Gaussian Quadrature
Formula
-BY GROUP NO. 9
-MECHANICAL DEPARTMENT
-4TH SEMESTER
-COMPLEX VARIABLES AND NUMERICAL
METHODS(2141905)
Gaussian Quadrature Formula
   
 

b
a
1
1-
f(x)dx.f(t)dt to
integralthefromdtransforme
becan;
2
1
2
1
t
ofnnsformatiolinear traThe
abxab
Gaussian One Point Formula
1. The Gaussian One Point Formula to convert an integral into its
linear transform is given by


1
1
)0(2)( fdxxf
Gaussian Two Point Formula
2. The Gaussian Two Point Formula to convert an integral into its
linear transform is given by












 3
1
3
1
)(
1
1
ffdxxf
Gaussian Three Point Formula
3. The Gaussian Three Point Formula to convert an integral into
its linear transform is given by
 
























1
1
5
3
5
3
9
5
)0(
9
8
)( fffdxxf
Example of Gaussian Quadrature
Formula
formula.pointthreeand
pointtwopoint,oneby
x1
dx
Evaluate
1
1
2

2
1
1
x
Here f(x)


Example of Gaussian Quadrature
Formula
mulaPoint Forussian Oneound by Gawhich is f
2f(x)dx
(0)1
1
2
2f(0)f(x)dx
1
1
2
1
1














Example of Gaussian Quadrature
Formula

























1
1
50.1)( dxxf
1.50
0.750.75
f(0.57735)0.57735)f(
3
1
f
3
1
ff(x)dx
t Formula,n Two PoinBy Gaussia
1
1
Example of Gaussian Quadrature
Formula
   
 0.75
9
5
9
8
0.3750.375
9
5
1
9
8
f(x)dxNow,
0.375
5
3
0.375, f
5
3
-1, ff(0)
5
3
f
5
3
f
9
5
f(0)
9
8
f(x)dx
a,int Formuln Three PoBy Gaussia
1
-1
1
1














































Example of Gaussian Quadrature
Formula
1.305f(x)dx
1.305
9
11.75
9
3.75
9
8
1
-1





Example of Gaussian Quadrature
Formula
  Formula.hree Pointdx with T2xxEvaluate
4
2
2
 
   
 
3tx
2)(4
2
1
t24
2
1
x
42, ba
ab
2
1
tab
2
1
Here x




Example of Gaussian Quadrature
Formula
 
      
   dt158ttdx2xx
158tt
3t23t2xx
3txdtf(t), dxf(x)
1t4x
1t2when x
1
1
2
4
2
2
2
22
 







Example of Gaussian Quadrature
Formula
 
   
   31.2
9
5
15
9
8
21.7979.403
9
5
15
9
8
f(t)dt
21.797
5
3
9.403, f
5
3
15, ff(0)
5
3
f
5
3
f
9
5
0f
9
8
f(t)dt
a,int Formuln Three PoBy Gaussia
1
1
1
1
















































Example of Gaussian Quadrature
Formula
 
sum.the givenevaluatedFormula we
Pointsian Threese of Gauswith the uTherefore
30.667dx2xx
30.667
9
276
9
156
9
120
4
2
2





Thank You!

Gaussian Quadrature Formula

  • 1.
    Gaussian Quadrature Formula -BY GROUPNO. 9 -MECHANICAL DEPARTMENT -4TH SEMESTER -COMPLEX VARIABLES AND NUMERICAL METHODS(2141905)
  • 2.
    Gaussian Quadrature Formula       b a 1 1- f(x)dx.f(t)dt to integralthefromdtransforme becan; 2 1 2 1 t ofnnsformatiolinear traThe abxab
  • 3.
    Gaussian One PointFormula 1. The Gaussian One Point Formula to convert an integral into its linear transform is given by   1 1 )0(2)( fdxxf
  • 4.
    Gaussian Two PointFormula 2. The Gaussian Two Point Formula to convert an integral into its linear transform is given by              3 1 3 1 )( 1 1 ffdxxf
  • 5.
    Gaussian Three PointFormula 3. The Gaussian Three Point Formula to convert an integral into its linear transform is given by                           1 1 5 3 5 3 9 5 )0( 9 8 )( fffdxxf
  • 6.
    Example of GaussianQuadrature Formula formula.pointthreeand pointtwopoint,oneby x1 dx Evaluate 1 1 2  2 1 1 x Here f(x)  
  • 7.
    Example of GaussianQuadrature Formula mulaPoint Forussian Oneound by Gawhich is f 2f(x)dx (0)1 1 2 2f(0)f(x)dx 1 1 2 1 1              
  • 8.
    Example of GaussianQuadrature Formula                          1 1 50.1)( dxxf 1.50 0.750.75 f(0.57735)0.57735)f( 3 1 f 3 1 ff(x)dx t Formula,n Two PoinBy Gaussia 1 1
  • 9.
    Example of GaussianQuadrature Formula      0.75 9 5 9 8 0.3750.375 9 5 1 9 8 f(x)dxNow, 0.375 5 3 0.375, f 5 3 -1, ff(0) 5 3 f 5 3 f 9 5 f(0) 9 8 f(x)dx a,int Formuln Three PoBy Gaussia 1 -1 1 1                                              
  • 10.
    Example of GaussianQuadrature Formula 1.305f(x)dx 1.305 9 11.75 9 3.75 9 8 1 -1     
  • 11.
    Example of GaussianQuadrature Formula   Formula.hree Pointdx with T2xxEvaluate 4 2 2         3tx 2)(4 2 1 t24 2 1 x 42, ba ab 2 1 tab 2 1 Here x    
  • 12.
    Example of GaussianQuadrature Formula             dt158ttdx2xx 158tt 3t23t2xx 3txdtf(t), dxf(x) 1t4x 1t2when x 1 1 2 4 2 2 2 22         
  • 13.
    Example of GaussianQuadrature Formula          31.2 9 5 15 9 8 21.7979.403 9 5 15 9 8 f(t)dt 21.797 5 3 9.403, f 5 3 15, ff(0) 5 3 f 5 3 f 9 5 0f 9 8 f(t)dt a,int Formuln Three PoBy Gaussia 1 1 1 1                                                
  • 14.
    Example of GaussianQuadrature Formula   sum.the givenevaluatedFormula we Pointsian Threese of Gauswith the uTherefore 30.667dx2xx 30.667 9 276 9 156 9 120 4 2 2     
  • 15.