ( 2.2)]
f ′( 2 ) ≈
2 × 0.1
1
[ − 3 × 14.778112 + 4 × 17.148957
=
0.2
− 19.855030 ]
= 22.032310
26.
Using the 2ndThree-point formula:
1
{ f ( x0 + h) − f ( x0 − h) }
f ′( x0 ) ≈
2h
1
[ f ( 2.1) − f (1.9)]
f ′( 2 ) ≈
2 × 0.1
1
[ 17.148957 − 12.703199
=
0.2
= 22.228790
The exact value of
f ′( 2 ) is : 22.167168
]
27.
Comparison of theresults with h = 0.1
The exact value of f ′ ( 2 ) is 22.167168
Formula
f ′ ( 2)
Error
Forward Difference
23.708450
1.541282
1st Three-point
22.032310
0.134858
2nd Three-point
22.228790
0.061622
28.
Second-order Derivative
h2 (2 )
h3 ( 3 )
f ( x + h) = f ( x ) + hf ′( x ) +
f ( x) +
f ( x) +
2
3!
2
3
h ( 2)
h ( 3)
f ( x − h) = f ( x ) − hf ′( x ) +
f ( x) −
f ( x) +
2
3!
Add these two equations.
2h 2 ( 2 )
2h4 ( 4 )
f ( x + h) + f ( x − h) = 2 f ( x ) +
f ( x) +
f ( x) +
2
4!
2h2 ( 2 )
2 h4 ( 4 )
f ( x + h) − 2 f ( x ) + f ( x − h) =
f ( x) +
f ( x) +
2
4!
29.
f ( x+ h) − 2 f ( x ) + f ( x − h)
2h ( 4 )
( 2)
= f ( x) +
f ( x) +
2
h
4!
2
f ( x + h ) − 2 f ( x ) + f ( x − h ) 2h 2 ( 4 )
f ( 2) ( x ) =
−
f ( x) +
2
h
4!
f
( 2)
f ( x + h) − 2 f ( x ) + f ( x − h)
( x) ≈
h2
30.
NUMERICAL INTEGRATION
b
∫ f( x )dx =
a
area under the curve f(x) between
x = a to x = b.
In many cases a mathematical expression for f(x) is
unknown and in some cases even if f(x) is known its
complex form makes it difficult to perform the integration.
Area of thetrapezoid
The length of the two parallel sides of the trapezoid
are: f(a) and f(b)
The height is b-a
b
∫
a
b−a
[ f ( a ) + f ( b )]
f ( x )dx ≈
2
h
= [ f ( a ) + f ( b )]
2
Riemann Sum
The areaunder the curve is subdivided into n
subintervals. Each subinterval is treated as a
rectangle. The area of all subintervals are added
to determine the area under the curve.
There are several variations of Riemann sum as
applied to composite integration.
43.
∆ xIn LeftRiemann
= ( b − a) / n
sum,
x1 = a the left-
x2
x3
side sample of
= afunction is
the + ∆ x
used as the
= a + 2∆the
x
height of
individual
M
rectangle.
xi = a + ( i − 1) ∆ x
∫
b
a
n
f ( x ) dx ≈ ∑ f ( xi ) ∆ x
i =1
44.
∆x = (b − a) / n
In Right Riemann
sum, the right-side
x1 = a + ∆ x
sample of the
x2 = a is used
function+ 2∆ x as
the height of the
x3 = a + 3∆ x
individual rectangle.
M
xi = a + i∆ x
n
∫ f ( x ) dx ≈ ∑ f ( x ) ∆ x
b
a
i =1
i
45.
In the )/ n
∆ x = ( b − aMidpoint
Rule, the sample at
x1 = the (middle1of ∆ x / 2 )
a + 2 ×1 − ) ( the
x2 =subinterval1is( used 2 )
a + ( 2× 2 − ) ∆x /
as the height of the
x3 = individual 1) ( ∆ x / 2 )
a + ( 2×3−
M rectangle.
xi = a + ( 2 × i − 1) ( ∆ x / 2 )
n
∫ f ( x ) dx ≈ ∑ f ( x ) ∆ x
b
a
i =1
i
46.
Composite Trapezoidal Rule:
Dividethe interval into n subintervals and apply
Trapezoidal Rule in each subinterval.
b
∫
a
h
f ( x )dx ≈ f ( a ) + 2∑ f ( x k ) + f (b )
2
k =1
n −1
where
b−a
h=
and x k = a + kh for k = 0, 1, 2, ... , n
n
47.
π
Find
∫ sin (x)dx
0
bydividing the interval into 20 subintervals.
n = 20
b−a π
h=
=
n
20
kπ
x k = a + kh =
, k = 0, 1, 2, ....., 20
20
48.
π
h
∫ sin( x)dx ≈ 2 f ( a ) + 2∑ f ( xk ) + f (b)
k =1
0
n −1
19
π
kπ
=
sin( 0 ) + 2∑ sin 20 + sin( π )
40
k =1
= 1.995886
49.
Composite Simpson’s Rule:
Dividethe interval into n subintervals and apply
Simpson’s Rule on each consecutive pair of subinterval.
Note that n must be even.
b
∫
a
h
f ( x )dx ≈ f ( a ) + 2
3
n/ 2
+ 4∑
k =1
( n / 2 ) −1
∑ f (x
k =1
2k
)
f ( x 2 k −1 ) + f (b )
50.
where
b−a
h=
and x k= a + kh for k = 0, 1, 2, ... , n
n
π
Find
∫ sin (x)dx
0
by dividing the interval into 20 subintervals.
b−a π
n = 20
h=
=
n
20
kπ
x k = a + kh =
, k = 0, 1, 2, ....., 20
20