Successfully reported this slideshow.
Upcoming SlideShare
×

# 08 numerical integration 2

763 views

Published on

Published in: Education, Technology
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

### 08 numerical integration 2

1. 1. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Numerical Integration
2. 2. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Objectives • The student should be able to – Understand the need for numerical integration – Derive the trapezoidal rule using geometric insight – Apply the trapezoidal rule – Apply Simpson’s rule
3. 3. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Need for Numerical Integration! ( ) 6 11 01 2 1 3 1 23 1 1 0 231 0 2 =−      ++=       ++=++= ∫ x xx dxxxI ( ) 11 0 1 0 1 −−− −=−== ∫ eedxeI xx ∫ − = 1 0 2 dxeI x
4. 4. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Area under the graph! • Definite integrations always result in the area under the graph (in x-y plane) • Are we capable of evaluating an approximate value for the area?
5. 5. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Example • To perform the definite integration of the function between (x0 & x1), we may assume that the area is equal to that of the trapezium: ( ) ( )01 01 2 1 0 xx yy dxxf x x − + ≈∫
7. 7. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik The Trapezoidal Rule ( ) ( ) ( ) ( ) 2 2 12 12 01 01 yy xx yy xxI + −+ + −≈ Integrating from x0 to x2: ( ) ( ) ( ) ( ) 2 212112101001 yxxyxxyxxyxx I −+−+−+− ≈
8. 8. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik The Trapezoidal Rule ( ) ( ) hxxxx =−=− 1201 If the points are equidistant 2 2110 hyhyhyhy I +++ ≈ ( )210 2 2 yyy h I ++≈
9. 9. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Dividing the whole interval into “n” subintervals       ++≈ ∑ − = n n i i yyy h I 1 1 0 2 2
10. 10. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik The Algorithm • To integrate f(x) from a to b, determine the number of intervals “n” • Calculate the interval length h=(b-a)/n • Evaluate the function at the points yi=f(xi) where xi=x0+i*h • Evaluate the integral by performing the summation       ++≈ ∑ − = n n i i yyy h I 1 1 0 2 2
11. 11. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Note that X0=a Xn=b
12. 12. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Example • Integrate • Using the trapezoidal rule • Use 2,3,&4 points and compare the results ∫= 1 0 2 dxxI
13. 13. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Solution • Using 2 points (n=1), h=(1-0)/(1)=1 • Substituting: ( )21 2 1 yyI +≈ ( ) 5.010 2 1 =+≈I X Y 0 0 1 1 2 points, 1 interval
14. 14. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Solution • Using 3 points (n=2), h=(1-0)/(2)=0.5 • Substituting: ( )321 2 2 5.0 yyyI ++≈ ( ) 375.0125.0*20 2 5.0 =++≈I X Y 0 0 0.5 0.25 1 1 3 points, 2 interval
15. 15. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Solution • Using 4 points (n=3), h=(1-0)/(3)=0.333 • Substituting: ( )4321 22 2 333.0 yyyyI +++≈ ( ) 3519.01444.0*2111.0*20 2 333.0 =+++≈I X Y 0 0 0.33 0.111 0.667 0.444 1 1 4 points, 3 interval
16. 16. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Simpson’s Rule Using a parabola to join three adjacent points!
17. 17. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Working with three points! ( ) [ ]210 4 3 2 0 yyy h dxxf x x ++≈∫
18. 18. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik For 4-Intervals ( ) [ ]432210 44 3 4 0 yyyyyy h dxxf x x +++++≈∫
19. 19. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik In General: Simpson’s Rule ( )       +++≈ ∑∑∫ − = − = n n i i n i i x x yyyy h dxxf n 2 ,..4,2 1 ,..3,1 0 24 30 NOTE: the number of intervals HAS TO BE even
20. 20. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Example • Integrate • Using the Simpson rule • Use 3 points ∫= 1 0 2 dxxI
21. 21. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Solution • Using 3 points (n=2), h=(1-0)/(2)=0.5 • Substituting: • Which is the exact solution! ( )210 4 3 5.0 yyyI ++≈ ( ) 3 1 125.0*40 3 5.0 =++≈I
22. 22. ENEM602 Spring 2007 Dr. Eng. Mohammad Tawfik Homework #7 • Chapter 21, pp. 610-612, numbers: 21.1, 21.3, 21.5, 21.25, 21.28. • Due date: Week 15-19 May 2005