ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Numerical Integration
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Objectives
• The student should be able to
– Understand the need for numerical integration
– Derive the trapezoidal rule using geometric
insight
– Apply the trapezoidal rule
– Apply Simpson’s rule
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Need for Numerical Integration!
( )
6
11
01
2
1
3
1
23
1
1
0
231
0
2
=−





++=






++=++= ∫ x
xx
dxxxI
( ) 11
0
1
0
1 −−−
−=−== ∫ eedxeI xx
∫
−
=
1
0
2
dxeI x
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Area under the graph!
• Definite integrations always result in the
area under the graph (in x-y plane)
• Are we capable of evaluating an
approximate value for the area?
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Example
• To perform the
definite integration of
the function between
(x0 & x1), we may
assume that the area
is equal to that of the
trapezium:
( ) ( )01
01
2
1
0
xx
yy
dxxf
x
x
−
+
≈∫
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Adding adjacent areas
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
The Trapezoidal Rule
( ) ( )
( ) ( )
2
2
12
12
01
01
yy
xx
yy
xxI
+
−+
+
−≈
Integrating from x0 to x2:
( ) ( ) ( ) ( )
2
212112101001 yxxyxxyxxyxx
I
−+−+−+−
≈
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
The Trapezoidal Rule
( ) ( ) hxxxx =−=− 1201
If the points are equidistant
2
2110 hyhyhyhy
I
+++
≈
( )210 2
2
yyy
h
I ++≈
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Dividing the whole interval into “n”
subintervals






++≈ ∑
−
=
n
n
i
i yyy
h
I
1
1
0 2
2
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
The Algorithm
• To integrate f(x) from a to b, determine the
number of intervals “n”
• Calculate the interval length h=(b-a)/n
• Evaluate the function at the points yi=f(xi)
where xi=x0+i*h
• Evaluate the integral by performing the
summation






++≈ ∑
−
=
n
n
i
i yyy
h
I
1
1
0 2
2
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Note that
X0=a
Xn=b
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Example
• Integrate
• Using the trapezoidal
rule
• Use 2,3,&4 points and
compare the results
∫=
1
0
2
dxxI
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Solution
• Using 2 points (n=1),
h=(1-0)/(1)=1
• Substituting:
( )21
2
1
yyI +≈ ( ) 5.010
2
1
=+≈I
X Y
0 0
1 1
2 points, 1 interval
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Solution
• Using 3 points (n=2),
h=(1-0)/(2)=0.5
• Substituting:
( )321 2
2
5.0
yyyI ++≈
( ) 375.0125.0*20
2
5.0
=++≈I
X Y
0 0
0.5 0.25
1 1
3 points, 2 interval
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Solution
• Using 4 points (n=3),
h=(1-0)/(3)=0.333
• Substituting:
( )4321 22
2
333.0
yyyyI +++≈
( ) 3519.01444.0*2111.0*20
2
333.0
=+++≈I
X Y
0 0
0.33 0.111
0.667 0.444
1 1
4 points, 3 interval
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Let’s use Interpolation!
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Interpolation!
• If we have a function that needs to be
integrated between two points
• We may use an approximate form of the
function to integrate!
• Polynomials are always integrable
• Why don’t we use a polynomial to
approximate the function, then evaluate
the integral
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Example
• To perform the
definite integration of
the function between
(x0 & x1), we may
interpolate the
function between the
two points as a line.
( ) ( )0
01
01
0 xx
xx
yy
yxf −
−
−
+≈
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Example
• Performing the integration on the approximate
function:
( ) ( )∫∫ 





−
−
−
+≈=
1
0
1
0
0
01
01
0
x
x
x
x
dxxx
xx
yy
ydxxfI
1
0
0
2
01
01
0
2
x
x
xx
x
xx
yy
xyI 













−
−
−
+≈
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Example
• Performing the integration on the approximate
function:
















−
−
−
+−
















−
−
−
+≈ 00
2
0
01
01
0010
2
1
01
01
10
22
xx
x
xx
yy
xyxx
x
xx
yy
xyI
( ) ( )
2
01
01
yy
xxI
+
−≈
• Which is equivalent to the area of the trapezium!
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
The Trapezoidal Rule
( ) ( )
2
01
01
yy
xxI
+
−≈
( ) ( )
( ) ( )
2
2
12
12
01
01
yy
xx
yy
xxI
+
−+
+
−≈
Integrating from x0 to x2:
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Simpson’s Rule
Using a parabola to join three
adjacent points!
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Quadratic Interpolation
• If we get to interpolate a quadratic equation
between every neighboring 3 points, we may use
Newton’s interpolation formula:
( ) ( ) ( )( )103021 xxxxbxxbbxf −−+−+≈
( ) ( ) ( )( )1010
2
3021 xxxxxxbxxbbxf ++−+−+≈
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Integrating
( ) ( ) ( )( )1010
2
3021 xxxxxxbxxbbxf ++−+−+≈
( ) ( ) ( )( )∫∫ ++−+−+≈
2
0
2
0
1010
2
3021
x
x
x
x
dxxxxxxxbxxbbdxxf
( ) ( )
2
0
2
0
10
2
10
3
30
2
21
232
x
x
x
x
xxx
x
xx
x
bxx
x
bxbdxxf 











++−+





−+≈∫
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
After substitutions and
manipulation!
( ) [ ]210 4
3
2
0
yyy
h
dxxf
x
x
++≈∫
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Working with three points!
( ) [ ]210 4
3
2
0
yyy
h
dxxf
x
x
++≈∫
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
For 4-Intervals
( ) [ ]432210 44
3
4
0
yyyyyy
h
dxxf
x
x
+++++≈∫
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
In General: Simpson’s Rule
( ) 





+++≈ ∑∑∫
−
=
−
=
n
n
i
i
n
i
i
x
x
yyyy
h
dxxf
n 2
,..4,2
1
,..3,1
0 24
30
NOTE: the number of intervals HAS TO BE even
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Example
• Integrate
• Using the Simpson
rule
• Use 3 points
∫=
1
0
2
dxxI
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Solution
• Using 3 points (n=2),
h=(1-0)/(2)=0.5
• Substituting:
• Which is the exact
solution!
( )210 4
3
5.0
yyyI ++≈
( )
3
1
125.0*40
3
5.0
=++≈I
ENEM602 Spring 2007
Dr. Eng. Mohammad Tawfik
Homework #7
• Chapter 21, p. 610, numbers:
21.5, 21.6, 21.10, 21.11.

09 numerical integration

  • 1.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Numerical Integration
  • 2.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Objectives • The student should be able to – Understand the need for numerical integration – Derive the trapezoidal rule using geometric insight – Apply the trapezoidal rule – Apply Simpson’s rule
  • 3.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Need for Numerical Integration! ( ) 6 11 01 2 1 3 1 23 1 1 0 231 0 2 =−      ++=       ++=++= ∫ x xx dxxxI ( ) 11 0 1 0 1 −−− −=−== ∫ eedxeI xx ∫ − = 1 0 2 dxeI x
  • 4.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Area under the graph! • Definite integrations always result in the area under the graph (in x-y plane) • Are we capable of evaluating an approximate value for the area?
  • 5.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Example • To perform the definite integration of the function between (x0 & x1), we may assume that the area is equal to that of the trapezium: ( ) ( )01 01 2 1 0 xx yy dxxf x x − + ≈∫
  • 6.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Adding adjacent areas
  • 7.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik The Trapezoidal Rule ( ) ( ) ( ) ( ) 2 2 12 12 01 01 yy xx yy xxI + −+ + −≈ Integrating from x0 to x2: ( ) ( ) ( ) ( ) 2 212112101001 yxxyxxyxxyxx I −+−+−+− ≈
  • 8.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik The Trapezoidal Rule ( ) ( ) hxxxx =−=− 1201 If the points are equidistant 2 2110 hyhyhyhy I +++ ≈ ( )210 2 2 yyy h I ++≈
  • 9.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Dividing the whole interval into “n” subintervals       ++≈ ∑ − = n n i i yyy h I 1 1 0 2 2
  • 10.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik The Algorithm • To integrate f(x) from a to b, determine the number of intervals “n” • Calculate the interval length h=(b-a)/n • Evaluate the function at the points yi=f(xi) where xi=x0+i*h • Evaluate the integral by performing the summation       ++≈ ∑ − = n n i i yyy h I 1 1 0 2 2
  • 11.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Note that X0=a Xn=b
  • 12.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Example • Integrate • Using the trapezoidal rule • Use 2,3,&4 points and compare the results ∫= 1 0 2 dxxI
  • 13.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Solution • Using 2 points (n=1), h=(1-0)/(1)=1 • Substituting: ( )21 2 1 yyI +≈ ( ) 5.010 2 1 =+≈I X Y 0 0 1 1 2 points, 1 interval
  • 14.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Solution • Using 3 points (n=2), h=(1-0)/(2)=0.5 • Substituting: ( )321 2 2 5.0 yyyI ++≈ ( ) 375.0125.0*20 2 5.0 =++≈I X Y 0 0 0.5 0.25 1 1 3 points, 2 interval
  • 15.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Solution • Using 4 points (n=3), h=(1-0)/(3)=0.333 • Substituting: ( )4321 22 2 333.0 yyyyI +++≈ ( ) 3519.01444.0*2111.0*20 2 333.0 =+++≈I X Y 0 0 0.33 0.111 0.667 0.444 1 1 4 points, 3 interval
  • 16.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Let’s use Interpolation!
  • 17.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Interpolation! • If we have a function that needs to be integrated between two points • We may use an approximate form of the function to integrate! • Polynomials are always integrable • Why don’t we use a polynomial to approximate the function, then evaluate the integral
  • 18.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Example • To perform the definite integration of the function between (x0 & x1), we may interpolate the function between the two points as a line. ( ) ( )0 01 01 0 xx xx yy yxf − − − +≈
  • 19.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Example • Performing the integration on the approximate function: ( ) ( )∫∫       − − − +≈= 1 0 1 0 0 01 01 0 x x x x dxxx xx yy ydxxfI 1 0 0 2 01 01 0 2 x x xx x xx yy xyI               − − − +≈
  • 20.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Example • Performing the integration on the approximate function:                 − − − +−                 − − − +≈ 00 2 0 01 01 0010 2 1 01 01 10 22 xx x xx yy xyxx x xx yy xyI ( ) ( ) 2 01 01 yy xxI + −≈ • Which is equivalent to the area of the trapezium!
  • 21.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik The Trapezoidal Rule ( ) ( ) 2 01 01 yy xxI + −≈ ( ) ( ) ( ) ( ) 2 2 12 12 01 01 yy xx yy xxI + −+ + −≈ Integrating from x0 to x2:
  • 22.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Simpson’s Rule Using a parabola to join three adjacent points!
  • 23.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Quadratic Interpolation • If we get to interpolate a quadratic equation between every neighboring 3 points, we may use Newton’s interpolation formula: ( ) ( ) ( )( )103021 xxxxbxxbbxf −−+−+≈ ( ) ( ) ( )( )1010 2 3021 xxxxxxbxxbbxf ++−+−+≈
  • 24.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Integrating ( ) ( ) ( )( )1010 2 3021 xxxxxxbxxbbxf ++−+−+≈ ( ) ( ) ( )( )∫∫ ++−+−+≈ 2 0 2 0 1010 2 3021 x x x x dxxxxxxxbxxbbdxxf ( ) ( ) 2 0 2 0 10 2 10 3 30 2 21 232 x x x x xxx x xx x bxx x bxbdxxf             ++−+      −+≈∫
  • 25.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik After substitutions and manipulation! ( ) [ ]210 4 3 2 0 yyy h dxxf x x ++≈∫
  • 26.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Working with three points! ( ) [ ]210 4 3 2 0 yyy h dxxf x x ++≈∫
  • 27.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik For 4-Intervals ( ) [ ]432210 44 3 4 0 yyyyyy h dxxf x x +++++≈∫
  • 28.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik In General: Simpson’s Rule ( )       +++≈ ∑∑∫ − = − = n n i i n i i x x yyyy h dxxf n 2 ,..4,2 1 ,..3,1 0 24 30 NOTE: the number of intervals HAS TO BE even
  • 29.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Example • Integrate • Using the Simpson rule • Use 3 points ∫= 1 0 2 dxxI
  • 30.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Solution • Using 3 points (n=2), h=(1-0)/(2)=0.5 • Substituting: • Which is the exact solution! ( )210 4 3 5.0 yyyI ++≈ ( ) 3 1 125.0*40 3 5.0 =++≈I
  • 31.
    ENEM602 Spring 2007 Dr.Eng. Mohammad Tawfik Homework #7 • Chapter 21, p. 610, numbers: 21.5, 21.6, 21.10, 21.11.