SlideShare a Scribd company logo
INTEGRATION TECHNIQUES

1. Review of formulas and techniques
Summary of known integral formulas.
ˆ

xr+1
x dx =
+ c, for r = −1 (power rule)
r+1

ˆ

r

ˆ

ˆ
sin x dx = − cos x + c

cos x dx = sin x + c

ˆ

ˆ
2

sec x dx = tan x + c

sec x tan x dx = sec x + c

ˆ

ˆ
2

csc x dx = − cot x + c

csc x cot x dx = − csc x + c

ˆ

ˆ
x

e−x dx = −e−x + c

x

e dx = e + c
ˆ

ˆ
√

tan x dx = − ln | cos x| + c
ˆ

1
dx = ln |x| + c for x = 0
x

ˆ

1
dx = tan−1 x + c
2
1+x

1
dx = sin−1 x + c
2
1−x

1
√
dx = sec−1 x + c
2−1
|x| x

Example 1.1. (A Simple Substitution)
ˆ
Evaluate sin(ax)dx, for a = 0.
Example 1.2. (Generalizing a Basic Integration Rule)
ˆ
1
Evaluate
dx, for a = 0.
2 + x2
a
Example 1.3. (An Integrand That Must Be Expanded)
ˆ
Evaluate (x2 − 5)2 dx.
Example 1.4. (An Integral Where We Must Complete the Square)
ˆ
1
√
dx.
Evaluate
−5 + 6x − x2
Example 1.5. (An Integral Requiring Some Imagination)
ˆ
4x + 1
Evaluate
dx.
2 + 4x + 10
2x
1
2

INTEGRATION TECHNIQUES

2. Integration by Parts
Remember that if u and v are differentiable functions of x, then u · v is also differentiable and
d
d
d
(u · v) = u · v + v · u.
dx
dx
dx
Using differential forms this may be written as
d(uv) = udv + vdu.
Taking the integral of the both sides of (1), we obtain
ˆ
ˆ
ˆ
d(uv) = udv + vdu.
Note that

´

(1)

(2)

d(uv) = uv. Therefore (2) can be written as
ˆ
ˆ
uv = udv + vdu,

or, equivalently,

ˆ

ˆ
udv = uv −

vdu.

Remark. This technique requires the separation of the integral into two parts as u and dv
(which includes the differential of integral, say dx) such that
• u gets simpler when differentiated.
• dv is easy to integrate.
Example 2.1. Evaluate the following integrals.
ˆ
(1)
x sin x dx
ˆ
(2)
x2 ex dx
ˆ
(3)
ex cos x dx
ˆ
(4)
x ln x dx
ˆ
(5)
ln x dx
ˆ
(6)
sin−1 x dx
ˆ
2
(7)
x3 ex dx
ˆ
(8)
x sec2 x dx
ˆ
(9)
x3x dx
ˆ
(10)
cos(ln x) dx
ˆ
(11)
x4 ex dx
INTEGRATION TECHNIQUES

ˆ
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ

3

√
ln x dx
√

e

x

dx

x2 sin x dx
xe2x dx
xe−x dx
e2x cos 3x dx
tan−1 x dx
2

ˆ

x5 e−x dx
−1

esin x dx
ˆ
√
(21)
x 1 − x dx
ˆ 2
(22)
x3 ln x dx
(20)

1

3. Trigonometric Integrals
3.1. Products of Powers of Sines and Cosines. If we are given an integral of the form
ˆ
sinm x cosn x dx, where m, n ≥ 0,
There are three possible cases:
Case 1. If m is odd, we write m as 2k + 1 and use the identity sin2 x = 1 − cos2 x to obtain
sinm x = sin2k+1 x = (sin2 x)k sin x = (1 − cos2 x)k sin x,
and, then

ˆ

ˆ
m

n

sin x cos x dx =

(1 − cos2 x)k cosn x sin x dx.

Using the substitution u = cos x, we get
ˆ
ˆ
ˆ
m
n
2
k
n
sin x cos x dx = (1 − cos x) cos x sin x dx = − (1 − u2 )k un du.
Now, the integral is easy to evaluate.
Case 2. If m is even and n is odd, we write n as 2k + 1 and use the identity cos2 x = 1 − sin2 x
and repeat what we have done in Case 1 changing the places of sine and cosine.
Case 3. If both m and n are even, we substitute
1 − cos 2x
1 + cos 2x
, cos2 x =
2
2
to reduce the integrand to one in lower powers of cos 2x.
sin2 x =
4

INTEGRATION TECHNIQUES

3.2. Integrals of Powers of tan x and sec x. We know how to integrate the tangent and
secant and their squares. To integrate higher powers we use the identities tan2 x = sec2 x − 1
and sec2 x = tan2 x + 1, and integrate by parts when necessary to reduce the higher powers to
lower powers.

3.3. Products of Sines and Cosines. To evaluate the integrals of the form
ˆ
ˆ
ˆ
sin mx sin nx dx,
sin mx cos nx dx, and
cos mx cos nx dx,
we may apply the method of integration by parts, but two such integrations are required in
each case. So, it is better to use the identities
1
sin mx sin nx = (cos(m − n)x − cos(m + n)x)
2
1
sin mx cos nx = (sin(m − n)x + cos(m + n)x)
2
1
cos mx cos nx = (cos(m − n)x + cos(m + n)x)
2
Example 3.1. Evaluate the following integrals.
ˆ
(1)
cos4 x sin x dx
ˆ
(2)
cos4 x sin3 x dx
ˆ √
(3)
sin x cos5 x dx
ˆ
(4)
cos3 x dx
ˆ
(5)
sin3 x cos7 x dx
ˆ
(6)
sin2 x dx
ˆ
(7)
cos4 x dx
ˆ
(8)
sin2 x cos2 x dx
ˆ
(9)
tan3 x sec3 x dx
ˆ
(10)
tan2 x dx
ˆ
(11)
tan2 x sec4 x dx
ˆ
(12)
tan3 x dx
ˆ
(13)
tan3 x sec5 x dx
INTEGRATION TECHNIQUES

5

ˆ
(14)

sec x dx
ˆ √
tan x sec4 x dx
(15)
ˆ
(16)
cot4 x dx
ˆ
(17)
csc x dx
ˆ
(18)
cot3 x csc3 x dx
ˆ
sin5 x
√
(19)
dx
cos x
3.4. Trigonometric Substitutions. Trigonometric substitutions can be effective in transforming complicated integrals involving a2 − x2 , a2 + x2 and x2 − a2 into integrals we can
evaluate directly.
The following table gives the suitable trigonometric substitution in each case and the trigonometric identity to be used.
Expression Trigonometric Substitution Related Trigonometric Identity
a2 + x 2
x = a tan θ
1 + tan2 θ = sec2 θ
2
2
a −x
x = a sin θ
1 − sin2 θ = cos2 θ
x 2 − a2
x = a sec θ
sec2 θ − 1 = tan2 θ
Remark. We want any substitution we use in an integration to be reversible so that we can
change back to the original variable afterward. For example, if x = a tan θ, we want to be able
x
after the integration takes place. As we know, the functions in these
to set θ = tan−1
a
substitution have inverses only for selected values of θ. For reversibility,
x
π
π
x = a tan θ requires θ = tan−1
with − < θ < ,
a
2
2
π
π
≤θ≤ ,
2
2

 0 ≤ θ < π if x ≥ 1,


2
a
−1 x
x = a sec θ requires θ = sec
with

a
 π < θ ≤ π if x ≤ −1,

2
a
To simplify calculations with the substitution x = a sec θ, we will restrict its use to integrals in
√
x
π
which ≥ 1. This will place θ in 0,
and make tan θ ≥ 0. We will then have x2 − a2 =
a
2
√
a2 tan2 θ = |a tan θ| = a tan θ, free of absolute values, provided that a > 0.
x = a sin θ

requires θ = sin−1

x
a

with −

Example 3.2.
(1) Evaluate the following integrals.
ˆ
dx
√
(a)
2
2
ˆ x 4−x
dx
√
(b)
2
ˆ √9 2+ x
x − 25
(c)
dx, for x ≥ 5.
x
6

INTEGRATION TECHNIQUES

ˆ
(d)

ˆ

(e)
ˆ
(f)

ˆ

(g)
ˆ
(h)
(i)
(j)

ˆ
ˆ
ˆ

dx
(1 + x2 )2
√
4 − x2 dx
√
x2 − 1
dx
x
dx
√
2 x2 − 2
x
√
9x2 − 4
dx
x
dx
2 + 2x + 10
x
√
ex 1 − e2x dx
√

cos x

dx
1 + sin2 x
dx
(l)
2 + 4x + 5)2
ˆ (4x
2x + 2
(m)
dx
2 − 4x + 8
ˆ x
5x + 3
dx
(n)
2 − 4x + 8
ˆ x
x2
(o)
5 dx
(x2 − 1) 2
(2) Find the volume of the solid generated by revolving about the x-axis the region in the
2
first quadrant enclosed by the coordinate axes, the curve y =
, and the line x = 1.
1 + x2
(k)

ˆ

4. Integration of Rational Functions Using Partial Fractions
The method based on the fact that “every rational function can be written as a sum of simpler
fractions that we can integrate with the techniques we already know”.
General Description of the Method of Partial Fractions. To write a rational function
P (x)
as a sum of partial fractions, do the following:
Q(x)
(1) The degree of P (x) must be less than the degree of Q(x). (Otherwise, divide P (x) by
Q(x) and work on the remainder.)
(2) Factor out the polynomial Q(x).
• For each linear factor, assign the sum of m partial fractions to this factor where m
is the exponent of that linear factor as follows:
A1
A2
Am
+
+ ··· +
2
x − r (x − r)
(x − r)m
• For each irreducible quadratic factor (a polynomial of second degree that cannot
be written as a product of linear factors), assign the sum of n partial fractions to
INTEGRATION TECHNIQUES

this factor where n is the exponent of that quadratic factor as:
B1 x + C1
B2 x + C2
Bn x + Cn
+ 2
+ ··· + 2
2 + px + q
2
x
(x + px + q)
(x + px + q)n
Several Examples. We assume that the degree of P (x) is less than the degree of Q(x).
(1) Distinct Linear Factors:
P (x)
A
B
C
P (x)
=
=
+
+
.
Q(x)
(x − r1 )(x − r2 )(x − r3 )
x − r1 x − r2 x − r3
(2) Repeated Linear Factors:
P (x)
P (x)
B
A
C
D
=
+
=
+
+
.
4
2
3
Q(x)
(x − r)
x − r (x − r)
(x − r)
(x − r)4
(3) Some distinct, some repeated linear factors:
P (x)
A B
C
D
E
F
P (x)
+
+
= 2
= + 2+
+
.
3
2
Q(x)
x (x − r1 )(x − r2 )
x x
x − r1 x − r2 (x − r2 )
(x − r3 )3
(4) Distinct irreducible quadratic factors:
P (x)
P (x)
Ax + B
Cx + D
= 2
= 2
+ 2
.
2+p x+q )
Q(x)
(x + p1 x + q1 )(x
x + p1 x + q 1 x + p2 x + q2
2
2
(5) Repeated irreducible quadratic factors:
P (x)
P (x)
Ax + B
Cx + D
Ex + F
= 2
= 2
+ 2
+ 2
.
3
2
Q(x)
(x + p1 x + q1 )
x + p1 x + q1 (x + p1 x + q1 )
(x + p1 x + q1 )3
(6) General Case:
P (x)
P (x)
=
2 (x2 + p x + q )2 (x2 + p x + q )
Q(x)
x(x − r)
1
1
2
2
A
B
C
Dx + E
Fx + G
Hx + I
= +
+
+ 2
+ 2
+ 2
.
2
2
x x − r (x − r)
x + p1 x + q1 (x + p1 x + q1 )
x + p2 x + q 2
Example 4.1. Evaluate the following integrals.
ˆ
1
(1)
dx
2+x−2
ˆ x 2
3x − 7x − 2
(2)
dx
x3 − x
ˆ
2x3 − 4x2 − 15x + 5
(3)
dx
x2 − 2x − 8
ˆ
5x2 + 20x + 6
(4)
dx
3
2
ˆ x 2 + 2x + x
2x − 5x + 2
(5)
dx
x3 + x
ˆ
5x2 + 6x + 2
dx
(6)
2
ˆ (x + 2)(x + 2x + 5)
3x − 1
(7)
dx
(x + 2)(x − 3)

7
8

INTEGRATION TECHNIQUES

ˆ
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ

x2 + 1
dx
x(x − 1)(x − 2)(x − 3)
x
dx
(x − 3)2
x−1
dx
(x + 1)3
x2 + 1
dx
(x − 1)2 (x + 1)
x+1
dx
2 + 1)(x − 2)
(x
6x2 − 15x + 22
dx
(x + 3)(x2 + 2)2
2x + 1
dx
3x + 1
x5 − x4 − 3x + 5
dx
x4 − 2x3 + 2x2 − 2x + 1
x3 + 1
dx
x2 − x
sec x dx
x3
dx
x2 + 6x + 5
x4
dx
x4 − 1
dx
3−1
x
dx
x − e2x
e
sin x
dx
cos x + cos 2x
sin4 x
dx
cos3 x
dx
3

2 2
ˆ x(1 − x )
3
2x + 5x2 + 8x + 4
(25)
dx
(x2 + 2x + 2)2
INTEGRATION TECHNIQUES

9

Brief Summary of Integration Techniques.
ˆ
ˆ
• Integration by Substitution:
f (u(x))u (x) dx = f (u) du
What to look for
– Compositions of the form f (u(x)), where the integrand also contains u (x); for
example,
ˆ
ˆ
ˆ
2
2
2x cos(x ) dx = cos(x )2x dx = cos udu.
– Compositions of the form f (ax + b); for example,
ˆ
ˆ
x
u−1
√
√ du.
dx =
u
x+1
´
´
• Integration by Parts: u dv = uv − v du
What to look for: products of different types of functions: xn , cos x, ex ; for example,
ˆ
ˆ
2x cos x dx = x sin x − sin x dx.
• Trigonometric Substitutions:
What to look √
for:
– Terms like a2 − x2 : Let x = a sin θ, − π ≤ θ ≤ π , so that dx = a cos θ dθ and
2
2
√
a2 − x2 = a2 − a2 sin2 θ = a cos θ; for example,
ˆ
ˆ
x2
√
dx = sin2 θ dθ.
2
1−x
√
– Terms like x2 + a2 : Let x = a tan θ, − π < θ < π , so that dx = a sec2 θ dθ and
2
2
√
√
x2 + a2 = a2 tan2 θ + a2 = a sec θ; for example,
ˆ
ˆ
x3
√
dx = 27 tan3 θ sec θ dθ.
2+9
x
√
2 − a2 : Let x = a sec θ, for θ ∈ [0, π ) ∪ ( π , π], so that dx =
– Terms like x
2
2
√
√
a sec θ tan θ dθ and x2 − a2 = a2 sec2 θ − a2 = a tan θ; for example,
ˆ
ˆ
√
3
2 − 4 dx = 32
x x
sec4 θ tan2 θ dθ.
• Partial Fractions:
What to look for: rational functions, for example,
ˆ
ˆ
ˆ
x+2
x+2
A
B
dx =
dx =
+
2 − 4x + 3
x
(x − 1)(x − 3)
x−1 x−3

dx.
10

INTEGRATION TECHNIQUES

5. Improper Integrals

ˆ

2

Example 5.1. Evaluate
−1

1
dx.
x2

When studying the definite integrals, we required two things. First, the domain of integration
(from a to b) [a, b], be finite. Second, function is finite on the domain of integration.
Question: What happens if the domain of integration is infinite? What if function becomes
infinite in the domain of integration?
Answer: Improper integration!
The integrals of type described above are called improper integrals. If the limits exist, we
evaluate them with the following definitions
(1) If f is continuous on [a, ∞), then
ˆ ∞
ˆ b
f (x) dx = lim
f (x) dx.
b→∞

a

a

(2) If f is continuous on (−∞, b], then
ˆ b
ˆ b
f (x) dx = lim
f (x) dx.
a→−∞

−∞

a

(3) If f is continuous on [a, b) then
ˆ b
ˆ c
f (x) dx = lim
f (x) dx.
−
c→b

a

a

(4) If f is continuous on (a, b] then
ˆ b
ˆ b
f (x) dx = lim
f (x) dx.
+
c→a

a

c

In each case, if the limit exists and is finite we say that the improper integral converges and
the limit is the value of the improper integral. Otherwise the improper integral diverges.
Similarly, if f becomes infinite at an interior point d ∈ [a, b], then
ˆ b
ˆ d
ˆ b
f (x) dx =
f (x) dx +
f (x) dx.
a

a

d

This integral (on [a, b]) converges if both integrals (on [a, d] and on [d, b]) converges. Otherwise,
the integral from a to b diverges.
ˆ
ˆ
∞

a

Finally, if f is continuous on (−∞, ∞) and if
ˆ ∞
f (x) dx converges and its value is
−∞

ˆ

ˆ

∞

−∞

f (x) dx +
−∞

f (x) dx both converge, then
a

ˆ

a

f (x) dx =
−∞

f (x) dx and

∞

f (x) dx.
a

If either one or both of the integrals on the right-hand side of this equation diverge, the integral
diverges.
Example 5.2. In each part, determine whether the improper integral converges or diverges,
and find its value if it converges.
INTEGRATION TECHNIQUES

ˆ
(1)
(2)
(3)
(4)
(5)
(6)
(7)

1

dx
√
.
1−x
0
ˆ 0
1
dx.
2
−1 x
ˆ 1
1
√ dx.
ˆ0 2 x
1
dx.
1 x−1
ˆ 2
1
dx.
2
ˆ−1 x
∞
1
dx.
2
ˆ1 ∞ x
1
√ dx.
x
ˆ1
∞

(8)
(9)

e−x dx.

ˆ1 ∞
ˆ0

sin x dx.
∞

xe−x dx.

(10)
ˆ0 1
(11)
ˆ−1
2

(12)
(13)
(14)
(15)
(16)
(17)
(18)

1

(20)

dx.

1
√
dx.
2
ˆ0 3 4 − x
dx
2 .
0 (x − 1) 3
ˆ 1
dx
.
x
ˆ−1
1
dx
.
p
0 x
ˆ −1
1
dx.
−∞ x
ˆ 0
1
dx.
2
ˆ−∞ (x − 1)
∞
1
dx.
2
ˆ−∞ 1 + x
∞

(19)

1

x3

ˆ−∞
∞
ˆ−∞
∞

(21)
0

2

xe−x dx.
e−x dx.
1
dx.
(x − 1)2

11
12

INTEGRATION TECHNIQUES

ˆ
(22)
(23)

∞

ˆ1 ∞
ˆ−∞
∞

1
dx.
xp
e−|x| dx.
cos x dx.

(24)
−∞

Exercises 5.3. In each part, determine whether the improper integral converges or diverges,
and find its value if it converges.
ˆ 1
dx
(1)
.
2
−1 x
ˆ 16
dx
√ .
(2)
4
x
ˆ0 1
dx
√
(3)
.
2
ˆ0 ∞ 1 − x
ln x
dx.
(4)
ˆ1 ∞ x
dx
(5)
.
1.001
ˆ1 1 x
dx
(6)
1 .
−8 x 3
ˆ 1
dx
(7)
.
0.999
ˆ0 ∞x
x dx
(8)
3 .
2
−∞ (x + 4) 2
ˆ ∞
16 tan−1 x
dx.
(9)
2
ˆ0 ∞ 1 + x
2e−θ sin θ dθ.
(10)
ˆ0 1
(11)
− ln x dx.
ˆ0 ∞
dx
(12)
.
2
ˆ0 1 (x + 1)(x + 1)
(13)
−x ln |x| dx.
ˆ−1
∞
dx
(14)
.
x + e−x
ˆ−∞ e
∞
(15)
ln(ln x).
ee

A comparison test.
Theorem 5.1 (Direct Comparison Test). Let f and g be continuous on [a, ∞) and suppose
that 0 ≤ f (x) ≤ g(x) for all x ≥ a.
ˆ ∞
ˆ ∞
(i) If
g(x) dx converges then
f (x) dx converges.
a

a
INTEGRATION TECHNIQUES

ˆ
(ii) If

ˆ

∞

f (x) dx diverges then
a

13

∞

g(x) dx diverges.
a

Example 5.4. In each part, determine whether the improper integral converges or diverges.
ˆ ∞
1
(1)
dx.
x
ˆ0 ∞ x + e
2
e−x dx.
(2)
ˆ0 ∞
2 + sin x
√
(3)
dx.
x
1
ˆ ∞
sin2 x
(4)
dx.
2
ˆ1 ∞ x
dx
√
.
(5)
4
ˆ1 ∞ x + 5
ln x
√ dx.
(6)
ˆ1 ∞ x
dx
(7)
.
5x + 2x
1
ˆ ∞
dx
(8)
.
x
ˆ0 ∞ 1 + e
1 + sin x
dx.
(9)
x2
ˆπ ∞
dx
(10)
.
ˆ2 1 ln x
ln x
√ dx.
(11)
x
0
14

INTEGRATION TECHNIQUES

Answers
cos(ax)
+ c.
a
x
1
Answers 1.2. tan−1
+ c.
a
a
x5 10x3
−
+ 25x + c.
Answers 1.3.
5
3
x−3
Answers 1.4. sin−1
+ c.
2
Answers 1.1. −

Answers 1.5. ln x2 + 2 x + 5 −

3
tan−1
4

x+1
2

Answers 2.1.
(1) sin x − x cos x + c.
(2) x2 ex − 2xex + 2ex + c.
ex (cos x + sin x)
(3)
+ c.
2
2
2
x ln x x
(4)
−
+ c.
2
4
(5) x ln x − x + c.
√
(6) x sin−1 x + 1 − x2 + c.
2
ex (x2 − 1)
+ c.
(7)
2
(8) x tan x + ln(cos x) + c.
3x
x3x
− 2 + c.
(9)
ln 3 ln 3
x(cos(ln x) + sin(ln x))
(10)
+ c.
2
4 x
3 x
2 x
(11) x e − 4x e + 12x e − 24xex + 24ex + c.
x ln x x
− + c.
(12)
2
√ √x 2 √x
(13) 2 xe − 2e + c.
(14) −x2 cos x + 2x sin x + 2 cos x + c.
xe2x e2x
(15)
−
+ c.
2 −x 4 −x
(16) −xe − e + c.
2e2x cos(3x) 3e2x sin(3x)
(17)
+
+ c.
13
13
1
(18) x tan−1 x − ln(1 + x2 ) + c.
2
2
x4 e−x
2
2
(19) −
− x2 e−x − e−x + c.
2 √
−1
esin x ( 1 − x2 + x)
(20)
+ c.
2
5
3
2
2
(21) (1 − x) 2 − (1 − x) 2 + c.
5
3
15
(22) 4 ln 2 −
+ c.
16

+ c.
INTEGRATION TECHNIQUES

Answers 3.1.

(1) −

cos5 x
+ c.
5

cos7 x cos5 x
−
+ c.
7
5
3
3
11
4
2
2
(3) sin 2 x − sin 2 x +
sin 2 x + c.
3
7
11
sin3 x
(4) sin x −
+ c.
3
cos10 x cos8
(5)
−
+ c.
10
8
x sin(2x)
+ c.
(6) −
2
4
3x sin(2x) sin(4x)
(7)
+
+
c.
8
4
32
x sin(4x)
+ c.
(8) −
8
32
sec5 x sec3 x
(9)
−
+ c.
5
3
(10) tan x − x + c.
tan5 x tan3 x
(11)
+
+ c.
5
3
tan2 x
+ ln | cos x| + c.
(12)
2
7
sec x sec5 x
(13)
−
+ c.
7
5
(14) ln | sec x + tan x| + c.
7
3
2
2
(15) tan 2 + tan 2 +c.
7
3
1
3
(16) − cot x + cot x + x + c.
3
(17) − ln | csc x + cot x| + c.
csc3 x csc5 x
−
+ c.
(18)
3
5
√
5
9
4
2
(19) − cos x + cos 2 x − cos 2 x + c.
5
9
√
4 − x2
Answers 3.2.
(1) (a) −
+ c.
4x
√
x + 9 + x2
+ c.
(b) ln
3
√
x
(c) x2 − 25 − 5 sec−1 + c.
5
1
x
−1
(d) tan x +
+ c.
2
2(1 + x2 )
√
x x 4 − x2
(e) 2 sin−1 +
+ c.
2
2
√
(f) √x2 − 1 − sec−1 x + c.
x2 − 2
(g)
+ c.
2x
(2)

15
16

INTEGRATION TECHNIQUES

√

3x
9x2 − 4 − 2 sec−1
+ c.
2
1
x+1
(i) tan−1
+ c.
3
3
√
ex 1 − e2x
1 −1 x
+ c.
(j) sin (e ) +
2
2
(k) ln 1 + sin2 x + sin x + c.
1
2x + 1
2x + 1
(l)
tan−1
+
+ c.
32
2
16(4x2 + 4x + 5)
x−2
(m) ln x2 − 4 x + 8 + 3 tan−1
+ c.
2
5
13
x−2
(n) ln x2 − 4 x + 8 +
tan−1
+ c.
2
2
2
x3
(o) −
3 + c.
3(x2 − 1) 2
π(π + 2)
(2)
.
2
1
1
Answers 4.1.
(1) ln |x − 1| − ln |x + 2| + c.
3
3
(2) 2 ln |x| + 4 ln |x + 1| − 3 ln |x − 1| + c.
3
1
(3) x2 + ln |x − 4| − ln |x + 2| + c.
2
2
9
(4) −
+ 6 ln |x| − ln |x + 1| + c.
x+1
(5) −5 tan−1 x + 2 ln |x| + c.
3
7
x+1
(6) ln x2 + 2 x + 5 − tan−1
+ 2 ln |x + 2| + c.
2
2
2
7
8
(7) ln |x − 3| + ln |x + 2| + c.
5
5
5
1
5
(8) − ln |x − 2| − ln |x| + ln |x − 1| + ln |x − 3| + c.
2
6
3
3
(9) −
+ ln |x − 3| + c.
x−3
1
1
(10) −
+
+ c.
x + 1 (x + 1)2
1
1
1
(11) ln |x + 1| + ln |x − 1| −
+ c.
2
2
x−1
3
1
3
(12) −
ln x2 + 1 − tan−1 x + ln |x − 2| + c.
10
5
5
√
√
5
1
3 2
x 2
2
−1
(13) ln |3 + x| +
− ln x + 2 +
tan
2(x2 + 2) 2
2
2
2
1
(14) x + ln |3 x + 1| + c.
3
9
x2
1
(15) x +
+ ln x2 + 1 + tan−1 x − 2 ln |x − 1| −
+ c.
2
x−1
x2
(16) x +
− ln |x| + 2 ln |x − 1| + c.
2
(h)

+ c.
INTEGRATION TECHNIQUES

(17) ln |sec x + tan x| + c.
1
125
x2
− 6 x − ln |x + 1| +
ln |5 + x| + c.
(18)
2
4
4
1
1
1
(19) x + ln |x − 1| − ln |x + 1| − tan−1 x + c.
4
4 √
2
√
1
3
(2 x + 1) 3
1
2
−1
(20) − ln x + x + 1 −
tan
+ ln |x − 1| + c.
6
3
3
3
−x
x
(21) −e + x − ln |e − 1| + c.
1
1
(22) − ln |2 cos x − 1| + ln |1 + cos x| + c.
3
3
1
3
3
1
(23) sin x −
− ln |sin x + 1| + ln |sin x − 1| −
+ c.
4(sin x + 1) 4
4
4(sin x − 1)
√
√
1
1
1
(24) √
− ln 1 − x2 + 1 + ln 1 − x2 − 1 + c.
2
1 − x2 2
1
(25) ln x2 + 2 x + 2 − tan−1 (x + 1) − 2
+ c.
x + 2x + 2
Answers 5.1. See, Answers 5.2, (5).
Answers 5.2.
(1) Convergent, 2.
(2) Divergent.
(3) Convergent, 2.
(4) Divergent.
(5) Divergent.
(6) Convergent, 1.
(7) Divergent.
1
(8) Convergent, .
e
(9) Divergent.
(10) Convergent, 1.
(11) Convergent, 0.
π
(12) Convergent, .
2
√
3
(13) Convergent, 3 + 3 2.
(14) Divergent.
(15) Divergent if p ≥ 1. Convergent if p < 1,
(16)
(17)
(18)
(19)
(20)
(21)

1
.
1−p

Divergent.
Convergent, 1.
Convergent, π.
Convergent, 0.
Divergent.
Divergent.

(22) Divergent if p ≤ 1. Convergent if p > 1,
(23) Convergent, 2.
(24) Divergent.
Answers 5.3.

(1) Divergent.

1
.
p−1

17
18

INTEGRATION TECHNIQUES

32
.
3
π
(3) Convergent, .
2
(4) Divergent.
(5) Convergent, 1000.
9
(6) Convergent, − .
2
(7) Convergent, 1000.
(8) Convergent, 0.
(9) Convergent, 2π 2 .
(10) Convergent, 1.
(11) Convergent, 1.
π
(12) Convergent, .
4
(13) Convergent, 0.
π
(14) Convergent, .
2
Answers 5.4.
(1) Convergent.
(2) Convergent.
(3) Divergent.
(4) Convergent.
(5) Convergent.
(6) Divergent.
(7) Convergent.
(8) Convergent.
(9) Convergent.
(10) Divergent.
(11) Convergent.
(12) Divergent.
(2) Convergent,

More Related Content

What's hot

8 arc length and area of surfaces x
8 arc length and area of surfaces x8 arc length and area of surfaces x
8 arc length and area of surfaces x
math266
 
Basics of Integration and Derivatives
Basics of Integration and DerivativesBasics of Integration and Derivatives
Basics of Integration and Derivatives
Faisal Waqar
 
Integration of Trigonometric Functions
Integration of Trigonometric FunctionsIntegration of Trigonometric Functions
Integration of Trigonometric Functions
Raymundo Raymund
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite IntegralJelaiAujero
 
Taylor series
Taylor seriesTaylor series
Taylor series
Little Pari
 
Trig substitution
Trig substitutionTrig substitution
Trig substitutiondynx24
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
Matthew Leingang
 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integration
Rai University
 
Introduction to differentiation
Introduction to differentiationIntroduction to differentiation
Introduction to differentiation
Shaun Wilson
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
Mohammed_AQ
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
Santhanam Krishnan
 
GAUSS ELIMINATION METHOD
 GAUSS ELIMINATION METHOD GAUSS ELIMINATION METHOD
GAUSS ELIMINATION METHOD
reach2arkaELECTRICAL
 
1639 vector-linear algebra
1639 vector-linear algebra1639 vector-linear algebra
1639 vector-linear algebra
Dr Fereidoun Dejahang
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
Farzad Javidanrad
 
Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integration
Tarun Gehlot
 
Implicit function and Total derivative
Implicit function and Total derivativeImplicit function and Total derivative
Implicit function and Total derivative
Meet Gondaliya
 
ppt on application of integrals
ppt on application of integralsppt on application of integrals
ppt on application of integrals
harshid panchal
 
Applied numerical methods lec10
Applied numerical methods lec10Applied numerical methods lec10
Applied numerical methods lec10
Yasser Ahmed
 

What's hot (20)

8 arc length and area of surfaces x
8 arc length and area of surfaces x8 arc length and area of surfaces x
8 arc length and area of surfaces x
 
Basics of Integration and Derivatives
Basics of Integration and DerivativesBasics of Integration and Derivatives
Basics of Integration and Derivatives
 
Integration of Trigonometric Functions
Integration of Trigonometric FunctionsIntegration of Trigonometric Functions
Integration of Trigonometric Functions
 
The integral
The integralThe integral
The integral
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
 
Taylor series
Taylor seriesTaylor series
Taylor series
 
Trig substitution
Trig substitutionTrig substitution
Trig substitution
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integration
 
Introduction to differentiation
Introduction to differentiationIntroduction to differentiation
Introduction to differentiation
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
GAUSS ELIMINATION METHOD
 GAUSS ELIMINATION METHOD GAUSS ELIMINATION METHOD
GAUSS ELIMINATION METHOD
 
1639 vector-linear algebra
1639 vector-linear algebra1639 vector-linear algebra
1639 vector-linear algebra
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integration
 
Implicit function and Total derivative
Implicit function and Total derivativeImplicit function and Total derivative
Implicit function and Total derivative
 
Lesson 19: Related Rates
Lesson 19: Related RatesLesson 19: Related Rates
Lesson 19: Related Rates
 
ppt on application of integrals
ppt on application of integralsppt on application of integrals
ppt on application of integrals
 
Applied numerical methods lec10
Applied numerical methods lec10Applied numerical methods lec10
Applied numerical methods lec10
 

Viewers also liked

Summary of Integration Methods
Summary of Integration MethodsSummary of Integration Methods
Summary of Integration MethodsSilvius
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
olziich
 
Integral table for electomagnetic
Integral table for electomagneticIntegral table for electomagnetic
Integral table for electomagnetic
Fathur Rozaq
 

Viewers also liked (6)

Summary of Integration Methods
Summary of Integration MethodsSummary of Integration Methods
Summary of Integration Methods
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
Integral
IntegralIntegral
Integral
 
Integral table for electomagnetic
Integral table for electomagneticIntegral table for electomagnetic
Integral table for electomagnetic
 
11365.integral 2
11365.integral 211365.integral 2
11365.integral 2
 
Problems in mathematical analysis
Problems in mathematical analysisProblems in mathematical analysis
Problems in mathematical analysis
 

Similar to Integration techniques

Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationtutulk
 
Calculo integral - Larson
Calculo integral - LarsonCalculo integral - Larson
Calculo integral - Larson
Juan Alejandro Alvarez Agudelo
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
NiccoloAaronMendozaA
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integralesjoseluisroyo
 
EPCA_MODULE-2.pptx
EPCA_MODULE-2.pptxEPCA_MODULE-2.pptx
EPCA_MODULE-2.pptx
BenCorejadoAgarcio
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theorem
Wathna
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
OlooPundit
 
Integer_Functions .pdf
Integer_Functions .pdfInteger_Functions .pdf
Integer_Functions .pdf
JainggaPotla
 
Binomial theorem for any index
Binomial theorem for any indexBinomial theorem for any index
Binomial theorem for any index
indu psthakur
 
Solved exercises simple integration
Solved exercises simple integrationSolved exercises simple integration
Solved exercises simple integration
Kamel Attar
 
Gabarito completo anton_calculo_8ed_caps_01_08
Gabarito completo anton_calculo_8ed_caps_01_08Gabarito completo anton_calculo_8ed_caps_01_08
Gabarito completo anton_calculo_8ed_caps_01_08joseotaviosurdi
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
cideni
 
Integration
IntegrationIntegration
Integration
RipaBiba
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Pamelaew
 
1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio
NoorYassinHJamel
 
Sample question paper 2 with solution
Sample question paper 2 with solutionSample question paper 2 with solution
Sample question paper 2 with solution
Pratima Nayak ,Kendriya Vidyalaya Sangathan
 
Gr 11 equations
Gr 11   equationsGr 11   equations
Gr 11 equations
Renate Rohrs
 

Similar to Integration techniques (20)

Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integration
 
Calculo integral - Larson
Calculo integral - LarsonCalculo integral - Larson
Calculo integral - Larson
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
Integration
IntegrationIntegration
Integration
 
EPCA_MODULE-2.pptx
EPCA_MODULE-2.pptxEPCA_MODULE-2.pptx
EPCA_MODULE-2.pptx
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theorem
 
Maths04
Maths04Maths04
Maths04
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
Integer_Functions .pdf
Integer_Functions .pdfInteger_Functions .pdf
Integer_Functions .pdf
 
Binomial theorem for any index
Binomial theorem for any indexBinomial theorem for any index
Binomial theorem for any index
 
Solved exercises simple integration
Solved exercises simple integrationSolved exercises simple integration
Solved exercises simple integration
 
Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010
 
Gabarito completo anton_calculo_8ed_caps_01_08
Gabarito completo anton_calculo_8ed_caps_01_08Gabarito completo anton_calculo_8ed_caps_01_08
Gabarito completo anton_calculo_8ed_caps_01_08
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
 
Integration
IntegrationIntegration
Integration
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
 
1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio
 
Sample question paper 2 with solution
Sample question paper 2 with solutionSample question paper 2 with solution
Sample question paper 2 with solution
 
Gr 11 equations
Gr 11   equationsGr 11   equations
Gr 11 equations
 

More from Krishna Gali

Chemistry polycet study material
Chemistry polycet study materialChemistry polycet study material
Chemistry polycet study material
Krishna Gali
 
14. Statistics
14. Statistics14. Statistics
14. Statistics
Krishna Gali
 
13. Probability
13. Probability13. Probability
13. Probability
Krishna Gali
 
12.applications of trigonometry
12.applications of trigonometry12.applications of trigonometry
12.applications of trigonometry
Krishna Gali
 
11.trigonometry
11.trigonometry11.trigonometry
11.trigonometry
Krishna Gali
 
10.mensuration
10.mensuration10.mensuration
10.mensuration
Krishna Gali
 
9.tangents and secants to a circle
9.tangents and secants to a circle9.tangents and secants to a circle
9.tangents and secants to a circle
Krishna Gali
 
8.similar triangles
8.similar triangles8.similar triangles
8.similar triangles
Krishna Gali
 
7.co ordinate geometry
7.co ordinate geometry7.co ordinate geometry
7.co ordinate geometry
Krishna Gali
 
6.progressions
6.progressions6.progressions
6.progressions
Krishna Gali
 
5.quadratic equations
5.quadratic equations5.quadratic equations
5.quadratic equations
Krishna Gali
 
4.pair of linear equations in two variables
4.pair of linear equations in two variables4.pair of linear equations in two variables
4.pair of linear equations in two variables
Krishna Gali
 
3.polynomials
3.polynomials3.polynomials
3.polynomials
Krishna Gali
 
2.sets
2.sets2.sets
2.sets
Krishna Gali
 
1.real numbers
1.real numbers1.real numbers
1.real numbers
Krishna Gali
 
Chapter 12 physics
Chapter 12 physicsChapter 12 physics
Chapter 12 physics
Krishna Gali
 
Chapter 11 physics
Chapter 11 physicsChapter 11 physics
Chapter 11 physics
Krishna Gali
 
Chapter 7 physics
Chapter 7 physicsChapter 7 physics
Chapter 7 physics
Krishna Gali
 
refraction of light at curved surfaces
refraction of light at curved surfacesrefraction of light at curved surfaces
refraction of light at curved surfaces
Krishna Gali
 
Chapter 5 physics
Chapter 5 physicsChapter 5 physics
Chapter 5 physics
Krishna Gali
 

More from Krishna Gali (20)

Chemistry polycet study material
Chemistry polycet study materialChemistry polycet study material
Chemistry polycet study material
 
14. Statistics
14. Statistics14. Statistics
14. Statistics
 
13. Probability
13. Probability13. Probability
13. Probability
 
12.applications of trigonometry
12.applications of trigonometry12.applications of trigonometry
12.applications of trigonometry
 
11.trigonometry
11.trigonometry11.trigonometry
11.trigonometry
 
10.mensuration
10.mensuration10.mensuration
10.mensuration
 
9.tangents and secants to a circle
9.tangents and secants to a circle9.tangents and secants to a circle
9.tangents and secants to a circle
 
8.similar triangles
8.similar triangles8.similar triangles
8.similar triangles
 
7.co ordinate geometry
7.co ordinate geometry7.co ordinate geometry
7.co ordinate geometry
 
6.progressions
6.progressions6.progressions
6.progressions
 
5.quadratic equations
5.quadratic equations5.quadratic equations
5.quadratic equations
 
4.pair of linear equations in two variables
4.pair of linear equations in two variables4.pair of linear equations in two variables
4.pair of linear equations in two variables
 
3.polynomials
3.polynomials3.polynomials
3.polynomials
 
2.sets
2.sets2.sets
2.sets
 
1.real numbers
1.real numbers1.real numbers
1.real numbers
 
Chapter 12 physics
Chapter 12 physicsChapter 12 physics
Chapter 12 physics
 
Chapter 11 physics
Chapter 11 physicsChapter 11 physics
Chapter 11 physics
 
Chapter 7 physics
Chapter 7 physicsChapter 7 physics
Chapter 7 physics
 
refraction of light at curved surfaces
refraction of light at curved surfacesrefraction of light at curved surfaces
refraction of light at curved surfaces
 
Chapter 5 physics
Chapter 5 physicsChapter 5 physics
Chapter 5 physics
 

Recently uploaded

How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
Col Mukteshwar Prasad
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
Nguyen Thanh Tu Collection
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
PedroFerreira53928
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
bennyroshan06
 
Introduction to Quality Improvement Essentials
Introduction to Quality Improvement EssentialsIntroduction to Quality Improvement Essentials
Introduction to Quality Improvement Essentials
Excellence Foundation for South Sudan
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
GeoBlogs
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
RaedMohamed3
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
AzmatAli747758
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
Celine George
 

Recently uploaded (20)

How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
 
Introduction to Quality Improvement Essentials
Introduction to Quality Improvement EssentialsIntroduction to Quality Improvement Essentials
Introduction to Quality Improvement Essentials
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
 

Integration techniques

  • 1. INTEGRATION TECHNIQUES 1. Review of formulas and techniques Summary of known integral formulas. ˆ xr+1 x dx = + c, for r = −1 (power rule) r+1 ˆ r ˆ ˆ sin x dx = − cos x + c cos x dx = sin x + c ˆ ˆ 2 sec x dx = tan x + c sec x tan x dx = sec x + c ˆ ˆ 2 csc x dx = − cot x + c csc x cot x dx = − csc x + c ˆ ˆ x e−x dx = −e−x + c x e dx = e + c ˆ ˆ √ tan x dx = − ln | cos x| + c ˆ 1 dx = ln |x| + c for x = 0 x ˆ 1 dx = tan−1 x + c 2 1+x 1 dx = sin−1 x + c 2 1−x 1 √ dx = sec−1 x + c 2−1 |x| x Example 1.1. (A Simple Substitution) ˆ Evaluate sin(ax)dx, for a = 0. Example 1.2. (Generalizing a Basic Integration Rule) ˆ 1 Evaluate dx, for a = 0. 2 + x2 a Example 1.3. (An Integrand That Must Be Expanded) ˆ Evaluate (x2 − 5)2 dx. Example 1.4. (An Integral Where We Must Complete the Square) ˆ 1 √ dx. Evaluate −5 + 6x − x2 Example 1.5. (An Integral Requiring Some Imagination) ˆ 4x + 1 Evaluate dx. 2 + 4x + 10 2x 1
  • 2. 2 INTEGRATION TECHNIQUES 2. Integration by Parts Remember that if u and v are differentiable functions of x, then u · v is also differentiable and d d d (u · v) = u · v + v · u. dx dx dx Using differential forms this may be written as d(uv) = udv + vdu. Taking the integral of the both sides of (1), we obtain ˆ ˆ ˆ d(uv) = udv + vdu. Note that ´ (1) (2) d(uv) = uv. Therefore (2) can be written as ˆ ˆ uv = udv + vdu, or, equivalently, ˆ ˆ udv = uv − vdu. Remark. This technique requires the separation of the integral into two parts as u and dv (which includes the differential of integral, say dx) such that • u gets simpler when differentiated. • dv is easy to integrate. Example 2.1. Evaluate the following integrals. ˆ (1) x sin x dx ˆ (2) x2 ex dx ˆ (3) ex cos x dx ˆ (4) x ln x dx ˆ (5) ln x dx ˆ (6) sin−1 x dx ˆ 2 (7) x3 ex dx ˆ (8) x sec2 x dx ˆ (9) x3x dx ˆ (10) cos(ln x) dx ˆ (11) x4 ex dx
  • 3. INTEGRATION TECHNIQUES ˆ (12) (13) (14) (15) (16) (17) (18) (19) ˆ ˆ ˆ ˆ ˆ ˆ ˆ 3 √ ln x dx √ e x dx x2 sin x dx xe2x dx xe−x dx e2x cos 3x dx tan−1 x dx 2 ˆ x5 e−x dx −1 esin x dx ˆ √ (21) x 1 − x dx ˆ 2 (22) x3 ln x dx (20) 1 3. Trigonometric Integrals 3.1. Products of Powers of Sines and Cosines. If we are given an integral of the form ˆ sinm x cosn x dx, where m, n ≥ 0, There are three possible cases: Case 1. If m is odd, we write m as 2k + 1 and use the identity sin2 x = 1 − cos2 x to obtain sinm x = sin2k+1 x = (sin2 x)k sin x = (1 − cos2 x)k sin x, and, then ˆ ˆ m n sin x cos x dx = (1 − cos2 x)k cosn x sin x dx. Using the substitution u = cos x, we get ˆ ˆ ˆ m n 2 k n sin x cos x dx = (1 − cos x) cos x sin x dx = − (1 − u2 )k un du. Now, the integral is easy to evaluate. Case 2. If m is even and n is odd, we write n as 2k + 1 and use the identity cos2 x = 1 − sin2 x and repeat what we have done in Case 1 changing the places of sine and cosine. Case 3. If both m and n are even, we substitute 1 − cos 2x 1 + cos 2x , cos2 x = 2 2 to reduce the integrand to one in lower powers of cos 2x. sin2 x =
  • 4. 4 INTEGRATION TECHNIQUES 3.2. Integrals of Powers of tan x and sec x. We know how to integrate the tangent and secant and their squares. To integrate higher powers we use the identities tan2 x = sec2 x − 1 and sec2 x = tan2 x + 1, and integrate by parts when necessary to reduce the higher powers to lower powers. 3.3. Products of Sines and Cosines. To evaluate the integrals of the form ˆ ˆ ˆ sin mx sin nx dx, sin mx cos nx dx, and cos mx cos nx dx, we may apply the method of integration by parts, but two such integrations are required in each case. So, it is better to use the identities 1 sin mx sin nx = (cos(m − n)x − cos(m + n)x) 2 1 sin mx cos nx = (sin(m − n)x + cos(m + n)x) 2 1 cos mx cos nx = (cos(m − n)x + cos(m + n)x) 2 Example 3.1. Evaluate the following integrals. ˆ (1) cos4 x sin x dx ˆ (2) cos4 x sin3 x dx ˆ √ (3) sin x cos5 x dx ˆ (4) cos3 x dx ˆ (5) sin3 x cos7 x dx ˆ (6) sin2 x dx ˆ (7) cos4 x dx ˆ (8) sin2 x cos2 x dx ˆ (9) tan3 x sec3 x dx ˆ (10) tan2 x dx ˆ (11) tan2 x sec4 x dx ˆ (12) tan3 x dx ˆ (13) tan3 x sec5 x dx
  • 5. INTEGRATION TECHNIQUES 5 ˆ (14) sec x dx ˆ √ tan x sec4 x dx (15) ˆ (16) cot4 x dx ˆ (17) csc x dx ˆ (18) cot3 x csc3 x dx ˆ sin5 x √ (19) dx cos x 3.4. Trigonometric Substitutions. Trigonometric substitutions can be effective in transforming complicated integrals involving a2 − x2 , a2 + x2 and x2 − a2 into integrals we can evaluate directly. The following table gives the suitable trigonometric substitution in each case and the trigonometric identity to be used. Expression Trigonometric Substitution Related Trigonometric Identity a2 + x 2 x = a tan θ 1 + tan2 θ = sec2 θ 2 2 a −x x = a sin θ 1 − sin2 θ = cos2 θ x 2 − a2 x = a sec θ sec2 θ − 1 = tan2 θ Remark. We want any substitution we use in an integration to be reversible so that we can change back to the original variable afterward. For example, if x = a tan θ, we want to be able x after the integration takes place. As we know, the functions in these to set θ = tan−1 a substitution have inverses only for selected values of θ. For reversibility, x π π x = a tan θ requires θ = tan−1 with − < θ < , a 2 2 π π ≤θ≤ , 2 2   0 ≤ θ < π if x ≥ 1,   2 a −1 x x = a sec θ requires θ = sec with  a  π < θ ≤ π if x ≤ −1,  2 a To simplify calculations with the substitution x = a sec θ, we will restrict its use to integrals in √ x π which ≥ 1. This will place θ in 0, and make tan θ ≥ 0. We will then have x2 − a2 = a 2 √ a2 tan2 θ = |a tan θ| = a tan θ, free of absolute values, provided that a > 0. x = a sin θ requires θ = sin−1 x a with − Example 3.2. (1) Evaluate the following integrals. ˆ dx √ (a) 2 2 ˆ x 4−x dx √ (b) 2 ˆ √9 2+ x x − 25 (c) dx, for x ≥ 5. x
  • 6. 6 INTEGRATION TECHNIQUES ˆ (d) ˆ (e) ˆ (f) ˆ (g) ˆ (h) (i) (j) ˆ ˆ ˆ dx (1 + x2 )2 √ 4 − x2 dx √ x2 − 1 dx x dx √ 2 x2 − 2 x √ 9x2 − 4 dx x dx 2 + 2x + 10 x √ ex 1 − e2x dx √ cos x dx 1 + sin2 x dx (l) 2 + 4x + 5)2 ˆ (4x 2x + 2 (m) dx 2 − 4x + 8 ˆ x 5x + 3 dx (n) 2 − 4x + 8 ˆ x x2 (o) 5 dx (x2 − 1) 2 (2) Find the volume of the solid generated by revolving about the x-axis the region in the 2 first quadrant enclosed by the coordinate axes, the curve y = , and the line x = 1. 1 + x2 (k) ˆ 4. Integration of Rational Functions Using Partial Fractions The method based on the fact that “every rational function can be written as a sum of simpler fractions that we can integrate with the techniques we already know”. General Description of the Method of Partial Fractions. To write a rational function P (x) as a sum of partial fractions, do the following: Q(x) (1) The degree of P (x) must be less than the degree of Q(x). (Otherwise, divide P (x) by Q(x) and work on the remainder.) (2) Factor out the polynomial Q(x). • For each linear factor, assign the sum of m partial fractions to this factor where m is the exponent of that linear factor as follows: A1 A2 Am + + ··· + 2 x − r (x − r) (x − r)m • For each irreducible quadratic factor (a polynomial of second degree that cannot be written as a product of linear factors), assign the sum of n partial fractions to
  • 7. INTEGRATION TECHNIQUES this factor where n is the exponent of that quadratic factor as: B1 x + C1 B2 x + C2 Bn x + Cn + 2 + ··· + 2 2 + px + q 2 x (x + px + q) (x + px + q)n Several Examples. We assume that the degree of P (x) is less than the degree of Q(x). (1) Distinct Linear Factors: P (x) A B C P (x) = = + + . Q(x) (x − r1 )(x − r2 )(x − r3 ) x − r1 x − r2 x − r3 (2) Repeated Linear Factors: P (x) P (x) B A C D = + = + + . 4 2 3 Q(x) (x − r) x − r (x − r) (x − r) (x − r)4 (3) Some distinct, some repeated linear factors: P (x) A B C D E F P (x) + + = 2 = + 2+ + . 3 2 Q(x) x (x − r1 )(x − r2 ) x x x − r1 x − r2 (x − r2 ) (x − r3 )3 (4) Distinct irreducible quadratic factors: P (x) P (x) Ax + B Cx + D = 2 = 2 + 2 . 2+p x+q ) Q(x) (x + p1 x + q1 )(x x + p1 x + q 1 x + p2 x + q2 2 2 (5) Repeated irreducible quadratic factors: P (x) P (x) Ax + B Cx + D Ex + F = 2 = 2 + 2 + 2 . 3 2 Q(x) (x + p1 x + q1 ) x + p1 x + q1 (x + p1 x + q1 ) (x + p1 x + q1 )3 (6) General Case: P (x) P (x) = 2 (x2 + p x + q )2 (x2 + p x + q ) Q(x) x(x − r) 1 1 2 2 A B C Dx + E Fx + G Hx + I = + + + 2 + 2 + 2 . 2 2 x x − r (x − r) x + p1 x + q1 (x + p1 x + q1 ) x + p2 x + q 2 Example 4.1. Evaluate the following integrals. ˆ 1 (1) dx 2+x−2 ˆ x 2 3x − 7x − 2 (2) dx x3 − x ˆ 2x3 − 4x2 − 15x + 5 (3) dx x2 − 2x − 8 ˆ 5x2 + 20x + 6 (4) dx 3 2 ˆ x 2 + 2x + x 2x − 5x + 2 (5) dx x3 + x ˆ 5x2 + 6x + 2 dx (6) 2 ˆ (x + 2)(x + 2x + 5) 3x − 1 (7) dx (x + 2)(x − 3) 7
  • 8. 8 INTEGRATION TECHNIQUES ˆ (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ x2 + 1 dx x(x − 1)(x − 2)(x − 3) x dx (x − 3)2 x−1 dx (x + 1)3 x2 + 1 dx (x − 1)2 (x + 1) x+1 dx 2 + 1)(x − 2) (x 6x2 − 15x + 22 dx (x + 3)(x2 + 2)2 2x + 1 dx 3x + 1 x5 − x4 − 3x + 5 dx x4 − 2x3 + 2x2 − 2x + 1 x3 + 1 dx x2 − x sec x dx x3 dx x2 + 6x + 5 x4 dx x4 − 1 dx 3−1 x dx x − e2x e sin x dx cos x + cos 2x sin4 x dx cos3 x dx 3 2 2 ˆ x(1 − x ) 3 2x + 5x2 + 8x + 4 (25) dx (x2 + 2x + 2)2
  • 9. INTEGRATION TECHNIQUES 9 Brief Summary of Integration Techniques. ˆ ˆ • Integration by Substitution: f (u(x))u (x) dx = f (u) du What to look for – Compositions of the form f (u(x)), where the integrand also contains u (x); for example, ˆ ˆ ˆ 2 2 2x cos(x ) dx = cos(x )2x dx = cos udu. – Compositions of the form f (ax + b); for example, ˆ ˆ x u−1 √ √ du. dx = u x+1 ´ ´ • Integration by Parts: u dv = uv − v du What to look for: products of different types of functions: xn , cos x, ex ; for example, ˆ ˆ 2x cos x dx = x sin x − sin x dx. • Trigonometric Substitutions: What to look √ for: – Terms like a2 − x2 : Let x = a sin θ, − π ≤ θ ≤ π , so that dx = a cos θ dθ and 2 2 √ a2 − x2 = a2 − a2 sin2 θ = a cos θ; for example, ˆ ˆ x2 √ dx = sin2 θ dθ. 2 1−x √ – Terms like x2 + a2 : Let x = a tan θ, − π < θ < π , so that dx = a sec2 θ dθ and 2 2 √ √ x2 + a2 = a2 tan2 θ + a2 = a sec θ; for example, ˆ ˆ x3 √ dx = 27 tan3 θ sec θ dθ. 2+9 x √ 2 − a2 : Let x = a sec θ, for θ ∈ [0, π ) ∪ ( π , π], so that dx = – Terms like x 2 2 √ √ a sec θ tan θ dθ and x2 − a2 = a2 sec2 θ − a2 = a tan θ; for example, ˆ ˆ √ 3 2 − 4 dx = 32 x x sec4 θ tan2 θ dθ. • Partial Fractions: What to look for: rational functions, for example, ˆ ˆ ˆ x+2 x+2 A B dx = dx = + 2 − 4x + 3 x (x − 1)(x − 3) x−1 x−3 dx.
  • 10. 10 INTEGRATION TECHNIQUES 5. Improper Integrals ˆ 2 Example 5.1. Evaluate −1 1 dx. x2 When studying the definite integrals, we required two things. First, the domain of integration (from a to b) [a, b], be finite. Second, function is finite on the domain of integration. Question: What happens if the domain of integration is infinite? What if function becomes infinite in the domain of integration? Answer: Improper integration! The integrals of type described above are called improper integrals. If the limits exist, we evaluate them with the following definitions (1) If f is continuous on [a, ∞), then ˆ ∞ ˆ b f (x) dx = lim f (x) dx. b→∞ a a (2) If f is continuous on (−∞, b], then ˆ b ˆ b f (x) dx = lim f (x) dx. a→−∞ −∞ a (3) If f is continuous on [a, b) then ˆ b ˆ c f (x) dx = lim f (x) dx. − c→b a a (4) If f is continuous on (a, b] then ˆ b ˆ b f (x) dx = lim f (x) dx. + c→a a c In each case, if the limit exists and is finite we say that the improper integral converges and the limit is the value of the improper integral. Otherwise the improper integral diverges. Similarly, if f becomes infinite at an interior point d ∈ [a, b], then ˆ b ˆ d ˆ b f (x) dx = f (x) dx + f (x) dx. a a d This integral (on [a, b]) converges if both integrals (on [a, d] and on [d, b]) converges. Otherwise, the integral from a to b diverges. ˆ ˆ ∞ a Finally, if f is continuous on (−∞, ∞) and if ˆ ∞ f (x) dx converges and its value is −∞ ˆ ˆ ∞ −∞ f (x) dx + −∞ f (x) dx both converge, then a ˆ a f (x) dx = −∞ f (x) dx and ∞ f (x) dx. a If either one or both of the integrals on the right-hand side of this equation diverge, the integral diverges. Example 5.2. In each part, determine whether the improper integral converges or diverges, and find its value if it converges.
  • 11. INTEGRATION TECHNIQUES ˆ (1) (2) (3) (4) (5) (6) (7) 1 dx √ . 1−x 0 ˆ 0 1 dx. 2 −1 x ˆ 1 1 √ dx. ˆ0 2 x 1 dx. 1 x−1 ˆ 2 1 dx. 2 ˆ−1 x ∞ 1 dx. 2 ˆ1 ∞ x 1 √ dx. x ˆ1 ∞ (8) (9) e−x dx. ˆ1 ∞ ˆ0 sin x dx. ∞ xe−x dx. (10) ˆ0 1 (11) ˆ−1 2 (12) (13) (14) (15) (16) (17) (18) 1 (20) dx. 1 √ dx. 2 ˆ0 3 4 − x dx 2 . 0 (x − 1) 3 ˆ 1 dx . x ˆ−1 1 dx . p 0 x ˆ −1 1 dx. −∞ x ˆ 0 1 dx. 2 ˆ−∞ (x − 1) ∞ 1 dx. 2 ˆ−∞ 1 + x ∞ (19) 1 x3 ˆ−∞ ∞ ˆ−∞ ∞ (21) 0 2 xe−x dx. e−x dx. 1 dx. (x − 1)2 11
  • 12. 12 INTEGRATION TECHNIQUES ˆ (22) (23) ∞ ˆ1 ∞ ˆ−∞ ∞ 1 dx. xp e−|x| dx. cos x dx. (24) −∞ Exercises 5.3. In each part, determine whether the improper integral converges or diverges, and find its value if it converges. ˆ 1 dx (1) . 2 −1 x ˆ 16 dx √ . (2) 4 x ˆ0 1 dx √ (3) . 2 ˆ0 ∞ 1 − x ln x dx. (4) ˆ1 ∞ x dx (5) . 1.001 ˆ1 1 x dx (6) 1 . −8 x 3 ˆ 1 dx (7) . 0.999 ˆ0 ∞x x dx (8) 3 . 2 −∞ (x + 4) 2 ˆ ∞ 16 tan−1 x dx. (9) 2 ˆ0 ∞ 1 + x 2e−θ sin θ dθ. (10) ˆ0 1 (11) − ln x dx. ˆ0 ∞ dx (12) . 2 ˆ0 1 (x + 1)(x + 1) (13) −x ln |x| dx. ˆ−1 ∞ dx (14) . x + e−x ˆ−∞ e ∞ (15) ln(ln x). ee A comparison test. Theorem 5.1 (Direct Comparison Test). Let f and g be continuous on [a, ∞) and suppose that 0 ≤ f (x) ≤ g(x) for all x ≥ a. ˆ ∞ ˆ ∞ (i) If g(x) dx converges then f (x) dx converges. a a
  • 13. INTEGRATION TECHNIQUES ˆ (ii) If ˆ ∞ f (x) dx diverges then a 13 ∞ g(x) dx diverges. a Example 5.4. In each part, determine whether the improper integral converges or diverges. ˆ ∞ 1 (1) dx. x ˆ0 ∞ x + e 2 e−x dx. (2) ˆ0 ∞ 2 + sin x √ (3) dx. x 1 ˆ ∞ sin2 x (4) dx. 2 ˆ1 ∞ x dx √ . (5) 4 ˆ1 ∞ x + 5 ln x √ dx. (6) ˆ1 ∞ x dx (7) . 5x + 2x 1 ˆ ∞ dx (8) . x ˆ0 ∞ 1 + e 1 + sin x dx. (9) x2 ˆπ ∞ dx (10) . ˆ2 1 ln x ln x √ dx. (11) x 0
  • 14. 14 INTEGRATION TECHNIQUES Answers cos(ax) + c. a x 1 Answers 1.2. tan−1 + c. a a x5 10x3 − + 25x + c. Answers 1.3. 5 3 x−3 Answers 1.4. sin−1 + c. 2 Answers 1.1. − Answers 1.5. ln x2 + 2 x + 5 − 3 tan−1 4 x+1 2 Answers 2.1. (1) sin x − x cos x + c. (2) x2 ex − 2xex + 2ex + c. ex (cos x + sin x) (3) + c. 2 2 2 x ln x x (4) − + c. 2 4 (5) x ln x − x + c. √ (6) x sin−1 x + 1 − x2 + c. 2 ex (x2 − 1) + c. (7) 2 (8) x tan x + ln(cos x) + c. 3x x3x − 2 + c. (9) ln 3 ln 3 x(cos(ln x) + sin(ln x)) (10) + c. 2 4 x 3 x 2 x (11) x e − 4x e + 12x e − 24xex + 24ex + c. x ln x x − + c. (12) 2 √ √x 2 √x (13) 2 xe − 2e + c. (14) −x2 cos x + 2x sin x + 2 cos x + c. xe2x e2x (15) − + c. 2 −x 4 −x (16) −xe − e + c. 2e2x cos(3x) 3e2x sin(3x) (17) + + c. 13 13 1 (18) x tan−1 x − ln(1 + x2 ) + c. 2 2 x4 e−x 2 2 (19) − − x2 e−x − e−x + c. 2 √ −1 esin x ( 1 − x2 + x) (20) + c. 2 5 3 2 2 (21) (1 − x) 2 − (1 − x) 2 + c. 5 3 15 (22) 4 ln 2 − + c. 16 + c.
  • 15. INTEGRATION TECHNIQUES Answers 3.1. (1) − cos5 x + c. 5 cos7 x cos5 x − + c. 7 5 3 3 11 4 2 2 (3) sin 2 x − sin 2 x + sin 2 x + c. 3 7 11 sin3 x (4) sin x − + c. 3 cos10 x cos8 (5) − + c. 10 8 x sin(2x) + c. (6) − 2 4 3x sin(2x) sin(4x) (7) + + c. 8 4 32 x sin(4x) + c. (8) − 8 32 sec5 x sec3 x (9) − + c. 5 3 (10) tan x − x + c. tan5 x tan3 x (11) + + c. 5 3 tan2 x + ln | cos x| + c. (12) 2 7 sec x sec5 x (13) − + c. 7 5 (14) ln | sec x + tan x| + c. 7 3 2 2 (15) tan 2 + tan 2 +c. 7 3 1 3 (16) − cot x + cot x + x + c. 3 (17) − ln | csc x + cot x| + c. csc3 x csc5 x − + c. (18) 3 5 √ 5 9 4 2 (19) − cos x + cos 2 x − cos 2 x + c. 5 9 √ 4 − x2 Answers 3.2. (1) (a) − + c. 4x √ x + 9 + x2 + c. (b) ln 3 √ x (c) x2 − 25 − 5 sec−1 + c. 5 1 x −1 (d) tan x + + c. 2 2(1 + x2 ) √ x x 4 − x2 (e) 2 sin−1 + + c. 2 2 √ (f) √x2 − 1 − sec−1 x + c. x2 − 2 (g) + c. 2x (2) 15
  • 16. 16 INTEGRATION TECHNIQUES √ 3x 9x2 − 4 − 2 sec−1 + c. 2 1 x+1 (i) tan−1 + c. 3 3 √ ex 1 − e2x 1 −1 x + c. (j) sin (e ) + 2 2 (k) ln 1 + sin2 x + sin x + c. 1 2x + 1 2x + 1 (l) tan−1 + + c. 32 2 16(4x2 + 4x + 5) x−2 (m) ln x2 − 4 x + 8 + 3 tan−1 + c. 2 5 13 x−2 (n) ln x2 − 4 x + 8 + tan−1 + c. 2 2 2 x3 (o) − 3 + c. 3(x2 − 1) 2 π(π + 2) (2) . 2 1 1 Answers 4.1. (1) ln |x − 1| − ln |x + 2| + c. 3 3 (2) 2 ln |x| + 4 ln |x + 1| − 3 ln |x − 1| + c. 3 1 (3) x2 + ln |x − 4| − ln |x + 2| + c. 2 2 9 (4) − + 6 ln |x| − ln |x + 1| + c. x+1 (5) −5 tan−1 x + 2 ln |x| + c. 3 7 x+1 (6) ln x2 + 2 x + 5 − tan−1 + 2 ln |x + 2| + c. 2 2 2 7 8 (7) ln |x − 3| + ln |x + 2| + c. 5 5 5 1 5 (8) − ln |x − 2| − ln |x| + ln |x − 1| + ln |x − 3| + c. 2 6 3 3 (9) − + ln |x − 3| + c. x−3 1 1 (10) − + + c. x + 1 (x + 1)2 1 1 1 (11) ln |x + 1| + ln |x − 1| − + c. 2 2 x−1 3 1 3 (12) − ln x2 + 1 − tan−1 x + ln |x − 2| + c. 10 5 5 √ √ 5 1 3 2 x 2 2 −1 (13) ln |3 + x| + − ln x + 2 + tan 2(x2 + 2) 2 2 2 2 1 (14) x + ln |3 x + 1| + c. 3 9 x2 1 (15) x + + ln x2 + 1 + tan−1 x − 2 ln |x − 1| − + c. 2 x−1 x2 (16) x + − ln |x| + 2 ln |x − 1| + c. 2 (h) + c.
  • 17. INTEGRATION TECHNIQUES (17) ln |sec x + tan x| + c. 1 125 x2 − 6 x − ln |x + 1| + ln |5 + x| + c. (18) 2 4 4 1 1 1 (19) x + ln |x − 1| − ln |x + 1| − tan−1 x + c. 4 4 √ 2 √ 1 3 (2 x + 1) 3 1 2 −1 (20) − ln x + x + 1 − tan + ln |x − 1| + c. 6 3 3 3 −x x (21) −e + x − ln |e − 1| + c. 1 1 (22) − ln |2 cos x − 1| + ln |1 + cos x| + c. 3 3 1 3 3 1 (23) sin x − − ln |sin x + 1| + ln |sin x − 1| − + c. 4(sin x + 1) 4 4 4(sin x − 1) √ √ 1 1 1 (24) √ − ln 1 − x2 + 1 + ln 1 − x2 − 1 + c. 2 1 − x2 2 1 (25) ln x2 + 2 x + 2 − tan−1 (x + 1) − 2 + c. x + 2x + 2 Answers 5.1. See, Answers 5.2, (5). Answers 5.2. (1) Convergent, 2. (2) Divergent. (3) Convergent, 2. (4) Divergent. (5) Divergent. (6) Convergent, 1. (7) Divergent. 1 (8) Convergent, . e (9) Divergent. (10) Convergent, 1. (11) Convergent, 0. π (12) Convergent, . 2 √ 3 (13) Convergent, 3 + 3 2. (14) Divergent. (15) Divergent if p ≥ 1. Convergent if p < 1, (16) (17) (18) (19) (20) (21) 1 . 1−p Divergent. Convergent, 1. Convergent, π. Convergent, 0. Divergent. Divergent. (22) Divergent if p ≤ 1. Convergent if p > 1, (23) Convergent, 2. (24) Divergent. Answers 5.3. (1) Divergent. 1 . p−1 17
  • 18. 18 INTEGRATION TECHNIQUES 32 . 3 π (3) Convergent, . 2 (4) Divergent. (5) Convergent, 1000. 9 (6) Convergent, − . 2 (7) Convergent, 1000. (8) Convergent, 0. (9) Convergent, 2π 2 . (10) Convergent, 1. (11) Convergent, 1. π (12) Convergent, . 4 (13) Convergent, 0. π (14) Convergent, . 2 Answers 5.4. (1) Convergent. (2) Convergent. (3) Divergent. (4) Convergent. (5) Convergent. (6) Divergent. (7) Convergent. (8) Convergent. (9) Convergent. (10) Divergent. (11) Convergent. (12) Divergent. (2) Convergent,