SlideShare a Scribd company logo
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 1
Unit-III: MULTIPLE INTEGRAL
Sr. No. Name of the Topic Page No.
1 Double integrals 2
2 Evaluation of Double Integral 2
3 To Calculate the integral over a given region 6
4 Change of order of integration 9
5 Change of variable 11
6 Area in Cartesian co-ordinates 13
7 Volume of solids by double integral 15
8 Volume of solids by rotation of an area
(Double Integral)
16
9 Triple Integration (Volume) 18
10 ReferenceBook 21
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 2
MULTIPLE INTEGRALS
1.1 DOUBLE INTEGRALS:
We Know that
∫ 𝑓( 𝑥) 𝑑𝑥 = lim𝑛→∞
𝛿𝑥→0
[ 𝑓( 𝑥1) 𝛿𝑥1 + 𝑓( 𝑥2) 𝛿𝑥2 + 𝑓( 𝑥3) 𝛿𝑥3 + ⋯+
𝑏
𝑎
𝑓( 𝑥 𝑛) 𝛿𝑥 𝑛]
Let us consider a function 𝑓(𝑥, 𝑦) of two variables 𝑥 and 𝑦 defines in
the finite region A of 𝑥𝑦- plane. Divide the region 𝐴 into elementary areas.
𝛿𝐴1, 𝛿𝐴2, 𝛿𝐴3,… 𝛿𝐴 𝑛
Then ∬ 𝑓( 𝑥, 𝑦) 𝑑𝐴 =𝐴
lim𝑛→∞
𝛿𝐴→0
[ 𝑓( 𝑥1, 𝑦1) 𝛿𝐴1 + 𝑓( 𝑥2, 𝑦2) 𝛿𝐴2 + ⋯+
𝑓( 𝑥 𝑛, 𝑦𝑛) 𝛿𝐴 𝑛]
2.1 Evaluation of Double Integral:
Double integral over region A may be evaluated by
two successiveintegrations.
If A is described as 𝑓1(𝑥) ≤ 𝑦 ≤ 𝑓2(𝑥) [ 𝑦1 ≤ y ≤ 𝑦2]
And 𝑎 ≤ 𝑥 ≤ 𝑏,
Then ∬ 𝑓( 𝑥, 𝑦) 𝑑𝐴 = ∫ ∫ 𝑓(𝑥, 𝑦)
𝑦2
𝑦1
𝑑𝑥 𝑑𝑦
𝑏
𝑎𝐴
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 3
2.1.1 FIRST METHOD:
∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥𝑑𝑦 = ∫ [∫ 𝑓( 𝑥, 𝑦) 𝑑𝑦
𝑦2
𝑦1
] 𝑑𝑥
𝑥2
𝑥1𝐴
𝑓(𝑥, 𝑦) is first integrated with respectto y treating 𝑥 as constant between the
limits 𝑦1 and 𝑦2 and then the result is integrated with respectto 𝑥 between
the limits 𝑥1 and 𝑥2.
In the region we take an elementary area 𝛿𝑥𝛿𝑦. Then integration w.r.t to 𝑦
(𝑥 keeping constant) converts small rectangle 𝛿𝑥𝛿𝑦 into a strip 𝑃𝑄(𝑦 𝛿𝑥).
While the integration of the result w.r.t 𝑥 correspondsto the sliding to the
strip, from 𝐴𝐷 to 𝐵𝐶 covering the whole region 𝐴𝐵𝐶𝐷.
2.1.2 SECOND METHOD:
∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥𝑑𝑦 = ∫ [ ∫ 𝑓( 𝑥, 𝑦) 𝑑𝑥
𝑥2
𝑥1
] 𝑑𝑦
𝑦2
𝑦1𝐴
Here 𝑓(𝑥, 𝑦) is first integrated w.r.t 𝑥 keeping 𝑦 constant between the limits
𝑥1 and 𝑥2 and then the resulting expression is integrated with respectto 𝑦
between the limits 𝑦1 and 𝑦2 and vice versa.
NOTE:Forconstant limits, it does not matter whether we first integrate
w.r.t 𝑥 and then w.r.t 𝑦 or vice versa.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 4
2.2 Examples:
Example 1: Find ∫ ∫ 𝑒 𝑦 𝑥⁄
𝑑𝑦 𝑑𝑥
𝑥2
0
1
0
Solution: Here, we have
∫ [∫ 𝑒 𝑦 𝑥⁄
𝑑𝑦
𝑥2
0
] 𝑑𝑥 = ∫ [
𝑒 𝑦 𝑥⁄
1 𝑥⁄
]
0
𝑥2
𝑑𝑥
1
0
1
0
= ∫
( 𝑒 𝑥−1)
1 𝑥⁄
𝑑𝑥
1
0
= ∫ 𝑥 𝑒 𝑥
𝑑𝑥 − ∫ 𝑥 𝑑𝑥
1
0
1
0
= [ 𝑥 𝑒 𝑥
− 𝑒 𝑥]0
1
− [
𝑥2
2
]
0
1
= 𝑒1
− 𝑒1
+ 1 −
1
2
=
1
2
∴ ∫ ∫ 𝒆 𝒚 𝒙⁄
𝒅𝒚 𝒅𝒙
𝒙 𝟐
𝟎
𝟏
𝟎
=
𝟏
𝟐
________ Answer
Example 2: Evaluate ∫ ∫ 𝑒−𝑥2(1+𝑦2)
𝑥 𝑑𝑥 𝑑𝑦
∞
0
∞
0
Solution: Here, we have
∫ ∫ 𝑒−𝑥2(1+𝑦2)
𝑥 𝑑𝑥 𝑑𝑦
∞
0
∞
0
= ∫ 𝑑𝑦 ∫ 𝑒−𝑥2(1+𝑦2)
∞
0
𝑥 𝑑𝑥
∞
0
= ∫ 𝑑𝑦 [
𝑒−𝑥2(1+𝑦2)
−2(1+𝑦2)
]
0
∞
∞
0
= ∫ [0 +
1
2(1+𝑦2)
] 𝑑𝑦
∞
0
=
1
2
[tan−1
𝑦]0
∞
=
1
2
[tan−1
∞ − tan−1
0]
=
1
2
(
𝜋
2
)
=
𝜋
4
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 5
∴ ∫ ∫ 𝑒−𝑥2(1+𝑦2)
𝑥 𝑑𝑥 𝑑𝑦
∞
0
∞
0
=
𝜋
4
________ Answer
Example 3: Sketch the area of integration and evaluate ∫ ∫ 2𝑥2
𝑦2
𝑑𝑥 𝑑𝑦
√2−𝑦
−√2−𝑦
2
1
.
Solution: Here we have
∫ ∫ 2𝑥2
𝑦2
𝑑𝑥 𝑑𝑦
√2−𝑦
−√2−𝑦
2
1
= 2∫ 𝑦2
𝑑𝑦
2
1
∫ 𝑥2
𝑑𝑥
√2−𝑦
−√2−𝑦
= 4 ∫ 𝑦2
𝑑𝑦
2
1
∫ 𝑥2
𝑑𝑥
√2−𝑦
0
[
∵ ∫ 𝑓( 𝑥) 𝑑𝑥 = 2∫ 𝑓( 𝑥) 𝑑𝑥
𝑎
0
𝑎
−𝑎
𝑤ℎ𝑒𝑟𝑒 𝑥2
𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
]
= 4∫ 𝑦2
𝑑𝑦 [
𝑥3
3
]
0
√2−𝑦2
1
=
4
3
∫ 𝑦2
𝑑𝑦 (2− 𝑦)
3
2
2
1
=
4
3
∫ (2 − 𝑦)2
𝑡3 2⁄
(−𝑑𝑡)
0
1
[
𝑝𝑢𝑡 2 − 𝑦 = 𝑡
∴ 𝑑𝑦 = −𝑑𝑡
]
=
4
3
[(2 − 𝑡)2
(
2𝑡
5
2
5
) − (−2)(2− 𝑡)
2
5
.
2
7
𝑡
7
2 + (2)
2
5
.
2
7
.
2
9
𝑡
9
2]
0
1
=
4
3
[
2
5
+ 2 (
2
5
.
2
7
) + (2)(
2
5
.
2
7
.
2
9
)]
=
4
3
[
2
5
+
8
35
+
16
315
]
=
4
15
[2 +
8
7
+
16
63
]
=
4
15
[
126+72+16
63
]
=
4
15
(
214
63
)
=
856
945
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 6
∴ ∫ ∫ 𝟐𝒙 𝟐
𝒚 𝟐
𝒅𝒙 𝒅𝒚
√ 𝟐−𝒚
−√ 𝟐−𝒚
𝟐
𝟏
=
𝟖𝟓𝟔
𝟗𝟒𝟓
________ Answer
3.1 To Calculate the integral over a given region:
Sometimes the limits of integration are not given but the area of the
integration is given.
If the area of integration is given then we proceed
as follows:
Take a small area 𝑑𝑥 𝑑𝑦. The integration w.r.t 𝑥
between the limits 𝑥1, 𝑥2 keeping 𝑦 fixed
indicates that integration is done, along 𝑃𝑄. Then
the integration of result w.r.t to 𝑦 correspondsto sliding the strips 𝑃𝑄 from
𝐵𝐶 to 𝐴𝐷 covering the whole region 𝐴𝐵𝐶𝐷.
We can also integrate first w.r.t ‘𝑦’ then w.r.t 𝑥, which ever is convenient.
Example 4: Evaluate ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦 over the region in the positive quadrant
for which 𝑥 + 𝑦 ≤ 1.
Solution: 𝑥 + 𝑦 = 1 represents a line AB in the
figure.
𝑥 + 𝑦 < 1 represents a plane 𝑂𝐴𝐵.
The region for integration is 𝑂𝐴𝐵 as shaded in
the figure.
By drawing 𝑃𝑄 parallel to y-axis, 𝑝 lies on the line 𝐴𝐵
𝑖. 𝑒. , (𝑥 + 𝑦 = 1) & Q lies on x-axis. The limit for 𝑦 is 1 − 𝑥 and 0.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 7
Required integral =
∫ 𝑑𝑥 ∫ 𝑦 𝑑𝑦
1−𝑥
0
= ∫ 𝑥 𝑑𝑥 [
𝑦2
2
]
0
1−𝑥1
0
1
0
=
1
2
∫ ( 𝑥 𝑑𝑥) (1− 𝑥)21
0
=
1
2
∫ ( 𝑥 − 2𝑥2
+ 𝑥3) 𝑑𝑥
1
0
=
1
2
[
𝑥2
2
−
2𝑥3
3
+
𝑥4
4
]
0
1
=
1
2
[
1
2
−
2
3
+
1
4
]
=
1
24
________ Answer
Example 5: Evaluate ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦,𝑅
where 𝑅 the quadrant of the circle is
𝑥2
+ 𝑦2
= 𝑎2
where 𝑥 ≥ 0 𝑎𝑛𝑑 𝑦 ≥ 0.
Solution: Let the region of integration be the first quadrant of the
circle 𝑂𝐴𝐵.
Let 𝐼 = ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦𝑅
(𝑥2
+ 𝑦2
= 𝑎2
, 𝑦 = √ 𝑎2 − 𝑥2)
First we integrate w.r.t 𝑦 and then w.r.t 𝑥.
The limits for 𝑦 are 0 and √ 𝑎2 − 𝑥2 and for x, 0 to a.
𝐼 = ∫ 𝑥 𝑑𝑥 ∫ 𝑦 𝑑𝑦
√𝑎2−𝑥2
0
𝑎
0
= ∫ 𝑥 𝑑𝑥 [
𝑦2
2
]
0
√𝑎2−𝑥2
𝑎
0
=
1
2
∫ 𝑥 ( 𝑎2
− 𝑥2) 𝑑𝑥
𝑎
0
=
1
2
[
𝑎2 𝑥2
2
−
𝑥4
4
]
0
𝑎
=
𝑎4
8
________ Answer
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 8
Example 6: Evaluate ∬ 𝑥2
𝑑𝑥 𝑑𝑦𝐴
, where A is the region in the first quadrant
bounded by the hyperbola 𝑥𝑦 = 16 and the lines 𝑦 = 𝑥, 𝑦 = 0 𝑎𝑛𝑑 𝑥 = 8.
Solution: The line 𝑂𝑃, 𝑦 = 𝑥 and the curve 𝑃𝑆, 𝑥𝑦 = 16 intersect at 𝑝(4,4).
The line 𝑆𝑁, 𝑥 = 8 intersects the hyperbola at 𝑆(8,2). And 𝑦 = 0 is x-axis.
The area A is shown shaded.
Divide the area into two parts by PM perpendicular to OX.
For the area 𝑂𝑀𝑃, 𝑦 varies from 0 to 𝑥, and then 𝑥 varies from 0 to 4.
For the area 𝑃𝑀𝑁𝑆, 𝑦 varies from 0 to
16
𝑥
and then 𝑥 varies from 4 to 8.
∴ ∬ 𝑥2
𝐴
𝑑𝑥 𝑑𝑦 = ∫ ∫ 𝑥2
𝑑𝑥 𝑑𝑦 + ∫ ∫ 𝑥2
𝑑𝑥 𝑑𝑦
16
𝑥
0
8
4
𝑥
0
4
0
= ∫ 𝑥2
𝑑𝑥
4
0
∫ 𝑑𝑦
𝑥
0
+ ∫ 𝑥2
𝑑𝑥 ∫ 𝑑𝑦
16
𝑥
0
8
4
= ∫ 𝑥2 [ 𝑦]0
𝑥
𝑑𝑥 + ∫ 𝑥2[ 𝑦]
0
16
𝑥
𝑑𝑥
8
4
4
0
= ∫ 𝑥3
𝑑𝑥 + ∫ 16 𝑥 𝑑𝑥
8
4
4
0
= [
𝑥4
4
]
0
4
+ 16[
𝑥2
2
]
4
8
= 64 + 8 (82
− 42
)
= 64 + 384
= 448 ________ Answer
3.2 EXERCISE:
1) Find ∫ ∫ 𝑥 𝑦 𝑒−𝑥2
𝑑𝑥 𝑑𝑦.
𝑦
0
1
0
2) Evaluate the integral ∫ ∫ 𝑒 𝑥+𝑦
𝑑𝑥 𝑑𝑦
log 𝑦
0
log8
1
.
3) Evaluate ∫ ∫
𝑥 𝑑𝑥 𝑑𝑦
𝑥2+𝑦2
𝑥
𝑥
𝑎
𝑎
0
.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 9
4) Evaluate ∫ ∫
𝑑𝑥 𝑑𝑦
√(1−𝑥2)(1−𝑦2)
1
0
1
0
.
5) Evaluate ∬ √ 𝑥𝑦 − 𝑦2 𝑑𝑦 𝑑𝑥𝑆
, where S is a triangle with vertices (0,
0), (10, 1), and (1, 1).
6) Evaluate ∬( 𝑥2
+ 𝑦2) 𝑑𝑥 𝑑𝑦 over the area of the triangle whose
vertices are (0, 1), (1, 0), (1, 2).
7) Evaluate ∬ 𝑦 𝑑𝑥 𝑑𝑦 over the area bounded by 𝑥 = 0, 𝑦 = 𝑥2
,
𝑥 + 𝑦 = 2 in the first quadrant.
8) Evaluate ∬ 𝑥𝑦 𝑑𝑥𝑑𝑦 over the region R given by 𝑥2
+ 𝑦2
− 2𝑥 =
0, 𝑦2
= 2𝑥, 𝑦 = 𝑥.
4.1 CHANGE OF ORDER OF INTEGRATION:
On changing the order of integration, the limits of the integration change. To
find the new limits, draw the rough sketch of the region of integration.
Some of the problems connected with double integrals, which seem to be
complicated can be made easy to handle by a change in the order of
integration.
4.2 Examples:
Example 1: Evaluate ∫ ∫
𝑒 −𝑦
𝑦
𝑑𝑥 𝑑𝑦
∞
𝑥
∞
0
.
Solution: We have, ∫ ∫
𝑒−𝑦
𝑦
𝑑𝑥 𝑑𝑦
∞
𝑥
∞
0
Here the elementary strip 𝑃𝑄 extends from 𝑦 = 𝑥 to 𝑦 = ∞ and this vertical
strip slides from
𝑥 = 0 𝑡𝑜 𝑥 = ∞. The shaded portion of the figure is, therefore, the region of
integration.
On changing the order of integration, we first integrate w.r.t 𝑥 along a
horizontal strip 𝑅𝑆 which extends from 𝑥 = 0 to 𝑥 = 𝑦. To cover the given
region, we then integrate w.r.t ′𝑦′ from
𝑦 = 0 𝑡𝑜 𝑦 = ∞.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 10
Thus
∫ 𝑑𝑥
∞
0
∫
𝑒−𝑦
𝑦
∞
𝑥
𝑑𝑦 = ∫
𝑒−𝑦
𝑦
𝑑𝑦 ∫ 𝑑𝑥
𝑦
0
∞
0
= ∫
𝑒−𝑦
𝑦
𝑑𝑦 [ 𝑥]0
𝑦∞
0
= ∫ 𝑦
∞
0
𝑒−𝑦
𝑦
𝑑𝑦
= ∫ 𝑒−𝑦
𝑑𝑦
∞
0
= [
𝑒−𝑦
−1
]
0
∞
= −[
1
𝑒 𝑦
]
0
∞
= −[
1
∞
− 1]
= 1 ________ Answer
Example 2: Change the order of integration in 𝐼 = ∫ ∫ 𝑥𝑦 𝑑𝑥 𝑑𝑦
2−𝑥
𝑥2
1
0
and hence
evaluate the same.
Solution: We have 𝐼 = ∫ ∫ 𝑥𝑦 𝑑𝑥 𝑑𝑦
2−𝑥
𝑥2
1
0
The region of integration is shown by shaded portion in the figure bounded by
parabola 𝑦 = 𝑥2
, 𝑦 = 2 − 𝑥, 𝑥 = 0 (𝑦 − 𝑎𝑥𝑖𝑠).
The point of intersection of the parabola 𝑦 = 𝑥2
and the line 𝑦 = 2 − 𝑥 is 𝐵(1,1).
In the figure below (left) we draw a strip parallel to y-axis and the strip y, varies
from 𝑥2
to 2 − 𝑥 and 𝑥 varies from 0 to 1.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 11
On changing the order of integration we have taken a strip parallel to x-axis in the
area 𝑂𝐵𝐶 and second strip in the area 𝐶𝐵𝐴. The limits of 𝑥 in the area 𝑂𝐵𝐶 are 0
and √ 𝑦 and the limits of 𝑥 in the area 𝐶𝐵𝐴 are 0 and 2 − 𝑦.
So, the given integral is
= ∫ 𝑦 𝑑𝑦 ∫ 𝑥 𝑑𝑥 + ∫ 𝑦 𝑑𝑦 ∫ 𝑥 𝑑𝑥
2−𝑦
0
2
1
√ 𝑦
0
1
0
= ∫ 𝑦 𝑑𝑦[
𝑥2
2
]
0
√ 𝑦
+ ∫ 𝑦 𝑑𝑦[
𝑥2
2
]
0
2−𝑦2
1
1
0
=
1
2
∫ 𝑦2
𝑑𝑦 +
1
2
∫ 𝑦(2 − 𝑦)2
𝑑𝑦
2
1
1
0
=
1
2
[
𝑦3
3
]
0
1
+
1
2
∫ (4𝑦 − 4𝑦2
+ 𝑦3
)
2
1
=
1
6
+
1
2
[
96−128+48−24+16−3
12
]
=
1
6
+
5
24
=
9
24
=
3
8
________ Answer
4.3 EXERCISE:
1) Change the order of the integration ∫ ∫ 𝑒−𝑥𝑦
𝑦 𝑑𝑦 𝑑𝑥
𝑥
0
∞
0
.
2) Evaluate ∫ ∫ 𝑑𝑥 𝑑𝑦
𝑒 𝑥
1
2
0
by changing the order of integration.
3) Change the order of integration and evaluate ∫ ∫
𝑥2 𝑑𝑥 𝑑𝑦
√𝑥4−4𝑦2
2
√2𝑦
2
0
.
5.1 CHANGE OF VARIABLE:
Sometimes the problems of double integration can be solved easily by
change of independent variables. Let the double integral be
as ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥𝑑𝑦𝑅
. It is to be changed by the new variables 𝑢, 𝑣.
The relation of 𝑥, 𝑦 with 𝑢, 𝑣 are given as 𝑥 = ∅( 𝑢, 𝑣), 𝑦 = 𝜓(𝑢, 𝑣). Then
the double integration is converted into.
1. ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥 𝑑𝑦𝑅
= ∬ 𝑓{ 𝜙( 𝑢, 𝑣), 𝜓(𝑢, 𝑣)}𝑅′ | 𝐽| 𝑑𝑢 𝑑𝑣,
[𝑑𝑥 𝑑𝑦 =
𝜕 (𝑥,𝑦)
𝜕 (𝑢,𝑣)
𝑑𝑢 𝑑𝑣]
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 12
∬ 𝒇( 𝒙,𝒚) 𝒅𝒙 𝒅𝒚 = ∬ 𝒇{ 𝒙( 𝒖, 𝒗), 𝒚(𝒖, 𝒗)} |
𝝏 (𝒙,𝒚)
𝝏 (𝒖,𝒗)
|𝑫𝑹
𝒅𝒖 𝒅𝒗
5.2 Example 1: Using 𝑥 + 𝑦 = 𝑢, 𝑥 − 𝑦 = 𝑣, evaluate the double integral over
the square R
∬ ( 𝑥2
+ 𝑦2) 𝑑𝑥 𝑑𝑦𝑅
Integration being taken over the area bounded by the lines 𝑥 + 𝑦 = 2, 𝑥 +
𝑦 = 0, 𝑥 − 𝑦 = 2, 𝑥 − 𝑦 = 0.
Solution: 𝑥 + 𝑦 = 𝑢 ________(1)
𝑥 − 𝑦 = 𝑣 ________(2)
On solving (1) and (2), we get
𝑥 =
1
2
( 𝑢 + 𝑣), 𝑦 =
1
2
( 𝑢 − 𝑣)
𝐽 =
𝜕 (𝑥,𝑦)
𝜕 (𝑢,𝑣)
= |
𝜕𝑥
𝜕𝑢
𝜕𝑥
𝜕𝑣
𝜕𝑦
𝜕𝑢
𝜕𝑦
𝜕𝑣
| = |
1
2
1
2
1
2
−
1
2
| = −
1
4
−
1
4
= −
1
2
∬ ( 𝑥2
+ 𝑦2) 𝑑𝑥 𝑑𝑦 = ∫ ∫ [
1
4
(𝑢 + 𝑣)2
+
1
4
(𝑢 −
2
0
2
0𝑅
𝑣)2
] |
𝜕 (𝑥,𝑦)
𝜕 (𝑢,𝑣)
| 𝑑𝑢 𝑑𝑣
= ∫ ∫
1
2
( 𝑢2
+ 𝑣2)|−
1
2
| 𝑑𝑢 𝑑𝑣
2
0
2
0
= −
1
4
∫ 𝑑𝑣∫ ( 𝑢2
+ 𝑣2) 𝑑𝑢
2
0
2
0
= −
1
4
∫ 𝑑𝑣 [
𝑢3
3
+ 𝑢𝑣2
]
0
22
0
= −
1
4
∫ 𝑑𝑣(
8
3
+ 2𝑣2
)
2
0
= −
1
4
∫ (
8
3
+ 2𝑣2
)
2
0
𝑑𝑣
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 13
= −
1
4
[
8
3
𝑣 +
2
3
𝑣3
]
0
2
= −
1
4
[
8
3
(2) +
2
3
(2)3
]
= −
1
4
(
16
3
+
16
3
)
= −
1
4
(
32
3
)
= −
8
3
________ Answer
5.3 EXERCISE:
1) Using the transformation 𝑥 + 𝑦 = 𝑢, 𝑦 = 𝑢𝑣 show that
∫ ∫ 𝑒 𝑦 (𝑥+𝑦)⁄
𝑑𝑦 𝑑𝑥 =
1
2
(𝑒 − 1)
1−𝑥
0
1
0
2) Evaluate ∬ (𝑥 + 𝑦)2
𝑑𝑥 𝑑𝑦𝑅
, where R is the parallelogram in the xy-plane
with vertices (1,0), (3,1), (2,2), (0,1), using the transformation 𝑢 = 𝑥 + 𝑦
and 𝑣 = 𝑥 − 2𝑦.
6.1 AREA IN CARTESIAN CO-ORDINATES:
Area = ∫ ∫ 𝒅𝒙 𝒅𝒚
𝒚 𝟐
𝒚 𝟏
𝒃
𝒂
6.2 Example 1: Find the area bounded by the lines
𝒚 = 𝒙 + 𝟐
𝒚 = −𝒙 + 𝟐
𝒙 = 𝟓
Solution: The region of integration is bounded by the lines
𝑦 = 𝑥 + 2 _________(1)
𝑦 = −𝑥 + 2 _________(2)
𝑥 = 5 _________(3)
On solving (1) and (2), we get the point 𝐴(0,2)
On solving (2) and (3), we get the point 𝐶(5,−3)
On solving (1) and (3), we get the point 𝐸(5,7)
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 14
We draw a strip parallel to 𝑦-axis.
On this strip the limits of 𝑦 are 𝑦 = −𝑥 + 2 and 𝑦 = 𝑥 + 2, and the limit of
𝑥 are 𝑥 = 0 and 𝑥 = 5.
Required area = Shaded portion of the figure
= ∬ 𝑑𝑥 𝑑𝑦
= ∫ 𝑑𝑥 ∫ 𝑑𝑦
𝑥+2
–𝑥+2
5
0
= ∫ 𝑑𝑥 [ 𝑦]−𝑥+2
𝑥+25
0
= ∫ 𝑑𝑥 [ 𝑥 + 2 − (−𝑥 + 2)]
5
0
= ∫ [2𝑥] 𝑑𝑥
5
0
= [
2𝑥2
2
]
0
5
= [ 𝑥2]0
5
= [25− 0]
= 25 Sq. units ________ Answer
Example 2: Find the area betweenthe parabolas 𝒚 𝟐
= 𝟒𝒂𝒙 and 𝒙 𝟐
= 𝟒𝒂𝒚.
Solution: We have, 𝑦2
= 4𝑎𝑥 ________ (1)
𝑥2
= 4𝑎𝑦 ________ (2)
On solving the equations (1) and (2) we get the point of intersection (4a, 4a).
Divide the area into horizontal strips of width 𝛿𝑦, 𝑥 varies from
𝑃,
𝑦2
4𝑎
𝑡𝑜 𝑄,√4𝑎𝑦 and then 𝑦 varies from 𝑂 ( 𝑦 = 0) 𝑡𝑜 𝐴 (𝑦 = 4𝑎).
∴ The required area = ∫ 𝑑𝑦 ∫ 𝑑𝑥
√4𝑎𝑦
𝑦2 4𝑎⁄
4𝑎
0
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 15
= ∫ 𝑑𝑦 [ 𝑥]
𝑦2
4𝑎
√4𝑎𝑦4𝑎
0
= ∫ 𝑑𝑦 [√4𝑎𝑦 −
𝑦2
4𝑎
]
4𝑎
0
= [√4𝑎
𝑦3 2⁄
3
2
−
𝑦3
12𝑎
]
0
4𝑎
=
4√𝑎
3
(4𝑎)3 2⁄
−
(4𝑎)3
12𝑎
=
16
3
𝑎2
________ Answer
7.1 VOLUME OF SOLIDS BY DOUBLE INTEGRAL:
Let a surface 𝑆′
be 𝑧 = 𝑓(𝑥, 𝑦)
The projection of 𝑠′ on 𝑥 − 𝑦 plane be 𝑆.
Take infinite number of elementary rectangles 𝛿𝑥 𝛿𝑦. Erect vertical rod on
the 𝛿𝑥 𝛿𝑦 of height 𝑧.
Volume of each vertical rod = Area of the base × height
= 𝛿𝑥 𝛿𝑦 . 𝑧
Volume of the solid cylinder on S = lim
𝛿𝑥→0
𝛿𝑦→0
∑ ∑ 𝑧 𝑑𝑥 𝑑𝑦
= ∬ 𝑧 𝑑𝑥 𝑑𝑦
= ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥 𝑑𝑦
Here the integration is carried out over the area S.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 16
Example 1: Find the volume bounded by the 𝒙𝒚-plane, the paraboloid
𝟐𝒛 = 𝒙 𝟐
+ 𝒚 𝟐
and the cylinder 𝒙 𝟐
+ 𝒚 𝟐
= 𝟒.
Solution: Here, we have
2𝑧 = 𝑥2
+ 𝑦2
⇒ 2𝑧 = 𝑟2
⇒ 𝑧 =
𝑟2
2
(Paraboloid) ______(1)
𝑥2
+ 𝑦2
= 4 ⇒ 𝑟 = 2, 𝑧 = 0, (circle) ______(2)
Volume of one vertical rod = 𝑧. 𝑟 𝑑𝑟 𝑑𝜃
Volume of the solid = ∬ 𝑧 𝑟 𝑑𝑟 𝑑𝜃
= 2 ∫ 𝑑𝜃 ∫
𝑟2
2
𝑟 𝑑𝑟
2
0
𝜋
0
=
2
2
∫ 𝑑𝜃 ∫ 𝑟3
𝑑𝑟
2
0
𝜋
0
= ∫ 𝑑𝜃 (
𝑟4
4
)
0
2𝜋
0
= ∫ 𝑑𝜃 (
16
4
)
𝜋
0
= 4∫ 𝑑𝜃
𝜋
0
= 4[ 𝜃]0
𝜋
= 4𝜋 ________ Answer
8.1 VOLUME OF SOLID BY ROTATION OF AN AREA (DOUBLE
INTEGRAL):
When the area enclosed by a curve 𝑦 = 𝑓(𝑥) is revolved about an axis, a
solid is generated; we have to find out the volume of solid generated.
Volume of the solid generated about x-axis = ∫ ∫ 2𝜋 𝑃𝑄 𝑑𝑥 𝑑𝑦
𝑦2(𝑥)
𝑦1(𝑥)
𝑏
𝑎
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 17
Example 1: Find the volume of the torus generatedby revolving the circle
𝒙 𝟐
+ 𝒚 𝟐
= 𝟒 about the line 𝒙 = 𝟑.
Solution: 𝑥2
+ 𝑦2
= 4
𝑉 = ∬(2𝜋 𝑃𝑄) 𝑑𝑥 𝑑𝑦
= 2𝜋 ∬(3 − 𝑥) 𝑑𝑥 𝑑𝑦
= 2𝜋 ∫ 𝑑𝑥 (3𝑦 − 𝑥𝑦)
−√4−𝑥2
+√4−𝑥22
−2
(3 − 𝑥) 𝑑𝑦
= 2𝜋 ∫ 𝑑𝑥 [3√4 − 𝑥2 − 𝑥√4 − 𝑥2 + 3√4 − 𝑥2 − 𝑥√4 − 𝑥2]
+2
−2
= 4𝜋∫ [3√4 − 𝑥2 − 𝑥√4 − 𝑥2]
+2
−2
𝑑𝑥
= 4𝜋[3
𝑥
2
√4 − 𝑥2 + 3 ×
4
2
sin−1 𝑥
2
+
1
3
(4 − 𝑥2)3 2⁄
]
−2
+2
= 4𝜋 [6 ×
𝜋
2
+ 6 ×
𝜋
2
]
= 24𝜋2
________ Ans.
8.2 EXERCISE:
1) Find the area of the ellipse
𝑥2
𝑎2
+
𝑦2
𝑏2
= 1
2) Find by double integration the area of the smaller region bounded by
𝑥2
+ 𝑦2
= 𝑎2
and𝑥 + 𝑦 = 𝑎.
3) Find the volume bounded by 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒, the cylinder 𝑥2
+ 𝑦2
= 1
and the plane 𝑥 + 𝑦 + 𝑧 = 3.
4) Evaluate the volume of the solid generated by revolving the area of
the parabola 𝑦2
= 4𝑎𝑥 bounded by the latus rectum about the tangent
at the vertex.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 18
9.1 TRIPLE INTEGRATION (VOLUME) :
Let a function 𝑓(𝑥, 𝑦, 𝑧) be a continuous at every point of a finite region 𝑆 of
three dimensional spaces. Consider 𝑛 sub-spaces 𝛿𝑠1, 𝛿𝑠2, 𝛿𝑠3,… . 𝛿𝑠 𝑛 of the
spaceS.
If (𝑥 𝑟, 𝑦𝑟, 𝑧 𝑟) be a point in the rth subspace.
The limit of the sum ∑ 𝑓(𝑥 𝑟, 𝑦𝑟, 𝑧 𝑟)
𝑛
𝑟=1 𝛿𝑠𝑟, 𝑎𝑠 𝑛 → ∞, 𝛿𝑠𝑟 → 0 is
known as the triple integral of 𝑓(𝑥, 𝑦, 𝑧) over the spaceS.
Symbolically, it is denoted by
∭𝑓( 𝑥, 𝑦, 𝑧) 𝑑𝑆
𝑆
It can be calculated as ∫ ∫ ∫ 𝑓( 𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧
𝑧2
𝑧1
𝑦2
𝑦1
𝑥2
𝑥1
. First we integrate with
respect to 𝑧 treating 𝑥, 𝑦 as constant between the limits 𝑧1 𝑎𝑛𝑑 𝑧2 . The
resulting expression (function of 𝑥, 𝑦) is integrated with respect to 𝑦 keeping
𝑥 as constant between the limits 𝑦1 𝑎𝑛𝑑 𝑦2. At the end we integrate the
resulting expression (function of 𝑥 only) within the limits 𝑥1 𝑎𝑛𝑑 𝑥2.
First we integrate from inner most integral w.r.t z, and then we integrate
w.r.t 𝑦, and finally the outer most w.r.t 𝑥.
But the above order of integration is immaterial provided the limits change
accordingly.
Example 1: Evaluate ∭ ( 𝑥 − 2𝑦 +𝑅
𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧, 𝑤ℎ𝑒𝑟𝑒 𝑅:
0 ≤ 𝑥 ≤ 1
0 ≤ 𝑦 ≤ 𝑥2
0 ≤ 𝑧 ≤ 𝑥 + 𝑦
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 19
Solution: ∭ ( 𝑥 − 2𝑦 + 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑅
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 ∫ (𝑥 − 2𝑦 + 𝑧)𝑑𝑧
𝑥+𝑦
0
𝑥2
0
1
0
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 (𝑥𝑧 − 2𝑦𝑧 +
𝑧2
2
)
0
𝑥+𝑦𝑥2
0
1
0
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑥 ( 𝑥 + 𝑦) − 2𝑦( 𝑥 + 𝑦) +
(𝑥+𝑦)2
2
]
𝑥2
0
1
0
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑥2
+ 𝑥𝑦 − 2𝑥𝑦 − 2𝑦2
+
(𝑥+𝑦)2
2
]
𝑥2
0
1
0
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑥2
− 𝑥𝑦 − 2𝑦2
+
𝑥2
2
+ 𝑥𝑦 +
𝑦2
2
]
𝑥2
0
1
0
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 [
3𝑥2
2
−
3𝑦2
2
]
𝑥2
0
1
0
=
3
2
∫ 𝑑𝑥
1
0
∫ ( 𝑥2
− 𝑦2) 𝑑𝑦
𝑥2
0
=
3
2
∫ 𝑑𝑥
1
0
(𝑥2
𝑦 −
𝑦3
3
)
0
𝑥2
=
3
2
∫ 𝑑𝑥
1
0
(𝑥4
−
𝑥6
3
)
=
3
2
(
𝑥5
5
−
𝑥7
21
)
0
1
=
3
2
(
1
5
−
1
21
)
=
8
35
________Answer
Example 2: Evaluate ∫ ∫ ∫ 𝑒 𝑥+𝑦+𝑧
𝑑𝑥 𝑑𝑦 𝑑𝑧
𝑥+𝑦
0
𝑥
0
𝑙𝑜𝑔 2
0
Solution: 𝐼 = ∫ ∫ 𝑒 𝑥+𝑦 [ 𝑒 𝑧]0
𝑥+𝑦
𝑑𝑥 𝑑𝑦
𝑥
0
𝑙𝑜𝑔 2
0
= ∫ ∫ 𝑒 𝑥+𝑦
(𝑒 𝑥+𝑦
− 1)𝑑𝑥 𝑑𝑦
𝑥
0
𝑙𝑜𝑔 2
0
= ∫ ∫ [𝑒2(𝑥+𝑦)
− 𝑒 𝑥+𝑦
] 𝑑𝑥 𝑑𝑦
𝑥
0
𝑙𝑜𝑔 2
0
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 20
= ∫ [𝑒2𝑥
.
𝑒2𝑥
2
− 𝑒 𝑥
. 𝑒 𝑦
]
0
𝑥
𝑑𝑥
𝑙𝑜𝑔 2
0
= ∫ [
𝑒4𝑥
2
− 𝑒2𝑥
−
𝑒2𝑥
2
+ 𝑒 𝑥
]
0
𝑥
𝑑𝑥
𝑙𝑜𝑔 2
0
= [
𝑒4𝑥
8
−
𝑒2𝑥
2
−
𝑒2𝑥
4
+ 𝑒 𝑥
]
0
log2
= [
𝑒4 𝑙𝑜𝑔2
8
−
𝑒2 log2
2
−
𝑒2 log2
4
+ 𝑒log 2
] − (
1
8
−
1
2
−
1
4
+ 1)
= [
𝑒 𝑙𝑜𝑔16
8
−
𝑒log4
2
−
𝑒log4
4
+ 𝑒log 2
] − (
1
8
−
1
2
−
1
4
+ 1)
= (
16
8
−
4
2
−
4
4
+ 2) − (
1
8
−
1
2
−
1
4
+ 1)
=
5
8
________ Answer
9.2 EXERCISE:
1) Evaluate
∭ ( 𝑥 + 𝑦 + 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧, 𝑤ℎ𝑒𝑟𝑒 𝑅: 0 ≤ 𝑥 ≤ 1, 1 ≤ 𝑦 ≤ 2, 2 ≤ 𝑧 ≤ 3.𝑅
2) Evaluate ∫ ∫ ∫ 𝑒 𝑥+𝑦+𝑧𝑥+log 𝑦
0
𝑑𝑧 𝑑𝑦 𝑑𝑥
𝑥
0
log 2
0
.
3) Evaluate∭ ( 𝑥2
+ 𝑦2
+ 𝑧2) 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑅
where
𝑅:
𝑥 = 0, 𝑦 = 0, 𝑧 = 0
𝑥 + 𝑦 + 𝑧 = 𝑎, (𝑎 > 0)
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 21
10.1REFERENCE BOOK:
1) Introduction to EngineeringMathematics
By H. K. DASS. & Dr. RAMA VERMA
2) www.bookspar.com/wp-content/uploads/vtu/notes/1st-2nd-
sem/m2-21/Unit-5-Multiple-Integrals.pdf
3) http://www.mathstat.concordia.ca/faculty/cdavid/EMAT212/sol
integrals.pdf
4) http://studentsblog100.blogspot.in/2013/02/anna-university-
engineering-mathematics.html

More Related Content

What's hot

Runge Kutta Method
Runge Kutta Method Runge Kutta Method
Runge Kutta Method
Bhavik Vashi
 
Higher Order Differential Equation
Higher Order Differential EquationHigher Order Differential Equation
Higher Order Differential Equation
Shrey Patel
 
Math lecture 10 (Introduction to Integration)
Math lecture 10 (Introduction to Integration)Math lecture 10 (Introduction to Integration)
Math lecture 10 (Introduction to Integration)Osama Zahid
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
Santhanam Krishnan
 
Runge kutta
Runge kuttaRunge kutta
Runge kutta
Shubham Tomar
 
Maths-double integrals
Maths-double integralsMaths-double integrals
Maths-double integrals
mihir jain
 
Finite Difference Method
Finite Difference MethodFinite Difference Method
Finite Difference Method
Syeilendra Pramuditya
 
Differential equations
Differential equationsDifferential equations
Differential equationsCharan Kumar
 
Group Theory
Group TheoryGroup Theory
Group Theory
Durgesh Chahar
 
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJAPPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
Zuhair Bin Jawaid
 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3
Rai University
 
Integration by partial fraction
Integration by partial fractionIntegration by partial fraction
Integration by partial fraction
Ayesha Ch
 
classification of second order partial differential equation
classification of second order partial differential equationclassification of second order partial differential equation
classification of second order partial differential equation
jigar methaniya
 
Continuity
ContinuityContinuity
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability
Seyid Kadher
 
System of Homogeneous and Non-Homogeneous equations ppt nadi.pptx
System of Homogeneous and Non-Homogeneous equations ppt nadi.pptxSystem of Homogeneous and Non-Homogeneous equations ppt nadi.pptx
System of Homogeneous and Non-Homogeneous equations ppt nadi.pptx
VinayKp11
 
B.tech ii unit-1 material curve tracing
B.tech ii unit-1 material curve tracingB.tech ii unit-1 material curve tracing
B.tech ii unit-1 material curve tracing
Rai University
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
muhammadabullah
 

What's hot (20)

Runge Kutta Method
Runge Kutta Method Runge Kutta Method
Runge Kutta Method
 
Higher Order Differential Equation
Higher Order Differential EquationHigher Order Differential Equation
Higher Order Differential Equation
 
Math lecture 10 (Introduction to Integration)
Math lecture 10 (Introduction to Integration)Math lecture 10 (Introduction to Integration)
Math lecture 10 (Introduction to Integration)
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Runge kutta
Runge kuttaRunge kutta
Runge kutta
 
Maths-double integrals
Maths-double integralsMaths-double integrals
Maths-double integrals
 
Finite Difference Method
Finite Difference MethodFinite Difference Method
Finite Difference Method
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Group Theory
Group TheoryGroup Theory
Group Theory
 
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJAPPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3
 
Integration by partial fraction
Integration by partial fractionIntegration by partial fraction
Integration by partial fraction
 
classification of second order partial differential equation
classification of second order partial differential equationclassification of second order partial differential equation
classification of second order partial differential equation
 
Continuity
ContinuityContinuity
Continuity
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability
 
B.Tech-II_Unit-V
B.Tech-II_Unit-VB.Tech-II_Unit-V
B.Tech-II_Unit-V
 
Romberg’s method
Romberg’s methodRomberg’s method
Romberg’s method
 
System of Homogeneous and Non-Homogeneous equations ppt nadi.pptx
System of Homogeneous and Non-Homogeneous equations ppt nadi.pptxSystem of Homogeneous and Non-Homogeneous equations ppt nadi.pptx
System of Homogeneous and Non-Homogeneous equations ppt nadi.pptx
 
B.tech ii unit-1 material curve tracing
B.tech ii unit-1 material curve tracingB.tech ii unit-1 material curve tracing
B.tech ii unit-1 material curve tracing
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 

Viewers also liked

Multiple integrals
Multiple integralsMultiple integrals
Multiple integralsTarun Gehlot
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Rai University
 
Double Integral Powerpoint
Double Integral PowerpointDouble Integral Powerpoint
Double Integral Powerpoint
oaishnosaj
 
Special functions
Special functionsSpecial functions
Special functions
Ahmed Haider
 
Application of the integral
Application of the integral Application of the integral
Application of the integral Abhishek Das
 
Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shahC.G.P.I.T
 
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theoryBCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
Rai University
 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5
Rai University
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
Rai University
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
Rai University
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
Rai University
 
Unit 1 Introduction
Unit 1 IntroductionUnit 1 Introduction
Unit 1 Introduction
Rai University
 
B.Tech-II_Unit-III
B.Tech-II_Unit-IIIB.Tech-II_Unit-III
B.Tech-II_Unit-IIIKundan Kumar
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
Rai University
 
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
Rai University
 

Viewers also liked (20)

Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Double Integral Powerpoint
Double Integral PowerpointDouble Integral Powerpoint
Double Integral Powerpoint
 
Special functions
Special functionsSpecial functions
Special functions
 
Application of the integral
Application of the integral Application of the integral
Application of the integral
 
Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shah
 
B.Tech-II_Unit-II
B.Tech-II_Unit-IIB.Tech-II_Unit-II
B.Tech-II_Unit-II
 
Complex numbers polynomial multiplication
Complex numbers polynomial multiplicationComplex numbers polynomial multiplication
Complex numbers polynomial multiplication
 
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theoryBCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
 
B.Tech-II_Unit-I
B.Tech-II_Unit-IB.Tech-II_Unit-I
B.Tech-II_Unit-I
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
 
Unit 1 Introduction
Unit 1 IntroductionUnit 1 Introduction
Unit 1 Introduction
 
B.Tech-II_Unit-III
B.Tech-II_Unit-IIIB.Tech-II_Unit-III
B.Tech-II_Unit-III
 
merged_document
merged_documentmerged_document
merged_document
 
B.Tech-II_Unit-IV
B.Tech-II_Unit-IVB.Tech-II_Unit-IV
B.Tech-II_Unit-IV
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
 
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
 

Similar to B.tech ii unit-3 material multiple integration

Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
Raymundo Raymund
 
Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integral
Nurkhalifah Anwar
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
AnuBajpai5
 
4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptx4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptx
Happy Ladher
 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiation
Santhanam Krishnan
 
A05330107
A05330107A05330107
A05330107
IOSR-JEN
 
Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)
Nurkhalifah Anwar
 
Double Integration examples of double integration with substitution.pptx
Double Integration examples of double integration with substitution.pptxDouble Integration examples of double integration with substitution.pptx
Double Integration examples of double integration with substitution.pptx
jyotidighole2
 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1
tinardo
 
MATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxMATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptx
massm99m
 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2
Rai University
 
GraphTransformations.pptx
GraphTransformations.pptxGraphTransformations.pptx
GraphTransformations.pptx
SrideviNagarjuna
 
Exposicion semana13
Exposicion semana13Exposicion semana13
Exposicion semana13
Danilo Morote
 
Integrales solucionario
Integrales solucionarioIntegrales solucionario
Integrales solucionario
Gualberto Lopéz Durán
 
Exercices calculs de_primitives
Exercices calculs de_primitivesExercices calculs de_primitives
Exercices calculs de_primitives
ZaakXO
 
Task compilation - Differential Equation II
Task compilation - Differential Equation IITask compilation - Differential Equation II
Task compilation - Differential Equation II
Jazz Michele Pasaribu
 
Trabajo matemáticas 7
Trabajo matemáticas 7Trabajo matemáticas 7
Trabajo matemáticas 7
SamanthaAlcivar1
 
Johelbys campos2
Johelbys campos2Johelbys campos2
Johelbys campos2
johelbysjose
 

Similar to B.tech ii unit-3 material multiple integration (20)

Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
 
Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integral
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
 
4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptx4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptx
 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiation
 
A05330107
A05330107A05330107
A05330107
 
Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)
 
Double Integration examples of double integration with substitution.pptx
Double Integration examples of double integration with substitution.pptxDouble Integration examples of double integration with substitution.pptx
Double Integration examples of double integration with substitution.pptx
 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1
 
MATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxMATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptx
 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2
 
lec38.ppt
lec38.pptlec38.ppt
lec38.ppt
 
GraphTransformations.pptx
GraphTransformations.pptxGraphTransformations.pptx
GraphTransformations.pptx
 
Exposicion semana13
Exposicion semana13Exposicion semana13
Exposicion semana13
 
Integrales solucionario
Integrales solucionarioIntegrales solucionario
Integrales solucionario
 
Exercices calculs de_primitives
Exercices calculs de_primitivesExercices calculs de_primitives
Exercices calculs de_primitives
 
Task compilation - Differential Equation II
Task compilation - Differential Equation IITask compilation - Differential Equation II
Task compilation - Differential Equation II
 
Trabajo matemáticas 7
Trabajo matemáticas 7Trabajo matemáticas 7
Trabajo matemáticas 7
 
Johelbys campos2
Johelbys campos2Johelbys campos2
Johelbys campos2
 
doc
docdoc
doc
 

More from Rai University

Brochure Rai University
Brochure Rai University Brochure Rai University
Brochure Rai University
Rai University
 
Mm unit 4point2
Mm unit 4point2Mm unit 4point2
Mm unit 4point2
Rai University
 
Mm unit 4point1
Mm unit 4point1Mm unit 4point1
Mm unit 4point1
Rai University
 
Mm unit 4point3
Mm unit 4point3Mm unit 4point3
Mm unit 4point3
Rai University
 
Mm unit 3point2
Mm unit 3point2Mm unit 3point2
Mm unit 3point2
Rai University
 
Mm unit 3point1
Mm unit 3point1Mm unit 3point1
Mm unit 3point1
Rai University
 
Mm unit 2point2
Mm unit 2point2Mm unit 2point2
Mm unit 2point2
Rai University
 
Mm unit 2 point 1
Mm unit 2 point 1Mm unit 2 point 1
Mm unit 2 point 1
Rai University
 
Mm unit 1point3
Mm unit 1point3Mm unit 1point3
Mm unit 1point3
Rai University
 
Mm unit 1point2
Mm unit 1point2Mm unit 1point2
Mm unit 1point2
Rai University
 
Mm unit 1point1
Mm unit 1point1Mm unit 1point1
Mm unit 1point1
Rai University
 
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
Bdft ii, tmt, unit-iii,  dyeing & types of dyeing,Bdft ii, tmt, unit-iii,  dyeing & types of dyeing,
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
Rai University
 
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
Rai University
 
Bsc agri 2 pae u-4.3 public expenditure
Bsc agri  2 pae  u-4.3 public expenditureBsc agri  2 pae  u-4.3 public expenditure
Bsc agri 2 pae u-4.3 public expenditure
Rai University
 
Bsc agri 2 pae u-4.2 public finance
Bsc agri  2 pae  u-4.2 public financeBsc agri  2 pae  u-4.2 public finance
Bsc agri 2 pae u-4.2 public finance
Rai University
 
Bsc agri 2 pae u-4.1 introduction
Bsc agri  2 pae  u-4.1 introductionBsc agri  2 pae  u-4.1 introduction
Bsc agri 2 pae u-4.1 introduction
Rai University
 
Bsc agri 2 pae u-3.3 inflation
Bsc agri  2 pae  u-3.3  inflationBsc agri  2 pae  u-3.3  inflation
Bsc agri 2 pae u-3.3 inflation
Rai University
 
Bsc agri 2 pae u-3.2 introduction to macro economics
Bsc agri  2 pae  u-3.2 introduction to macro economicsBsc agri  2 pae  u-3.2 introduction to macro economics
Bsc agri 2 pae u-3.2 introduction to macro economics
Rai University
 
Bsc agri 2 pae u-3.1 marketstructure
Bsc agri  2 pae  u-3.1 marketstructureBsc agri  2 pae  u-3.1 marketstructure
Bsc agri 2 pae u-3.1 marketstructure
Rai University
 
Bsc agri 2 pae u-3 perfect-competition
Bsc agri  2 pae  u-3 perfect-competitionBsc agri  2 pae  u-3 perfect-competition
Bsc agri 2 pae u-3 perfect-competition
Rai University
 

More from Rai University (20)

Brochure Rai University
Brochure Rai University Brochure Rai University
Brochure Rai University
 
Mm unit 4point2
Mm unit 4point2Mm unit 4point2
Mm unit 4point2
 
Mm unit 4point1
Mm unit 4point1Mm unit 4point1
Mm unit 4point1
 
Mm unit 4point3
Mm unit 4point3Mm unit 4point3
Mm unit 4point3
 
Mm unit 3point2
Mm unit 3point2Mm unit 3point2
Mm unit 3point2
 
Mm unit 3point1
Mm unit 3point1Mm unit 3point1
Mm unit 3point1
 
Mm unit 2point2
Mm unit 2point2Mm unit 2point2
Mm unit 2point2
 
Mm unit 2 point 1
Mm unit 2 point 1Mm unit 2 point 1
Mm unit 2 point 1
 
Mm unit 1point3
Mm unit 1point3Mm unit 1point3
Mm unit 1point3
 
Mm unit 1point2
Mm unit 1point2Mm unit 1point2
Mm unit 1point2
 
Mm unit 1point1
Mm unit 1point1Mm unit 1point1
Mm unit 1point1
 
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
Bdft ii, tmt, unit-iii,  dyeing & types of dyeing,Bdft ii, tmt, unit-iii,  dyeing & types of dyeing,
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
 
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
 
Bsc agri 2 pae u-4.3 public expenditure
Bsc agri  2 pae  u-4.3 public expenditureBsc agri  2 pae  u-4.3 public expenditure
Bsc agri 2 pae u-4.3 public expenditure
 
Bsc agri 2 pae u-4.2 public finance
Bsc agri  2 pae  u-4.2 public financeBsc agri  2 pae  u-4.2 public finance
Bsc agri 2 pae u-4.2 public finance
 
Bsc agri 2 pae u-4.1 introduction
Bsc agri  2 pae  u-4.1 introductionBsc agri  2 pae  u-4.1 introduction
Bsc agri 2 pae u-4.1 introduction
 
Bsc agri 2 pae u-3.3 inflation
Bsc agri  2 pae  u-3.3  inflationBsc agri  2 pae  u-3.3  inflation
Bsc agri 2 pae u-3.3 inflation
 
Bsc agri 2 pae u-3.2 introduction to macro economics
Bsc agri  2 pae  u-3.2 introduction to macro economicsBsc agri  2 pae  u-3.2 introduction to macro economics
Bsc agri 2 pae u-3.2 introduction to macro economics
 
Bsc agri 2 pae u-3.1 marketstructure
Bsc agri  2 pae  u-3.1 marketstructureBsc agri  2 pae  u-3.1 marketstructure
Bsc agri 2 pae u-3.1 marketstructure
 
Bsc agri 2 pae u-3 perfect-competition
Bsc agri  2 pae  u-3 perfect-competitionBsc agri  2 pae  u-3 perfect-competition
Bsc agri 2 pae u-3 perfect-competition
 

Recently uploaded

Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
Peter Windle
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
Jean Carlos Nunes Paixão
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
timhan337
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Po-Chuan Chen
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
CarlosHernanMontoyab2
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 

Recently uploaded (20)

Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 

B.tech ii unit-3 material multiple integration

  • 1. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 1 Unit-III: MULTIPLE INTEGRAL Sr. No. Name of the Topic Page No. 1 Double integrals 2 2 Evaluation of Double Integral 2 3 To Calculate the integral over a given region 6 4 Change of order of integration 9 5 Change of variable 11 6 Area in Cartesian co-ordinates 13 7 Volume of solids by double integral 15 8 Volume of solids by rotation of an area (Double Integral) 16 9 Triple Integration (Volume) 18 10 ReferenceBook 21
  • 2. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 2 MULTIPLE INTEGRALS 1.1 DOUBLE INTEGRALS: We Know that ∫ 𝑓( 𝑥) 𝑑𝑥 = lim𝑛→∞ 𝛿𝑥→0 [ 𝑓( 𝑥1) 𝛿𝑥1 + 𝑓( 𝑥2) 𝛿𝑥2 + 𝑓( 𝑥3) 𝛿𝑥3 + ⋯+ 𝑏 𝑎 𝑓( 𝑥 𝑛) 𝛿𝑥 𝑛] Let us consider a function 𝑓(𝑥, 𝑦) of two variables 𝑥 and 𝑦 defines in the finite region A of 𝑥𝑦- plane. Divide the region 𝐴 into elementary areas. 𝛿𝐴1, 𝛿𝐴2, 𝛿𝐴3,… 𝛿𝐴 𝑛 Then ∬ 𝑓( 𝑥, 𝑦) 𝑑𝐴 =𝐴 lim𝑛→∞ 𝛿𝐴→0 [ 𝑓( 𝑥1, 𝑦1) 𝛿𝐴1 + 𝑓( 𝑥2, 𝑦2) 𝛿𝐴2 + ⋯+ 𝑓( 𝑥 𝑛, 𝑦𝑛) 𝛿𝐴 𝑛] 2.1 Evaluation of Double Integral: Double integral over region A may be evaluated by two successiveintegrations. If A is described as 𝑓1(𝑥) ≤ 𝑦 ≤ 𝑓2(𝑥) [ 𝑦1 ≤ y ≤ 𝑦2] And 𝑎 ≤ 𝑥 ≤ 𝑏, Then ∬ 𝑓( 𝑥, 𝑦) 𝑑𝐴 = ∫ ∫ 𝑓(𝑥, 𝑦) 𝑦2 𝑦1 𝑑𝑥 𝑑𝑦 𝑏 𝑎𝐴
  • 3. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 3 2.1.1 FIRST METHOD: ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥𝑑𝑦 = ∫ [∫ 𝑓( 𝑥, 𝑦) 𝑑𝑦 𝑦2 𝑦1 ] 𝑑𝑥 𝑥2 𝑥1𝐴 𝑓(𝑥, 𝑦) is first integrated with respectto y treating 𝑥 as constant between the limits 𝑦1 and 𝑦2 and then the result is integrated with respectto 𝑥 between the limits 𝑥1 and 𝑥2. In the region we take an elementary area 𝛿𝑥𝛿𝑦. Then integration w.r.t to 𝑦 (𝑥 keeping constant) converts small rectangle 𝛿𝑥𝛿𝑦 into a strip 𝑃𝑄(𝑦 𝛿𝑥). While the integration of the result w.r.t 𝑥 correspondsto the sliding to the strip, from 𝐴𝐷 to 𝐵𝐶 covering the whole region 𝐴𝐵𝐶𝐷. 2.1.2 SECOND METHOD: ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥𝑑𝑦 = ∫ [ ∫ 𝑓( 𝑥, 𝑦) 𝑑𝑥 𝑥2 𝑥1 ] 𝑑𝑦 𝑦2 𝑦1𝐴 Here 𝑓(𝑥, 𝑦) is first integrated w.r.t 𝑥 keeping 𝑦 constant between the limits 𝑥1 and 𝑥2 and then the resulting expression is integrated with respectto 𝑦 between the limits 𝑦1 and 𝑦2 and vice versa. NOTE:Forconstant limits, it does not matter whether we first integrate w.r.t 𝑥 and then w.r.t 𝑦 or vice versa.
  • 4. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 4 2.2 Examples: Example 1: Find ∫ ∫ 𝑒 𝑦 𝑥⁄ 𝑑𝑦 𝑑𝑥 𝑥2 0 1 0 Solution: Here, we have ∫ [∫ 𝑒 𝑦 𝑥⁄ 𝑑𝑦 𝑥2 0 ] 𝑑𝑥 = ∫ [ 𝑒 𝑦 𝑥⁄ 1 𝑥⁄ ] 0 𝑥2 𝑑𝑥 1 0 1 0 = ∫ ( 𝑒 𝑥−1) 1 𝑥⁄ 𝑑𝑥 1 0 = ∫ 𝑥 𝑒 𝑥 𝑑𝑥 − ∫ 𝑥 𝑑𝑥 1 0 1 0 = [ 𝑥 𝑒 𝑥 − 𝑒 𝑥]0 1 − [ 𝑥2 2 ] 0 1 = 𝑒1 − 𝑒1 + 1 − 1 2 = 1 2 ∴ ∫ ∫ 𝒆 𝒚 𝒙⁄ 𝒅𝒚 𝒅𝒙 𝒙 𝟐 𝟎 𝟏 𝟎 = 𝟏 𝟐 ________ Answer Example 2: Evaluate ∫ ∫ 𝑒−𝑥2(1+𝑦2) 𝑥 𝑑𝑥 𝑑𝑦 ∞ 0 ∞ 0 Solution: Here, we have ∫ ∫ 𝑒−𝑥2(1+𝑦2) 𝑥 𝑑𝑥 𝑑𝑦 ∞ 0 ∞ 0 = ∫ 𝑑𝑦 ∫ 𝑒−𝑥2(1+𝑦2) ∞ 0 𝑥 𝑑𝑥 ∞ 0 = ∫ 𝑑𝑦 [ 𝑒−𝑥2(1+𝑦2) −2(1+𝑦2) ] 0 ∞ ∞ 0 = ∫ [0 + 1 2(1+𝑦2) ] 𝑑𝑦 ∞ 0 = 1 2 [tan−1 𝑦]0 ∞ = 1 2 [tan−1 ∞ − tan−1 0] = 1 2 ( 𝜋 2 ) = 𝜋 4
  • 5. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 5 ∴ ∫ ∫ 𝑒−𝑥2(1+𝑦2) 𝑥 𝑑𝑥 𝑑𝑦 ∞ 0 ∞ 0 = 𝜋 4 ________ Answer Example 3: Sketch the area of integration and evaluate ∫ ∫ 2𝑥2 𝑦2 𝑑𝑥 𝑑𝑦 √2−𝑦 −√2−𝑦 2 1 . Solution: Here we have ∫ ∫ 2𝑥2 𝑦2 𝑑𝑥 𝑑𝑦 √2−𝑦 −√2−𝑦 2 1 = 2∫ 𝑦2 𝑑𝑦 2 1 ∫ 𝑥2 𝑑𝑥 √2−𝑦 −√2−𝑦 = 4 ∫ 𝑦2 𝑑𝑦 2 1 ∫ 𝑥2 𝑑𝑥 √2−𝑦 0 [ ∵ ∫ 𝑓( 𝑥) 𝑑𝑥 = 2∫ 𝑓( 𝑥) 𝑑𝑥 𝑎 0 𝑎 −𝑎 𝑤ℎ𝑒𝑟𝑒 𝑥2 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ] = 4∫ 𝑦2 𝑑𝑦 [ 𝑥3 3 ] 0 √2−𝑦2 1 = 4 3 ∫ 𝑦2 𝑑𝑦 (2− 𝑦) 3 2 2 1 = 4 3 ∫ (2 − 𝑦)2 𝑡3 2⁄ (−𝑑𝑡) 0 1 [ 𝑝𝑢𝑡 2 − 𝑦 = 𝑡 ∴ 𝑑𝑦 = −𝑑𝑡 ] = 4 3 [(2 − 𝑡)2 ( 2𝑡 5 2 5 ) − (−2)(2− 𝑡) 2 5 . 2 7 𝑡 7 2 + (2) 2 5 . 2 7 . 2 9 𝑡 9 2] 0 1 = 4 3 [ 2 5 + 2 ( 2 5 . 2 7 ) + (2)( 2 5 . 2 7 . 2 9 )] = 4 3 [ 2 5 + 8 35 + 16 315 ] = 4 15 [2 + 8 7 + 16 63 ] = 4 15 [ 126+72+16 63 ] = 4 15 ( 214 63 ) = 856 945
  • 6. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 6 ∴ ∫ ∫ 𝟐𝒙 𝟐 𝒚 𝟐 𝒅𝒙 𝒅𝒚 √ 𝟐−𝒚 −√ 𝟐−𝒚 𝟐 𝟏 = 𝟖𝟓𝟔 𝟗𝟒𝟓 ________ Answer 3.1 To Calculate the integral over a given region: Sometimes the limits of integration are not given but the area of the integration is given. If the area of integration is given then we proceed as follows: Take a small area 𝑑𝑥 𝑑𝑦. The integration w.r.t 𝑥 between the limits 𝑥1, 𝑥2 keeping 𝑦 fixed indicates that integration is done, along 𝑃𝑄. Then the integration of result w.r.t to 𝑦 correspondsto sliding the strips 𝑃𝑄 from 𝐵𝐶 to 𝐴𝐷 covering the whole region 𝐴𝐵𝐶𝐷. We can also integrate first w.r.t ‘𝑦’ then w.r.t 𝑥, which ever is convenient. Example 4: Evaluate ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦 over the region in the positive quadrant for which 𝑥 + 𝑦 ≤ 1. Solution: 𝑥 + 𝑦 = 1 represents a line AB in the figure. 𝑥 + 𝑦 < 1 represents a plane 𝑂𝐴𝐵. The region for integration is 𝑂𝐴𝐵 as shaded in the figure. By drawing 𝑃𝑄 parallel to y-axis, 𝑝 lies on the line 𝐴𝐵 𝑖. 𝑒. , (𝑥 + 𝑦 = 1) & Q lies on x-axis. The limit for 𝑦 is 1 − 𝑥 and 0.
  • 7. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 7 Required integral = ∫ 𝑑𝑥 ∫ 𝑦 𝑑𝑦 1−𝑥 0 = ∫ 𝑥 𝑑𝑥 [ 𝑦2 2 ] 0 1−𝑥1 0 1 0 = 1 2 ∫ ( 𝑥 𝑑𝑥) (1− 𝑥)21 0 = 1 2 ∫ ( 𝑥 − 2𝑥2 + 𝑥3) 𝑑𝑥 1 0 = 1 2 [ 𝑥2 2 − 2𝑥3 3 + 𝑥4 4 ] 0 1 = 1 2 [ 1 2 − 2 3 + 1 4 ] = 1 24 ________ Answer Example 5: Evaluate ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦,𝑅 where 𝑅 the quadrant of the circle is 𝑥2 + 𝑦2 = 𝑎2 where 𝑥 ≥ 0 𝑎𝑛𝑑 𝑦 ≥ 0. Solution: Let the region of integration be the first quadrant of the circle 𝑂𝐴𝐵. Let 𝐼 = ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦𝑅 (𝑥2 + 𝑦2 = 𝑎2 , 𝑦 = √ 𝑎2 − 𝑥2) First we integrate w.r.t 𝑦 and then w.r.t 𝑥. The limits for 𝑦 are 0 and √ 𝑎2 − 𝑥2 and for x, 0 to a. 𝐼 = ∫ 𝑥 𝑑𝑥 ∫ 𝑦 𝑑𝑦 √𝑎2−𝑥2 0 𝑎 0 = ∫ 𝑥 𝑑𝑥 [ 𝑦2 2 ] 0 √𝑎2−𝑥2 𝑎 0 = 1 2 ∫ 𝑥 ( 𝑎2 − 𝑥2) 𝑑𝑥 𝑎 0 = 1 2 [ 𝑎2 𝑥2 2 − 𝑥4 4 ] 0 𝑎 = 𝑎4 8 ________ Answer
  • 8. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 8 Example 6: Evaluate ∬ 𝑥2 𝑑𝑥 𝑑𝑦𝐴 , where A is the region in the first quadrant bounded by the hyperbola 𝑥𝑦 = 16 and the lines 𝑦 = 𝑥, 𝑦 = 0 𝑎𝑛𝑑 𝑥 = 8. Solution: The line 𝑂𝑃, 𝑦 = 𝑥 and the curve 𝑃𝑆, 𝑥𝑦 = 16 intersect at 𝑝(4,4). The line 𝑆𝑁, 𝑥 = 8 intersects the hyperbola at 𝑆(8,2). And 𝑦 = 0 is x-axis. The area A is shown shaded. Divide the area into two parts by PM perpendicular to OX. For the area 𝑂𝑀𝑃, 𝑦 varies from 0 to 𝑥, and then 𝑥 varies from 0 to 4. For the area 𝑃𝑀𝑁𝑆, 𝑦 varies from 0 to 16 𝑥 and then 𝑥 varies from 4 to 8. ∴ ∬ 𝑥2 𝐴 𝑑𝑥 𝑑𝑦 = ∫ ∫ 𝑥2 𝑑𝑥 𝑑𝑦 + ∫ ∫ 𝑥2 𝑑𝑥 𝑑𝑦 16 𝑥 0 8 4 𝑥 0 4 0 = ∫ 𝑥2 𝑑𝑥 4 0 ∫ 𝑑𝑦 𝑥 0 + ∫ 𝑥2 𝑑𝑥 ∫ 𝑑𝑦 16 𝑥 0 8 4 = ∫ 𝑥2 [ 𝑦]0 𝑥 𝑑𝑥 + ∫ 𝑥2[ 𝑦] 0 16 𝑥 𝑑𝑥 8 4 4 0 = ∫ 𝑥3 𝑑𝑥 + ∫ 16 𝑥 𝑑𝑥 8 4 4 0 = [ 𝑥4 4 ] 0 4 + 16[ 𝑥2 2 ] 4 8 = 64 + 8 (82 − 42 ) = 64 + 384 = 448 ________ Answer 3.2 EXERCISE: 1) Find ∫ ∫ 𝑥 𝑦 𝑒−𝑥2 𝑑𝑥 𝑑𝑦. 𝑦 0 1 0 2) Evaluate the integral ∫ ∫ 𝑒 𝑥+𝑦 𝑑𝑥 𝑑𝑦 log 𝑦 0 log8 1 . 3) Evaluate ∫ ∫ 𝑥 𝑑𝑥 𝑑𝑦 𝑥2+𝑦2 𝑥 𝑥 𝑎 𝑎 0 .
  • 9. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 9 4) Evaluate ∫ ∫ 𝑑𝑥 𝑑𝑦 √(1−𝑥2)(1−𝑦2) 1 0 1 0 . 5) Evaluate ∬ √ 𝑥𝑦 − 𝑦2 𝑑𝑦 𝑑𝑥𝑆 , where S is a triangle with vertices (0, 0), (10, 1), and (1, 1). 6) Evaluate ∬( 𝑥2 + 𝑦2) 𝑑𝑥 𝑑𝑦 over the area of the triangle whose vertices are (0, 1), (1, 0), (1, 2). 7) Evaluate ∬ 𝑦 𝑑𝑥 𝑑𝑦 over the area bounded by 𝑥 = 0, 𝑦 = 𝑥2 , 𝑥 + 𝑦 = 2 in the first quadrant. 8) Evaluate ∬ 𝑥𝑦 𝑑𝑥𝑑𝑦 over the region R given by 𝑥2 + 𝑦2 − 2𝑥 = 0, 𝑦2 = 2𝑥, 𝑦 = 𝑥. 4.1 CHANGE OF ORDER OF INTEGRATION: On changing the order of integration, the limits of the integration change. To find the new limits, draw the rough sketch of the region of integration. Some of the problems connected with double integrals, which seem to be complicated can be made easy to handle by a change in the order of integration. 4.2 Examples: Example 1: Evaluate ∫ ∫ 𝑒 −𝑦 𝑦 𝑑𝑥 𝑑𝑦 ∞ 𝑥 ∞ 0 . Solution: We have, ∫ ∫ 𝑒−𝑦 𝑦 𝑑𝑥 𝑑𝑦 ∞ 𝑥 ∞ 0 Here the elementary strip 𝑃𝑄 extends from 𝑦 = 𝑥 to 𝑦 = ∞ and this vertical strip slides from 𝑥 = 0 𝑡𝑜 𝑥 = ∞. The shaded portion of the figure is, therefore, the region of integration. On changing the order of integration, we first integrate w.r.t 𝑥 along a horizontal strip 𝑅𝑆 which extends from 𝑥 = 0 to 𝑥 = 𝑦. To cover the given region, we then integrate w.r.t ′𝑦′ from 𝑦 = 0 𝑡𝑜 𝑦 = ∞.
  • 10. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 10 Thus ∫ 𝑑𝑥 ∞ 0 ∫ 𝑒−𝑦 𝑦 ∞ 𝑥 𝑑𝑦 = ∫ 𝑒−𝑦 𝑦 𝑑𝑦 ∫ 𝑑𝑥 𝑦 0 ∞ 0 = ∫ 𝑒−𝑦 𝑦 𝑑𝑦 [ 𝑥]0 𝑦∞ 0 = ∫ 𝑦 ∞ 0 𝑒−𝑦 𝑦 𝑑𝑦 = ∫ 𝑒−𝑦 𝑑𝑦 ∞ 0 = [ 𝑒−𝑦 −1 ] 0 ∞ = −[ 1 𝑒 𝑦 ] 0 ∞ = −[ 1 ∞ − 1] = 1 ________ Answer Example 2: Change the order of integration in 𝐼 = ∫ ∫ 𝑥𝑦 𝑑𝑥 𝑑𝑦 2−𝑥 𝑥2 1 0 and hence evaluate the same. Solution: We have 𝐼 = ∫ ∫ 𝑥𝑦 𝑑𝑥 𝑑𝑦 2−𝑥 𝑥2 1 0 The region of integration is shown by shaded portion in the figure bounded by parabola 𝑦 = 𝑥2 , 𝑦 = 2 − 𝑥, 𝑥 = 0 (𝑦 − 𝑎𝑥𝑖𝑠). The point of intersection of the parabola 𝑦 = 𝑥2 and the line 𝑦 = 2 − 𝑥 is 𝐵(1,1). In the figure below (left) we draw a strip parallel to y-axis and the strip y, varies from 𝑥2 to 2 − 𝑥 and 𝑥 varies from 0 to 1.
  • 11. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 11 On changing the order of integration we have taken a strip parallel to x-axis in the area 𝑂𝐵𝐶 and second strip in the area 𝐶𝐵𝐴. The limits of 𝑥 in the area 𝑂𝐵𝐶 are 0 and √ 𝑦 and the limits of 𝑥 in the area 𝐶𝐵𝐴 are 0 and 2 − 𝑦. So, the given integral is = ∫ 𝑦 𝑑𝑦 ∫ 𝑥 𝑑𝑥 + ∫ 𝑦 𝑑𝑦 ∫ 𝑥 𝑑𝑥 2−𝑦 0 2 1 √ 𝑦 0 1 0 = ∫ 𝑦 𝑑𝑦[ 𝑥2 2 ] 0 √ 𝑦 + ∫ 𝑦 𝑑𝑦[ 𝑥2 2 ] 0 2−𝑦2 1 1 0 = 1 2 ∫ 𝑦2 𝑑𝑦 + 1 2 ∫ 𝑦(2 − 𝑦)2 𝑑𝑦 2 1 1 0 = 1 2 [ 𝑦3 3 ] 0 1 + 1 2 ∫ (4𝑦 − 4𝑦2 + 𝑦3 ) 2 1 = 1 6 + 1 2 [ 96−128+48−24+16−3 12 ] = 1 6 + 5 24 = 9 24 = 3 8 ________ Answer 4.3 EXERCISE: 1) Change the order of the integration ∫ ∫ 𝑒−𝑥𝑦 𝑦 𝑑𝑦 𝑑𝑥 𝑥 0 ∞ 0 . 2) Evaluate ∫ ∫ 𝑑𝑥 𝑑𝑦 𝑒 𝑥 1 2 0 by changing the order of integration. 3) Change the order of integration and evaluate ∫ ∫ 𝑥2 𝑑𝑥 𝑑𝑦 √𝑥4−4𝑦2 2 √2𝑦 2 0 . 5.1 CHANGE OF VARIABLE: Sometimes the problems of double integration can be solved easily by change of independent variables. Let the double integral be as ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥𝑑𝑦𝑅 . It is to be changed by the new variables 𝑢, 𝑣. The relation of 𝑥, 𝑦 with 𝑢, 𝑣 are given as 𝑥 = ∅( 𝑢, 𝑣), 𝑦 = 𝜓(𝑢, 𝑣). Then the double integration is converted into. 1. ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥 𝑑𝑦𝑅 = ∬ 𝑓{ 𝜙( 𝑢, 𝑣), 𝜓(𝑢, 𝑣)}𝑅′ | 𝐽| 𝑑𝑢 𝑑𝑣, [𝑑𝑥 𝑑𝑦 = 𝜕 (𝑥,𝑦) 𝜕 (𝑢,𝑣) 𝑑𝑢 𝑑𝑣]
  • 12. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 12 ∬ 𝒇( 𝒙,𝒚) 𝒅𝒙 𝒅𝒚 = ∬ 𝒇{ 𝒙( 𝒖, 𝒗), 𝒚(𝒖, 𝒗)} | 𝝏 (𝒙,𝒚) 𝝏 (𝒖,𝒗) |𝑫𝑹 𝒅𝒖 𝒅𝒗 5.2 Example 1: Using 𝑥 + 𝑦 = 𝑢, 𝑥 − 𝑦 = 𝑣, evaluate the double integral over the square R ∬ ( 𝑥2 + 𝑦2) 𝑑𝑥 𝑑𝑦𝑅 Integration being taken over the area bounded by the lines 𝑥 + 𝑦 = 2, 𝑥 + 𝑦 = 0, 𝑥 − 𝑦 = 2, 𝑥 − 𝑦 = 0. Solution: 𝑥 + 𝑦 = 𝑢 ________(1) 𝑥 − 𝑦 = 𝑣 ________(2) On solving (1) and (2), we get 𝑥 = 1 2 ( 𝑢 + 𝑣), 𝑦 = 1 2 ( 𝑢 − 𝑣) 𝐽 = 𝜕 (𝑥,𝑦) 𝜕 (𝑢,𝑣) = | 𝜕𝑥 𝜕𝑢 𝜕𝑥 𝜕𝑣 𝜕𝑦 𝜕𝑢 𝜕𝑦 𝜕𝑣 | = | 1 2 1 2 1 2 − 1 2 | = − 1 4 − 1 4 = − 1 2 ∬ ( 𝑥2 + 𝑦2) 𝑑𝑥 𝑑𝑦 = ∫ ∫ [ 1 4 (𝑢 + 𝑣)2 + 1 4 (𝑢 − 2 0 2 0𝑅 𝑣)2 ] | 𝜕 (𝑥,𝑦) 𝜕 (𝑢,𝑣) | 𝑑𝑢 𝑑𝑣 = ∫ ∫ 1 2 ( 𝑢2 + 𝑣2)|− 1 2 | 𝑑𝑢 𝑑𝑣 2 0 2 0 = − 1 4 ∫ 𝑑𝑣∫ ( 𝑢2 + 𝑣2) 𝑑𝑢 2 0 2 0 = − 1 4 ∫ 𝑑𝑣 [ 𝑢3 3 + 𝑢𝑣2 ] 0 22 0 = − 1 4 ∫ 𝑑𝑣( 8 3 + 2𝑣2 ) 2 0 = − 1 4 ∫ ( 8 3 + 2𝑣2 ) 2 0 𝑑𝑣
  • 13. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 13 = − 1 4 [ 8 3 𝑣 + 2 3 𝑣3 ] 0 2 = − 1 4 [ 8 3 (2) + 2 3 (2)3 ] = − 1 4 ( 16 3 + 16 3 ) = − 1 4 ( 32 3 ) = − 8 3 ________ Answer 5.3 EXERCISE: 1) Using the transformation 𝑥 + 𝑦 = 𝑢, 𝑦 = 𝑢𝑣 show that ∫ ∫ 𝑒 𝑦 (𝑥+𝑦)⁄ 𝑑𝑦 𝑑𝑥 = 1 2 (𝑒 − 1) 1−𝑥 0 1 0 2) Evaluate ∬ (𝑥 + 𝑦)2 𝑑𝑥 𝑑𝑦𝑅 , where R is the parallelogram in the xy-plane with vertices (1,0), (3,1), (2,2), (0,1), using the transformation 𝑢 = 𝑥 + 𝑦 and 𝑣 = 𝑥 − 2𝑦. 6.1 AREA IN CARTESIAN CO-ORDINATES: Area = ∫ ∫ 𝒅𝒙 𝒅𝒚 𝒚 𝟐 𝒚 𝟏 𝒃 𝒂 6.2 Example 1: Find the area bounded by the lines 𝒚 = 𝒙 + 𝟐 𝒚 = −𝒙 + 𝟐 𝒙 = 𝟓 Solution: The region of integration is bounded by the lines 𝑦 = 𝑥 + 2 _________(1) 𝑦 = −𝑥 + 2 _________(2) 𝑥 = 5 _________(3) On solving (1) and (2), we get the point 𝐴(0,2) On solving (2) and (3), we get the point 𝐶(5,−3) On solving (1) and (3), we get the point 𝐸(5,7)
  • 14. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 14 We draw a strip parallel to 𝑦-axis. On this strip the limits of 𝑦 are 𝑦 = −𝑥 + 2 and 𝑦 = 𝑥 + 2, and the limit of 𝑥 are 𝑥 = 0 and 𝑥 = 5. Required area = Shaded portion of the figure = ∬ 𝑑𝑥 𝑑𝑦 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 𝑥+2 –𝑥+2 5 0 = ∫ 𝑑𝑥 [ 𝑦]−𝑥+2 𝑥+25 0 = ∫ 𝑑𝑥 [ 𝑥 + 2 − (−𝑥 + 2)] 5 0 = ∫ [2𝑥] 𝑑𝑥 5 0 = [ 2𝑥2 2 ] 0 5 = [ 𝑥2]0 5 = [25− 0] = 25 Sq. units ________ Answer Example 2: Find the area betweenthe parabolas 𝒚 𝟐 = 𝟒𝒂𝒙 and 𝒙 𝟐 = 𝟒𝒂𝒚. Solution: We have, 𝑦2 = 4𝑎𝑥 ________ (1) 𝑥2 = 4𝑎𝑦 ________ (2) On solving the equations (1) and (2) we get the point of intersection (4a, 4a). Divide the area into horizontal strips of width 𝛿𝑦, 𝑥 varies from 𝑃, 𝑦2 4𝑎 𝑡𝑜 𝑄,√4𝑎𝑦 and then 𝑦 varies from 𝑂 ( 𝑦 = 0) 𝑡𝑜 𝐴 (𝑦 = 4𝑎). ∴ The required area = ∫ 𝑑𝑦 ∫ 𝑑𝑥 √4𝑎𝑦 𝑦2 4𝑎⁄ 4𝑎 0
  • 15. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 15 = ∫ 𝑑𝑦 [ 𝑥] 𝑦2 4𝑎 √4𝑎𝑦4𝑎 0 = ∫ 𝑑𝑦 [√4𝑎𝑦 − 𝑦2 4𝑎 ] 4𝑎 0 = [√4𝑎 𝑦3 2⁄ 3 2 − 𝑦3 12𝑎 ] 0 4𝑎 = 4√𝑎 3 (4𝑎)3 2⁄ − (4𝑎)3 12𝑎 = 16 3 𝑎2 ________ Answer 7.1 VOLUME OF SOLIDS BY DOUBLE INTEGRAL: Let a surface 𝑆′ be 𝑧 = 𝑓(𝑥, 𝑦) The projection of 𝑠′ on 𝑥 − 𝑦 plane be 𝑆. Take infinite number of elementary rectangles 𝛿𝑥 𝛿𝑦. Erect vertical rod on the 𝛿𝑥 𝛿𝑦 of height 𝑧. Volume of each vertical rod = Area of the base × height = 𝛿𝑥 𝛿𝑦 . 𝑧 Volume of the solid cylinder on S = lim 𝛿𝑥→0 𝛿𝑦→0 ∑ ∑ 𝑧 𝑑𝑥 𝑑𝑦 = ∬ 𝑧 𝑑𝑥 𝑑𝑦 = ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 Here the integration is carried out over the area S.
  • 16. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 16 Example 1: Find the volume bounded by the 𝒙𝒚-plane, the paraboloid 𝟐𝒛 = 𝒙 𝟐 + 𝒚 𝟐 and the cylinder 𝒙 𝟐 + 𝒚 𝟐 = 𝟒. Solution: Here, we have 2𝑧 = 𝑥2 + 𝑦2 ⇒ 2𝑧 = 𝑟2 ⇒ 𝑧 = 𝑟2 2 (Paraboloid) ______(1) 𝑥2 + 𝑦2 = 4 ⇒ 𝑟 = 2, 𝑧 = 0, (circle) ______(2) Volume of one vertical rod = 𝑧. 𝑟 𝑑𝑟 𝑑𝜃 Volume of the solid = ∬ 𝑧 𝑟 𝑑𝑟 𝑑𝜃 = 2 ∫ 𝑑𝜃 ∫ 𝑟2 2 𝑟 𝑑𝑟 2 0 𝜋 0 = 2 2 ∫ 𝑑𝜃 ∫ 𝑟3 𝑑𝑟 2 0 𝜋 0 = ∫ 𝑑𝜃 ( 𝑟4 4 ) 0 2𝜋 0 = ∫ 𝑑𝜃 ( 16 4 ) 𝜋 0 = 4∫ 𝑑𝜃 𝜋 0 = 4[ 𝜃]0 𝜋 = 4𝜋 ________ Answer 8.1 VOLUME OF SOLID BY ROTATION OF AN AREA (DOUBLE INTEGRAL): When the area enclosed by a curve 𝑦 = 𝑓(𝑥) is revolved about an axis, a solid is generated; we have to find out the volume of solid generated. Volume of the solid generated about x-axis = ∫ ∫ 2𝜋 𝑃𝑄 𝑑𝑥 𝑑𝑦 𝑦2(𝑥) 𝑦1(𝑥) 𝑏 𝑎
  • 17. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 17 Example 1: Find the volume of the torus generatedby revolving the circle 𝒙 𝟐 + 𝒚 𝟐 = 𝟒 about the line 𝒙 = 𝟑. Solution: 𝑥2 + 𝑦2 = 4 𝑉 = ∬(2𝜋 𝑃𝑄) 𝑑𝑥 𝑑𝑦 = 2𝜋 ∬(3 − 𝑥) 𝑑𝑥 𝑑𝑦 = 2𝜋 ∫ 𝑑𝑥 (3𝑦 − 𝑥𝑦) −√4−𝑥2 +√4−𝑥22 −2 (3 − 𝑥) 𝑑𝑦 = 2𝜋 ∫ 𝑑𝑥 [3√4 − 𝑥2 − 𝑥√4 − 𝑥2 + 3√4 − 𝑥2 − 𝑥√4 − 𝑥2] +2 −2 = 4𝜋∫ [3√4 − 𝑥2 − 𝑥√4 − 𝑥2] +2 −2 𝑑𝑥 = 4𝜋[3 𝑥 2 √4 − 𝑥2 + 3 × 4 2 sin−1 𝑥 2 + 1 3 (4 − 𝑥2)3 2⁄ ] −2 +2 = 4𝜋 [6 × 𝜋 2 + 6 × 𝜋 2 ] = 24𝜋2 ________ Ans. 8.2 EXERCISE: 1) Find the area of the ellipse 𝑥2 𝑎2 + 𝑦2 𝑏2 = 1 2) Find by double integration the area of the smaller region bounded by 𝑥2 + 𝑦2 = 𝑎2 and𝑥 + 𝑦 = 𝑎. 3) Find the volume bounded by 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒, the cylinder 𝑥2 + 𝑦2 = 1 and the plane 𝑥 + 𝑦 + 𝑧 = 3. 4) Evaluate the volume of the solid generated by revolving the area of the parabola 𝑦2 = 4𝑎𝑥 bounded by the latus rectum about the tangent at the vertex.
  • 18. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 18 9.1 TRIPLE INTEGRATION (VOLUME) : Let a function 𝑓(𝑥, 𝑦, 𝑧) be a continuous at every point of a finite region 𝑆 of three dimensional spaces. Consider 𝑛 sub-spaces 𝛿𝑠1, 𝛿𝑠2, 𝛿𝑠3,… . 𝛿𝑠 𝑛 of the spaceS. If (𝑥 𝑟, 𝑦𝑟, 𝑧 𝑟) be a point in the rth subspace. The limit of the sum ∑ 𝑓(𝑥 𝑟, 𝑦𝑟, 𝑧 𝑟) 𝑛 𝑟=1 𝛿𝑠𝑟, 𝑎𝑠 𝑛 → ∞, 𝛿𝑠𝑟 → 0 is known as the triple integral of 𝑓(𝑥, 𝑦, 𝑧) over the spaceS. Symbolically, it is denoted by ∭𝑓( 𝑥, 𝑦, 𝑧) 𝑑𝑆 𝑆 It can be calculated as ∫ ∫ ∫ 𝑓( 𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑧2 𝑧1 𝑦2 𝑦1 𝑥2 𝑥1 . First we integrate with respect to 𝑧 treating 𝑥, 𝑦 as constant between the limits 𝑧1 𝑎𝑛𝑑 𝑧2 . The resulting expression (function of 𝑥, 𝑦) is integrated with respect to 𝑦 keeping 𝑥 as constant between the limits 𝑦1 𝑎𝑛𝑑 𝑦2. At the end we integrate the resulting expression (function of 𝑥 only) within the limits 𝑥1 𝑎𝑛𝑑 𝑥2. First we integrate from inner most integral w.r.t z, and then we integrate w.r.t 𝑦, and finally the outer most w.r.t 𝑥. But the above order of integration is immaterial provided the limits change accordingly. Example 1: Evaluate ∭ ( 𝑥 − 2𝑦 +𝑅 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧, 𝑤ℎ𝑒𝑟𝑒 𝑅: 0 ≤ 𝑥 ≤ 1 0 ≤ 𝑦 ≤ 𝑥2 0 ≤ 𝑧 ≤ 𝑥 + 𝑦
  • 19. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 19 Solution: ∭ ( 𝑥 − 2𝑦 + 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑅 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 ∫ (𝑥 − 2𝑦 + 𝑧)𝑑𝑧 𝑥+𝑦 0 𝑥2 0 1 0 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 (𝑥𝑧 − 2𝑦𝑧 + 𝑧2 2 ) 0 𝑥+𝑦𝑥2 0 1 0 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑥 ( 𝑥 + 𝑦) − 2𝑦( 𝑥 + 𝑦) + (𝑥+𝑦)2 2 ] 𝑥2 0 1 0 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑥2 + 𝑥𝑦 − 2𝑥𝑦 − 2𝑦2 + (𝑥+𝑦)2 2 ] 𝑥2 0 1 0 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑥2 − 𝑥𝑦 − 2𝑦2 + 𝑥2 2 + 𝑥𝑦 + 𝑦2 2 ] 𝑥2 0 1 0 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 [ 3𝑥2 2 − 3𝑦2 2 ] 𝑥2 0 1 0 = 3 2 ∫ 𝑑𝑥 1 0 ∫ ( 𝑥2 − 𝑦2) 𝑑𝑦 𝑥2 0 = 3 2 ∫ 𝑑𝑥 1 0 (𝑥2 𝑦 − 𝑦3 3 ) 0 𝑥2 = 3 2 ∫ 𝑑𝑥 1 0 (𝑥4 − 𝑥6 3 ) = 3 2 ( 𝑥5 5 − 𝑥7 21 ) 0 1 = 3 2 ( 1 5 − 1 21 ) = 8 35 ________Answer Example 2: Evaluate ∫ ∫ ∫ 𝑒 𝑥+𝑦+𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑥+𝑦 0 𝑥 0 𝑙𝑜𝑔 2 0 Solution: 𝐼 = ∫ ∫ 𝑒 𝑥+𝑦 [ 𝑒 𝑧]0 𝑥+𝑦 𝑑𝑥 𝑑𝑦 𝑥 0 𝑙𝑜𝑔 2 0 = ∫ ∫ 𝑒 𝑥+𝑦 (𝑒 𝑥+𝑦 − 1)𝑑𝑥 𝑑𝑦 𝑥 0 𝑙𝑜𝑔 2 0 = ∫ ∫ [𝑒2(𝑥+𝑦) − 𝑒 𝑥+𝑦 ] 𝑑𝑥 𝑑𝑦 𝑥 0 𝑙𝑜𝑔 2 0
  • 20. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 20 = ∫ [𝑒2𝑥 . 𝑒2𝑥 2 − 𝑒 𝑥 . 𝑒 𝑦 ] 0 𝑥 𝑑𝑥 𝑙𝑜𝑔 2 0 = ∫ [ 𝑒4𝑥 2 − 𝑒2𝑥 − 𝑒2𝑥 2 + 𝑒 𝑥 ] 0 𝑥 𝑑𝑥 𝑙𝑜𝑔 2 0 = [ 𝑒4𝑥 8 − 𝑒2𝑥 2 − 𝑒2𝑥 4 + 𝑒 𝑥 ] 0 log2 = [ 𝑒4 𝑙𝑜𝑔2 8 − 𝑒2 log2 2 − 𝑒2 log2 4 + 𝑒log 2 ] − ( 1 8 − 1 2 − 1 4 + 1) = [ 𝑒 𝑙𝑜𝑔16 8 − 𝑒log4 2 − 𝑒log4 4 + 𝑒log 2 ] − ( 1 8 − 1 2 − 1 4 + 1) = ( 16 8 − 4 2 − 4 4 + 2) − ( 1 8 − 1 2 − 1 4 + 1) = 5 8 ________ Answer 9.2 EXERCISE: 1) Evaluate ∭ ( 𝑥 + 𝑦 + 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧, 𝑤ℎ𝑒𝑟𝑒 𝑅: 0 ≤ 𝑥 ≤ 1, 1 ≤ 𝑦 ≤ 2, 2 ≤ 𝑧 ≤ 3.𝑅 2) Evaluate ∫ ∫ ∫ 𝑒 𝑥+𝑦+𝑧𝑥+log 𝑦 0 𝑑𝑧 𝑑𝑦 𝑑𝑥 𝑥 0 log 2 0 . 3) Evaluate∭ ( 𝑥2 + 𝑦2 + 𝑧2) 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑅 where 𝑅: 𝑥 = 0, 𝑦 = 0, 𝑧 = 0 𝑥 + 𝑦 + 𝑧 = 𝑎, (𝑎 > 0)
  • 21. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 21 10.1REFERENCE BOOK: 1) Introduction to EngineeringMathematics By H. K. DASS. & Dr. RAMA VERMA 2) www.bookspar.com/wp-content/uploads/vtu/notes/1st-2nd- sem/m2-21/Unit-5-Multiple-Integrals.pdf 3) http://www.mathstat.concordia.ca/faculty/cdavid/EMAT212/sol integrals.pdf 4) http://studentsblog100.blogspot.in/2013/02/anna-university- engineering-mathematics.html