SlideShare a Scribd company logo
Numerical Methods and Analysis
Faruque Abdullah
Lecturer
Dept. of Civil Engineering
Dhaka International University
Roots of a equation
Roots of a equation is calculated by the following methods:
 Bi-section method
 Iteration method
 Method of false position/ Interpolation method
 Newton Raphson method, etc.
Bi-section/ Interval Halving Method(IVT)
IVT: If a function f(x) is continuous between a and b and f(a) and
f(b) is opposite sign, then there exists at least one root between a
and b.
f(x) = 𝑥4
- 2x;
f(2) = -ve
f(3) = +ve
 x =
𝑎+𝑏
2
=
2+3
2
= 2.5
Procedure:
Step-1: Choose a real two numbers a and b such that f(a)f(b)<0
Step-2: Set, 𝑥 𝑟 =
𝑎+ 𝑏
2
Step-3: a) If f(a) f(𝑥 𝑟) < 0, the root lies in the interval (a,𝑥 𝑟), Then
set b = 𝑥 𝑟 and go to step 2.
b) If f(a) f(𝑥 𝑟) > 0, the root lies in the interval (𝑥 𝑟,b), Then
set a = 𝑥 𝑟 and go to step 2.
c) If f(a) f(𝑥 𝑟) = 0, it means that 𝑥 𝑟 is a root of the
equation f(x) = 0 and the computation may be terminated.
Problem-1: Find a real root of the equation 𝑥3- 2x-5 = 0 by bi-section method
up to an accuracy of 10−4.
Solution: Let, f(x) = 𝑥3 - 2x -5
f(2) = 23 - 2.2 – 5 = -1
f(3) = 33
- 2.3 – 5 = 16
As f(2) is –ve and f(3) is +ve .
So f(2) f(3) < 0.
 Root lies between 2 and 3.
n a b 𝑥 𝑟 f(x)
(sign)
f(x)
1 2 3 2.5 +ve +5.63
2 2 2.5 2.25 +ve +1.89
3 2 2.25 2.125 +ve +0.34
4 2 2.125 2.0625 -ve -0.35
5 2.0625 2.125 2.09375 -ve -8.94 x10−3
6 2.09375 2.125 2.109375 +ve +0.17
7 2.09375 2.109375 2.1015625 +ve +0.08
8 2.09375 2.1015625 2.09765625 +ve +0.03
9 2.09375 2.09765625 2.095703125 +ve +0.01
10 2.09375 2.095703125 2.094726563 +ve +1.95 x 10−3
11 2.09375 2.094726563 2.094238282 -ve -3.5 x 10−3
12 2.094238282 2.094726563 2.094482423 -ve -7.7 x 10−4
Problem-2: Figure shows a uniform subject to a linearly increasing distributed load.
The equation of the resulting elastic curve , y =
𝑤0
120𝐸𝐼𝐿
(-𝑥5
+ 2𝐿2
𝑥3
-𝐿4
𝑥). Use bi-
section method to determine point of maximum deflection up to an accuracy of 10−10
.
Use the following parameter. E = 50000 KN/𝑐𝑚2, I = 30000 𝑐𝑚4, 𝑤0 = 2.5 KN/cm, L
= 3 m.
3 m
𝑤0
Solution: For maximum deflection,
𝑑𝑦
𝑑𝑥
= 0

𝑑𝑦
𝑑𝑥
=
𝑤0
120𝐸𝐼𝐿
x
𝑑𝑦
𝑑𝑥
(-𝑥5 + 2 𝐿2 𝑥3-𝐿4 𝑥)
=
𝑤0
120𝐸𝐼𝐿
x (-5𝑥4 + 6 𝐿2 𝑥2-𝐿4)
=
2.5
120 X 50000 X 30000 X 300
x (-5𝑥4 + 6. 3002 𝑥2-3004)
= 4.63 x 10−14 x (- 5𝑥4 + 540000 𝑥2- 3004)
Let, f(x) = 4.63 x 10−14
x (- 5𝑥4
+ 540000 𝑥2
- 3004
)
f(134) = -7.34 x 10−7
f(135) = 3.73 x 10−6
As f(134) is –ve and f(135) is +ve .
So f(134) f(135) < 0.
 Root lies between 134 and 135.
n a b 𝑥 𝑟 f(x)
(sign)
f(x)
1 134 135 134.5 +ve +1.5 x 10−6
2 134 134.5 134.25 +ve +3.84 10−7
3 134 134.25 134.125 -ve -1.75 x 10−7
4 134.125 134.25 134.1875 +ve +1.05 x 10−7
5 134.125 134.1875 134.15625 -ve -3.5 x 10−8
6 134.15625 134.1875 134.171875 +ve +3.5 x 10−8
7 134.15625 134.171875 134.1640625 -ve -7.22 x 10−11
Method of False Position
(0,0)
X
Y
[a, f(a)]
[b, f(b)]
f(x) 𝑦−𝑓(𝑎)
𝑥−𝑎
=
𝑓 𝑏 − 𝑓(𝑎)
𝑏−𝑎
Let, y = 0,
−𝑓(𝑎)
𝑥−𝑎
=
𝑓 𝑏 − 𝑓(𝑎)
𝑏−𝑎
 x-a = -
(𝑏−𝑎)𝑓(𝑎)
𝑓 𝑏 −𝑓(𝑎)
 x = a -
(𝑏−𝑎)𝑓(𝑎)
𝑓 𝑏 −𝑓(𝑎)
Derive the root of a curve f(x) by False Position method.
Newton Raphson Method
Let, 𝑥0 be a root of the function f(𝑥0) = 0 and assume that 𝑥1 = 𝑥0 + h be the correct
root of the function f(𝑥1) = 0.
𝑥1 = 𝑥0 + h -----------------(1)
f(𝑥1) = 0
f(𝑥0 + h) = 0-----------------(2)
Expanding eq (2) by Tailor’s series we get,
f(𝑥0) + h𝑓′(𝑥0) +
ℎ2
2!
𝑓′′(𝑥0) + ----- = 0
Neglecting 2nd and higher order derivatives,
f(𝑥0) + h𝑓′
(𝑥0) = 0
Or, h = -
f( 𝑥0)
𝑓′( 𝑥0)
From eq (1),
𝑥1 = 𝑥0 -
f( 𝑥0)
𝑓′( 𝑥0)
Similar approximation for 𝑥2, 𝑥3, ----, 𝑥 𝑛+1 we get,
𝑥2 = 𝑥1 -
f( 𝑥1)
𝑓′( 𝑥1)
𝑥3 = 𝑥2 -
f( 𝑥2)
𝑓′( 𝑥2)
-------------
𝑥 𝑛+1 = 𝑥 𝑛 -
f( 𝑥 𝑛)
𝑓′( 𝑥 𝑛)
This is Newton Raphson Formula.
Problem-3: Find a real root of the equation 𝑥3- 2x-5 = 0 by Newton Raphson
method.
Solution: Let, f(x) = 𝑥3 - 2x -5
f(𝑥 𝑛) = 𝑥 𝑛
3 - 2𝑥 𝑛 -5
𝑓′(𝑥 𝑛) = 3𝑥 𝑛
2
- 2
From Newton Raphson Formula,
𝑥 𝑛+1 = 𝑥 𝑛 -
f( 𝑥 𝑛)
𝑓′( 𝑥 𝑛)
= 𝑥 𝑛 -
𝑥 𝑛
3 − 2 𝑥 𝑛 −5
3𝑥 𝑛
2 − 2
Putting n=0,
𝑥1 = 𝑥0 -
𝑥0
3 − 2 𝑥0 −5
3𝑥0
2 − 2
Assume, 𝑥0 = 2
𝑥1 = 2 -
23 − 2(2) −5
3(22) − 2
= 2.1
𝑥2 = 2.1 -
2.13 − 2(2.1) −5
3(2.1)2 − 2
= 2.0946
𝑥3 = 2.0946 -
2.09463 − 2(2.0946) −5
3(2.0946)2 − 2
= 2.0946
Problem-4: You are designing a spherical tank to hold water for a small village in a
developing country. The volume of liquid can be calculated as V = πℎ2 [3𝑅−ℎ]
3
. If R = 3
m, to what depth must the tank be filled so that it holds 30 𝑚3 water?
Solution: V = πℎ2 [3𝑅−ℎ]
3
=> 30 = πℎ2 [3.3−ℎ]
3
=> 90 = πℎ2(9-h)
=>
90
𝜋
= 9ℎ2 - ℎ3
=> ℎ3
- 9ℎ2
+ 28.65 = 0
Let, f(h) = ℎ3 - 9ℎ2 + 28.65
f(ℎ 𝑛) = ℎ 𝑛
3
- 9ℎ 𝑛
2
+ 28.65
𝑓′(ℎ 𝑛) = 3ℎ 𝑛
2
- 18ℎ 𝑛
From Newton Raphson Formula,
ℎ 𝑛+1 = ℎ 𝑛 -
f(ℎ 𝑛)
𝑓′(ℎ 𝑛)
= ℎ 𝑛 -
ℎ 𝑛
3
− 9ℎ 𝑛
2
+ 28.65
3ℎ 𝑛
2
−18ℎ 𝑛
Putting n=0,
ℎ1 = ℎ0 -
ℎ0
3
− 9ℎ0
2
+ 28.65
3ℎ0
2
− 18ℎ0
Assume, ℎ0 = 2
ℎ1 = 2 -
23 − 9(2)2+28.65
3(22) −18(2)
= 2.027
ℎ2 = 2.027 -
2.0273 − 9(2.027)2+28.65
3(2.0272) −18(2.027)
= 2.02699
ℎ3 = 2.02699 -
2.026993 − 9(2.02699)2+28.65
3(2.026992) −18(2.02699)
= 2.02699
Required depth is 2.02699 m to hold 30 𝑚3 volume of water in the tank.
Interpolation
Interpolation Method
Forward difference table:
x y ∆ ∆2 ∆3 ∆4
∆5 ∆6
x0 y0
∆y0
x1 y1 ∆2y0
∆y1 ∆3y0
x2 y2 ∆2
y1 ∆4
y0
∆y2 ∆3
y1 ∆5
y0
x3 y3 ∆2
y2 ∆4
y1 ∆6
y0
∆y3 ∆3y2 ∆5y1
x4 y4 ∆2
y3 ∆4
y2
∆y4 ∆3y3
x5 y5 ∆2
y4
∆y5
x6 y6
∆y0 = y1 - y0
∆2
y0 = ∆y1 - ∆y0 = y2 - y1- y1 + y0 = y2 - 2y1 + y0
∆3
y0 = ∆2
y1 - ∆2
y0 = y3 - 2 y2 + y1 - y2 + 2 y1 - y0 = y3 - 3 y2 + 3 y1 - y0
--------------------------------------------Continue--------------------------------------------
Newton’s Formula for Forward Interpolation
Let, y = f(x) denote a function which takes the values from y0, y1, y2,
y3,……….., yn for the equidistance values x0, 𝑥1, 𝑥2, 𝑥3,……….., xn. Φ(x)
denote a function of polygonal for nth degree. As x is equidistance xi = x0 +
ih. Where, i = 1,2,3,…….,n.
x1 = x0 + h
=> (x1 - x0) = h
x2 = x0 + 2h
=> (x2 - x0) = 2h
The polynomial φ(x) = 𝑎0 + 𝑎1 (x-x0) + 𝑎2 (x-x0) (x-x1) + 𝑎3 (x-x0) (x-x1) (x-x2)
+ ………………..+ 𝑎 𝑛 (x-x0) (x-x1) (x-x2)………… (x-x 𝑛−1) ………(1)
When, x = 𝑥0, φ(x) = 𝑎0 = 𝑦0
When, x = 𝑥1, φ(x) = 𝑎0 + 𝑎1 (x1 -x0) = 𝑦1
 𝑎1 =
𝑦1−𝑦0
𝑥1−𝑥0
=
∆y0
ℎ
When, x = 𝑥2, φ(x) = 𝑎0 + 𝑎1 (x2 -x0) + 𝑎2 (x2 -x0) (x2 -x1) = 𝑦2
=> 𝑦2 = 𝑦0 +
∆y0
ℎ
. 2h + 𝑎2 . 2h . h [∆y0 = 𝑦1-𝑦0]
=> 𝑎2 =
𝑦2−2𝑦1+ 𝑦0
2ℎ2 =
∆2y0
2!ℎ2
Similarly we can write,
𝑎3 =
∆3y0
3!ℎ3 ; 𝑎4 =
∆4y0
4!ℎ4 ; ……., 𝑎 𝑛 =
∆ny0
𝑛!ℎ 𝑛
Putting this value in eq (1), we get,
φ(x) = 𝑦0 +
∆y0
ℎ
(x-x0) +
∆2y0
2!ℎ2 (x-x0) (x-x1) +
∆3y0
3!ℎ3 (x-x0) (x-x1) (x-x2) +
………………..+
∆ny0
𝑛!ℎ 𝑛(x-x0) (x-x1) (x-x2)………… (x-x 𝑛−1)
Let us assume, x = x0 + ph
=> p =
𝑥 − 𝑥0
ℎ
=>
𝑥 − 𝑥1
ℎ
=
𝑥 −𝑥0−ℎ
ℎ
=
𝑥 −𝑥0
ℎ
- 1= p-1
=>
𝑥 − 𝑥2
ℎ
=
𝑥 −𝑥0−2ℎ
ℎ
=
𝑥 −𝑥0
ℎ
- 2 = p-2
φ(x) = 𝑦0 +
∆y0
ℎ
(x-x0) +
∆2y0
2!ℎ2 (x-x0) (x-x1) +
∆3y0
3!ℎ3 (x-x0) (x-x1) (x-x2) +
………………..+
∆ny0
𝑛!ℎ 𝑛(x-x0) (x-x1) (x-x2)………… (x-x 𝑛−1)
 φ(x) = 𝑦0 + p ∆y0 + p (p-1)
∆2y0
2!
+ p (p-1)(p-2)
∆3y0
3!
+ ………………..+ p (p-1)
(p-2) ……… p(p-n+1)
∆ny0
𝑛!
Problem-5: Find the cubic polynomial which takes the following values
y(1) = 24
y(3) = 120
y(5) = 336
y(7) = 720
Hence, obtain the values of y(8) by Newton’s Forward Interpolation method.
Solution: We make the forward difference table,
h = (x1 - x0) = 3 – 1 = 2
x = 𝑥0 + ph => p =
𝑥 − 𝑥0
ℎ
=> p =
8 −1
2
= 3.5
x y ∆ ∆2 ∆3
1 24
96
3 120 120
216 48
5 336 168
384
7 720
From Newton’s formula for forward interpolation,
y(x) = 𝑦0 + p∆ 𝑦0 + p (p-1)
∆2 𝑦0
2!
+ p (p-1) (p-2)
∆3 𝑦0
3!
=> y(8)= 24 + 3.5 x 96 + 3.5 (3.5-1) x
120
2!
+ 3.5 (3.5-1) (3.5-2) x
48
3!
= 990.
Problem-6: Find the cubic polynomial which takes the following values
y(1) = 24
y(3) = 120
y(5) = 336
y(7) = 720
Hence, obtain the values of y(6) by Newton’s Backward Interpolation method.
Newton’s Formula for Backward Interpolation
Solution: We make the backward difference table,
h = (x1 - x0) = 3 – 1 = 2
x = 𝑥 𝑛 + ph => p =
𝑥 − 𝑥 𝑛
ℎ
=> p =
6 −7
2
= -0.5
x y ∇ ∇ 2
∇ 3
1 24
96
3 120 120
216 48
5 336 168
384
7 720
From Newton’s formula for backward interpolation,
y(x) = 𝑦𝑛 + p∆ 𝑦𝑛 + p (p+1)
∆2 𝑦 𝑛
2!
+ p (p+1)(p+2)
∆3 𝑦 𝑛
3!
=> y(6)= 720 + (-0.5) x 384 + (-0.5) (-0.5+1) x
168
2!
+ (-0.5) (-0.5+1) (-0.5+2) x
48
3!
= 576.
Problem-6: The table shows the value of tanx for 0.1 ≤ x ≤ 0.3
Find, (a) tan(0.12) by Forward Interpolation Method
(b) tan(0.26) by Backward Interpolation Method.
x Y = tanx
0.10 0.1745
0.15 0.2618
0.20 0.3491
0.25 0.4363
0.30 0.5236
Solution: We make the forward difference table,
x y ∆ ∆2
∆3
∆4
0.10 0.1745
0.0873
0.15 0.2618 0
0.0873 0
0.20 0.3491 0 0
0.0873 0
0.25 0.4364 0
0.0873
0.30 0.5237
(a) h = (x1 - x0) = 0.15 – 0.10 = 0.05
x = 𝑥0 + ph => p =
𝑥 − 𝑥0
ℎ
=> p =
0.12 −0.10
0.05
= 0.4
For Newton’s Forward formula,
tan(0.12) = 𝑦0 + p∆ 𝑦0 + p (p-1)
∆2 𝑦0
2!
+ p (p-1) (p-2)
∆3 𝑦0
3!
+ p (p-1) (p-2) (p-3)
∆4 𝑦0
4!
= 0.1745 + 0.4 x 0.0873 + 0.4 (0.4-1)
0
2!
+ 0.4 (0.4-1) (0.4-2)
0
3!
+
0.4 (0.4-1) (0.4-2)
0
4!
= 0.2094
(b) h = (x1 - x0) = 0.15 – 0.10 = 0.05
x = 𝑥 𝑛 + ph => p =
𝑥 − 𝑥 𝑛
ℎ
=> p =
0.26 −0.30
0.05
= -0.8
For Newton’s Backward formula,
tan(0.26) = 𝑦𝑛 + p∆ 𝑦𝑛 + p (p+1)
∆2 𝑦 𝑛
2!
+ p (p+1) (p+2)
∆3 𝑦 𝑛
3!
+ p (p+1) (p+2) (p+3)
∆4 𝑦 𝑛
4!
= 0.5237 + -0.8 x 0.0873 + -0.8 (-0.8+1)
0
2!
- 0.8 (-0.8+1) (-0.8+2)
0
3!
-
0.8 (-0.8+1) (-0.8+2)
0
4!
= 0.4538
Problem-7: The discharge through a hydraulic structure for different values of
head (H) is shown in table.
Calculate discharge, Q for H=3 ft using Lagrange formula.
H (ft) 1.2 2.1 2.7 4.0
Q (cusec) 25 60 90 155
Solution: From Lagrange formula,
Q (cusec) =
(𝑥−𝑥1)(𝑥−𝑥2)(𝑥−𝑥3)
(𝑥0−𝑥1)(𝑥0−𝑥2)(𝑥0−𝑥3)
𝑦0 +
(𝑥−𝑥0)(𝑥−𝑥2)(𝑥−𝑥3)
(𝑥1−𝑥0)(𝑥1−𝑥2)(𝑥1−𝑥3)
𝑦1 +
(𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥3)
(𝑥2−𝑥0)(𝑥2−𝑥1)(𝑥2−𝑥3)
𝑦2 +
(𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥2)
(𝑥3−𝑥0)(𝑥3−𝑥1)(𝑥3−𝑥2)
𝑦3
=
(3−2.1)(3−2.7)(3−4)
(1.2−2.1)(1.2−2.7)(1.2−4)
25 +
(3−1.2)(3−2.7)(3−4)
(2.1−1.2)(2.1−2.7)(2.1−4)
60 +
(3−1.2)(3−2.1)(3−4)
2.7−1.2 2.7−2.1 (2.7−4)
90 +
(3−1.2)(3−2.1)(3−2.7)
(4−1.2)(4−2.1)(4−2.7)
155
= 1.78 – 31.58 + 124.62 + 10.89 = 105.71 cusec.
Exercise: The load bearing capacity on different penetration level is given
below.
Calculate Load for D = 3.00 cm using Lagrange formula.
D (cm) 2.35 2.75 3.30 3.60
Load (KN) 25 43 66 70
Solution: From Lagrange formula,
Q (cusec) =
(𝑥−𝑥1)(𝑥−𝑥2)(𝑥−𝑥3)
(𝑥0−𝑥1)(𝑥0−𝑥2)(𝑥0−𝑥3)
𝑦0 +
(𝑥−𝑥0)(𝑥−𝑥2)(𝑥−𝑥3)
(𝑥1−𝑥0)(𝑥1−𝑥2)(𝑥1−𝑥3)
𝑦1 +
(𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥3)
(𝑥2−𝑥0)(𝑥2−𝑥1)(𝑥2−𝑥3)
𝑦2 +
(𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥2)
(𝑥3−𝑥0)(𝑥3−𝑥1)(𝑥3−𝑥2)
𝑦3
=
(3−2.75)(3−3.30)(3−3.60)
(2.35−2.75)(2.35−3.30)(2.35−3.60)
25 +
(3−2.35)(3−3.30)(3−3.60)
(2.75−2.35)(2.75−3.30)(2.75−3.60)
43 +
(3−2.35)(3−2.75)(3−3.60)
3.30−2.35 3.30−2.75 (3.30−3.60)
66 +
(3−2.35)(3−2.75)(3−3.30)
(3.60−2.35)(3.60−2.75)(3.60−3.30)
70
= −2.37 + 26.90 + 41.05 −10.71
= 54.87 KN
Matrix
Problem-8: Solve the following equations by Gauss-Jordan Elimination method.
x + y + z = 5
2x + 3y +5z = 8
4x +5z = 2
Solution: The augmented matrix =
=
=
1 1 1 5
2 3 5 8
4 0 5 2
1 1 1 5
0 1 3 -2
4 0 5 2
𝑅2
′
= 𝑅2- 2𝑅1
1 1 1 5
0 1 3 -2
0 4 -1 18
𝑅3
′
= 4𝑅1- 𝑅3
1 1 1 5
0 1 3 -2
0 4 -1 18
𝑅3
′
= 4𝑅1- 𝑅3
1 1 1 5
0 1 3 -2
0 0 13 -26
𝑅3
′
= 4𝑅2- 𝑅3
1 1 1 5
0 1 3 -2
0 0 1 -2
13z = -26
=> Z = -2
𝑅2
′
= 𝑅2- 3𝑅3
=
1 1 1 5
0 1 0 4
0 0 1 -2
=
=
=
𝑅1
′
= 𝑅1 - 𝑅2- 𝑅3
1 0 0 3
0 1 0 4
0 0 1 -2
=
Example: Solve the following equations by Gauss-Jordan Elimination method.
5x + 2y + 3z = 1
2x + 2y = 7
8y + 7z = 14
Solution: The augmented matrix =
=
=
5 2 3 1
2 2 0 7
0 8 7 14
1 -2 3 -13
2 2 0 7
0 8 7 14
𝑅1
′
= 𝑅1- 2𝑅2
𝑅2
′
= 𝑅2- 2𝑅1
1 -2 3 -13
0 6 -6 33
0 8 7 14
𝑅2
′
= 1/6𝑅2
𝑅3
′
= 𝑅3- 8𝑅2
15z = -30
=> Z = -2
=
=
=
=
𝑅1
′
= 𝑅1 + 2𝑅2 -3𝑅3
1 -2 3 -13
0 6 -6 33
0 8 7 14
1 -2 3 -13
0 1 -1 5.5
0 8 7 14
1 -2 3 -13
0 1 -1 5.5
0 0 15 -30
1 -2 3 -13
0 1 -1 5.5
0 0 1 -2
=
1 -2 3 -13
0 1 0 3.5
0 0 1 -2
=
1 0 0 0
0 1 0 3.5
0 0 1 -2
𝑅2
′
= 𝑅2+ 𝑅3
Example: Solve the following equations by Gauss-Jordan Elimination method.
x + 3y + 6z = 12
2x + 3y = 16
x + 9z = 14
Solution: x = 8, y = 0, z = 2/3
Problem-9: Find whether the following system is consistent or not.
x - 4y + 5z = 8
3x + 7y - z = 3
x + 15y -11z = -14
Solution: Forming the matrix, A=
Now, A = 0 and ≠ 0.
r (A) = 2
1 -4 5
3 7 -1
1 15 -11
1 -4
3 7

Forming the augmented matrix, (A,b)=
Determinant of = 31≠ 0.
r (A,b) = 3
When, r (A,b) ≥ r(A), the equation will be inconsistence (No solution).
As, r(A) < r (A,b) ;
Hence the system is inconsistence.
1 -4 5 8
3 7 -1 3
1 15 -11 -14
-4 5 8
7 -1 3
15 -11 -14
Curve Fitting
Problem-10: In a laboratory the data of water demand with respect to population
is shown in the following table .
Population (thousand) 2.10 6.22 7.17 10.52 13.68
Water Demand (cumec) 2.90 3.83 5.98 5.71 7.74
Fit a straight line from this data to find the discharge for any corresponding area
using least square method.
Linear Curve Fitting
Solution:
i x y 𝑥2
xy
1 2.10 2.90 4.41 6.09
2 6.22 3.83 38.69 23.83
3 7.17 5.98 51.40 42.90
4 10.52 5.71 110.67 60.10
5 13.68 7.74 187.14 105.88
∑ 39.69 26.16 392.30 238.74
m𝑎0 + 𝑎1∑𝑥𝑖 = ∑𝑦𝑖 ………..(1)
𝑎0∑𝑥𝑖 + 𝑎1 ∑𝑥𝑖
2
= ∑𝑥𝑖 𝑦𝑖 ………..(2)
From eq (1), 5 𝑎0 + 39.69 𝑎1 = 26.16
From eq (2), 39.69 𝑎0 + 392.30 𝑎1 = 238.74
Solving the equation, 𝑎0 = 2.04 & 𝑎1 = 0.402
⸫ y = 𝑎0 + 𝑎1x = 2.04 + 0.402x
Non-Linear Curve Fitting
Problem-11: In a laboratory the deformation (mm) of a pre-stressed cantilever
beam with respect to distance (m) from the fixed support is shown below:
Fit a parabolic curve line from this data to find the deflection for any point from
the fixed support.
2
12
10
8
6
4
0.01
0.36
0.29
0.22
0.18
0.09
Solution:
i x y 𝑥2 𝑥3 𝑥4 xy 𝑥2y
1 2 0.01 4 8 16 0.02 0.04
2 4 0.09 16 64 256 0.36 1.44
3 6 0.18 36 216 1296 1.08 6.48
4 8 0.22 64 512 4096 1.76 14.08
5 10 0.29 100 1000 10000 2.90 29.00
6 12 0.36 144 1728 20736 4.32 51.84
∑ 42 1.15 364 3528 36400 10.44 102.88
m𝑎0 + 𝑎1∑𝑥𝑖 + 𝑎2 ∑𝑥𝑖
2 = ∑𝑦𝑖 ………..(1)
𝑎0∑𝑥𝑖 + 𝑎1 ∑𝑥𝑖
2
+ 𝑎2 ∑𝑥𝑖
3
= ∑𝑥𝑖 𝑦𝑖 ………..(2)
𝑎0∑ 𝑥𝑖
2
+ 𝑎1 ∑𝑥𝑖
3
+ 𝑎2 ∑𝑥𝑖
4
= ∑𝑥𝑖
2
𝑦𝑖 ………..(3)
From eq (1), 6 𝑎0 + 42 𝑎1 + 364 𝑎2 = 1.15
From eq (2), 42 𝑎0 + 364 𝑎1 + 3528 𝑎2 = 10.44
From eq (3), 364 𝑎0 + 3528 𝑎1 + 36400 𝑎2 = 102.88
Solving the equation, 𝑎0 = -0.069, 𝑎1 = 0.042 & 𝑎2 = -5.803 x 10−4
⸫ y = 𝑎0 + 𝑎1x + 𝑎2 𝑥2 = -0.069 + 0.042 x + -5.803 x 10−4 𝑥2
Distance (m) 2 4 6 8 10 12
Deflection (mm)
y = -0.069 + 0.042 x + -5.803 x 10−4
𝑥2
0.01 0.10 0.18 0.27 0.35 0.43
Original Value(mm) 0.01 0.09 0.18 0.22 0.29 0.36
Problem-12: Use 4 segment to calculate the are of a function f(x) = 0.2 + 25 x +
3𝑥2 + 2𝑥4 from a = 0 to b = 2 by using Trapezoidal rule and Simpson's rule and
determine percentage of error.
Solution: For four segment n = 4. So, the value of x will be 0.5, 1.0, 1.5, 2.0.
Using Trapezoidal rules,
0
2
𝑦𝑑𝑥 =
ℎ
2
[𝑦0+ 𝑦𝑛 + 2 (𝑦1 +……..+ 𝑦(𝑛−1))]
=
0.5
2
[ 0.2 + 94.2 + 2(13.575 + 30.2 + 54.575)] = 72.775 unit
x 0 0.5 1.0 1.5 2.0
y 0.2 13.575 30.2 54.575 94.2
Using Simpson’s rules,
0
2
𝑦𝑑𝑥 =
ℎ
3
[𝑦0+ 𝑦𝑛 + 4 (𝑦1 + 𝑦3 + 𝑦5 +……..+ 𝑦(𝑛−1)) + 2 (𝑦2 + 𝑦4 + 𝑦6 +
……..+ 𝑦(𝑛−2))]
=
0.5
3
[ 0.2 + 94.2 + 4(13.575 + 54.575) + 2 (30.2)] = 71.23 unit
Actual area by integration method,
0
2
𝑦𝑑𝑥 = 0
2
(0.2 + 25 x + 3𝑥2 + 2𝑥4)𝑑𝑥
= 0.2x + 25
𝑥2
2
+ 3
𝑥3
3
+ 2
𝑥5
5 0
2
= 71.2 unit
Percentage of error for Trapezoidal rule =
72.775 −71.2
71.2
x 100% = 2.21%
Percentage of error for Simpson’s rule =
721.23 −71.2
71.2
x 100% = 0.042%
Problem-13: A irrigation reservoir discharging through sluice at a depth h, below the
water surface as a surface area A, for various value of h as given below:
If t denotes the time in min & the rate of fall of the surface is given by
𝑑ℎ
𝑑𝑡
= -
48
𝐴
ℎ , estimate the time taken for the water level to fall from 14 ft to 10 ft above
the sluice.
Solution: Area of the water reservoir, A =
ℎ
2
[ 950 + 1530 + 2 (1070 + 1200 + 1350)]
= 4860 𝑓𝑡2
h (ft) 10 11 12 13 14
A (𝑓𝑡2
) 950 1070 1200 1350 1530
𝑑ℎ
𝑑𝑡
= -
48
𝐴
ℎ

𝑑ℎ
ℎ
1
2
= -
48
𝐴
dt
 10
14
ℎ−1
2 𝑑ℎ = -
48
𝐴 0
𝑡
𝑑𝑡
 [
ℎ
1
2
1
2
]
10
14
= -
48
4860
t
 t =
4860
48
x
0.58
1
2
= 117.45 min.

More Related Content

What's hot

LU FACTORIZATION METHOD
 LU FACTORIZATION METHOD LU FACTORIZATION METHOD
LU FACTORIZATION METHOD
reach2arkaELECTRICAL
 
Finite Difference Method
Finite Difference MethodFinite Difference Method
Finite Difference Method
Syeilendra Pramuditya
 
Secant Method
Secant MethodSecant Method
Secant Method
Nasima Akhtar
 
Bilinear transformation
Bilinear transformationBilinear transformation
Bilinear transformation
Buvaneswari
 
Numerical Differentiation and Integration
 Numerical Differentiation and Integration Numerical Differentiation and Integration
Numerical Differentiation and Integration
Meenakshisundaram N
 
Lecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcLecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etc
Riyandika Jastin
 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method
AMINULISLAM439
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference Interpolation
VARUN KUMAR
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
Awais Chaudhary
 
Jacobi method
Jacobi methodJacobi method
Jacobi method
Grishma Maravia
 
Partial differentiation B tech
Partial differentiation B techPartial differentiation B tech
Partial differentiation B tech
Raj verma
 
Secant Method
Secant MethodSecant Method
Secant Method
Afraz Khan
 
Application of differentiation
Application   of   differentiationApplication   of   differentiation
Application of differentiation
Dhanush Kumar
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
Solo Hermelin
 
Differential equations
Differential equationsDifferential equations
Differential equationsCharan Kumar
 
Higher Order Differential Equation
Higher Order Differential EquationHigher Order Differential Equation
Higher Order Differential Equation
Shrey Patel
 
Ch 2
Ch 2Ch 2
Limit and continuity (2)
Limit and continuity (2)Limit and continuity (2)
Limit and continuity (2)
Digvijaysinh Gohil
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation
Meet Patel
 

What's hot (20)

LU FACTORIZATION METHOD
 LU FACTORIZATION METHOD LU FACTORIZATION METHOD
LU FACTORIZATION METHOD
 
Finite Difference Method
Finite Difference MethodFinite Difference Method
Finite Difference Method
 
Secant Method
Secant MethodSecant Method
Secant Method
 
Bilinear transformation
Bilinear transformationBilinear transformation
Bilinear transformation
 
Numerical method
Numerical methodNumerical method
Numerical method
 
Numerical Differentiation and Integration
 Numerical Differentiation and Integration Numerical Differentiation and Integration
Numerical Differentiation and Integration
 
Lecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcLecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etc
 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference Interpolation
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Jacobi method
Jacobi methodJacobi method
Jacobi method
 
Partial differentiation B tech
Partial differentiation B techPartial differentiation B tech
Partial differentiation B tech
 
Secant Method
Secant MethodSecant Method
Secant Method
 
Application of differentiation
Application   of   differentiationApplication   of   differentiation
Application of differentiation
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Higher Order Differential Equation
Higher Order Differential EquationHigher Order Differential Equation
Higher Order Differential Equation
 
Ch 2
Ch 2Ch 2
Ch 2
 
Limit and continuity (2)
Limit and continuity (2)Limit and continuity (2)
Limit and continuity (2)
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation
 

Similar to Numerical Methods and Analysis

Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manual
nmahi96
 
Sbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSbma 4603 numerical methods Assignment
Sbma 4603 numerical methods Assignment
Saidatina Khadijah
 
Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integration
Tarun Gehlot
 
numericai matmatic matlab uygulamalar ali abdullah
numericai matmatic  matlab  uygulamalar ali abdullahnumericai matmatic  matlab  uygulamalar ali abdullah
numericai matmatic matlab uygulamalar ali abdullah
Ali Abdullah
 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
MAY NURHAYATI
 
GROUP 3 PPT self learning activity pptx.
GROUP 3 PPT self learning activity pptx.GROUP 3 PPT self learning activity pptx.
GROUP 3 PPT self learning activity pptx.
AmolAher20
 
differential-calculus-1-23.pdf
differential-calculus-1-23.pdfdifferential-calculus-1-23.pdf
differential-calculus-1-23.pdf
IILSASTOWER
 
Calculo integral - Larson
Calculo integral - LarsonCalculo integral - Larson
Calculo integral - Larson
Juan Alejandro Alvarez Agudelo
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
OlooPundit
 
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
RhiannonBanksss
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
HebaEng
 
Interpolation
InterpolationInterpolation
Interpolation
Brijesh Padhiyar
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
nihaiqbal1
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
nihaiqbal1
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)
Abhishek Choksi
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and Integration
Meenakshisundaram N
 

Similar to Numerical Methods and Analysis (20)

05_AJMS_332_21.pdf
05_AJMS_332_21.pdf05_AJMS_332_21.pdf
05_AJMS_332_21.pdf
 
AJMS_389_22.pdf
AJMS_389_22.pdfAJMS_389_22.pdf
AJMS_389_22.pdf
 
Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manual
 
Sbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSbma 4603 numerical methods Assignment
Sbma 4603 numerical methods Assignment
 
Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integration
 
numericai matmatic matlab uygulamalar ali abdullah
numericai matmatic  matlab  uygulamalar ali abdullahnumericai matmatic  matlab  uygulamalar ali abdullah
numericai matmatic matlab uygulamalar ali abdullah
 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
 
GROUP 3 PPT self learning activity pptx.
GROUP 3 PPT self learning activity pptx.GROUP 3 PPT self learning activity pptx.
GROUP 3 PPT self learning activity pptx.
 
differential-calculus-1-23.pdf
differential-calculus-1-23.pdfdifferential-calculus-1-23.pdf
differential-calculus-1-23.pdf
 
Calculo integral - Larson
Calculo integral - LarsonCalculo integral - Larson
Calculo integral - Larson
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
Solutions Manual for College Algebra Concepts Through Functions 3rd Edition b...
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 
Appendex
AppendexAppendex
Appendex
 
Interpolation
InterpolationInterpolation
Interpolation
 
final15
final15final15
final15
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and Integration
 

More from Rajshahi University of Engineering and Technology

SFD & BMD
SFD & BMDSFD & BMD
Engineering Hydrology
Engineering HydrologyEngineering Hydrology
Transportation Engineering-I
Transportation Engineering-ITransportation Engineering-I
Prestressed Concrete
Prestressed ConcretePrestressed Concrete
Engineering Mechanics
Engineering MechanicsEngineering Mechanics
Irrigation & Flood Control
Irrigation & Flood ControlIrrigation & Flood Control

More from Rajshahi University of Engineering and Technology (6)

SFD & BMD
SFD & BMDSFD & BMD
SFD & BMD
 
Engineering Hydrology
Engineering HydrologyEngineering Hydrology
Engineering Hydrology
 
Transportation Engineering-I
Transportation Engineering-ITransportation Engineering-I
Transportation Engineering-I
 
Prestressed Concrete
Prestressed ConcretePrestressed Concrete
Prestressed Concrete
 
Engineering Mechanics
Engineering MechanicsEngineering Mechanics
Engineering Mechanics
 
Irrigation & Flood Control
Irrigation & Flood ControlIrrigation & Flood Control
Irrigation & Flood Control
 

Recently uploaded

Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
SupreethSP4
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
ongomchris
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 

Recently uploaded (20)

Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 

Numerical Methods and Analysis

  • 1. Numerical Methods and Analysis Faruque Abdullah Lecturer Dept. of Civil Engineering Dhaka International University
  • 2. Roots of a equation Roots of a equation is calculated by the following methods:  Bi-section method  Iteration method  Method of false position/ Interpolation method  Newton Raphson method, etc.
  • 3. Bi-section/ Interval Halving Method(IVT) IVT: If a function f(x) is continuous between a and b and f(a) and f(b) is opposite sign, then there exists at least one root between a and b. f(x) = 𝑥4 - 2x; f(2) = -ve f(3) = +ve  x = 𝑎+𝑏 2 = 2+3 2 = 2.5
  • 4. Procedure: Step-1: Choose a real two numbers a and b such that f(a)f(b)<0 Step-2: Set, 𝑥 𝑟 = 𝑎+ 𝑏 2 Step-3: a) If f(a) f(𝑥 𝑟) < 0, the root lies in the interval (a,𝑥 𝑟), Then set b = 𝑥 𝑟 and go to step 2. b) If f(a) f(𝑥 𝑟) > 0, the root lies in the interval (𝑥 𝑟,b), Then set a = 𝑥 𝑟 and go to step 2. c) If f(a) f(𝑥 𝑟) = 0, it means that 𝑥 𝑟 is a root of the equation f(x) = 0 and the computation may be terminated.
  • 5. Problem-1: Find a real root of the equation 𝑥3- 2x-5 = 0 by bi-section method up to an accuracy of 10−4. Solution: Let, f(x) = 𝑥3 - 2x -5 f(2) = 23 - 2.2 – 5 = -1 f(3) = 33 - 2.3 – 5 = 16 As f(2) is –ve and f(3) is +ve . So f(2) f(3) < 0.  Root lies between 2 and 3.
  • 6. n a b 𝑥 𝑟 f(x) (sign) f(x) 1 2 3 2.5 +ve +5.63 2 2 2.5 2.25 +ve +1.89 3 2 2.25 2.125 +ve +0.34 4 2 2.125 2.0625 -ve -0.35 5 2.0625 2.125 2.09375 -ve -8.94 x10−3 6 2.09375 2.125 2.109375 +ve +0.17 7 2.09375 2.109375 2.1015625 +ve +0.08 8 2.09375 2.1015625 2.09765625 +ve +0.03 9 2.09375 2.09765625 2.095703125 +ve +0.01 10 2.09375 2.095703125 2.094726563 +ve +1.95 x 10−3 11 2.09375 2.094726563 2.094238282 -ve -3.5 x 10−3 12 2.094238282 2.094726563 2.094482423 -ve -7.7 x 10−4
  • 7. Problem-2: Figure shows a uniform subject to a linearly increasing distributed load. The equation of the resulting elastic curve , y = 𝑤0 120𝐸𝐼𝐿 (-𝑥5 + 2𝐿2 𝑥3 -𝐿4 𝑥). Use bi- section method to determine point of maximum deflection up to an accuracy of 10−10 . Use the following parameter. E = 50000 KN/𝑐𝑚2, I = 30000 𝑐𝑚4, 𝑤0 = 2.5 KN/cm, L = 3 m. 3 m 𝑤0
  • 8. Solution: For maximum deflection, 𝑑𝑦 𝑑𝑥 = 0  𝑑𝑦 𝑑𝑥 = 𝑤0 120𝐸𝐼𝐿 x 𝑑𝑦 𝑑𝑥 (-𝑥5 + 2 𝐿2 𝑥3-𝐿4 𝑥) = 𝑤0 120𝐸𝐼𝐿 x (-5𝑥4 + 6 𝐿2 𝑥2-𝐿4) = 2.5 120 X 50000 X 30000 X 300 x (-5𝑥4 + 6. 3002 𝑥2-3004) = 4.63 x 10−14 x (- 5𝑥4 + 540000 𝑥2- 3004)
  • 9. Let, f(x) = 4.63 x 10−14 x (- 5𝑥4 + 540000 𝑥2 - 3004 ) f(134) = -7.34 x 10−7 f(135) = 3.73 x 10−6 As f(134) is –ve and f(135) is +ve . So f(134) f(135) < 0.  Root lies between 134 and 135.
  • 10. n a b 𝑥 𝑟 f(x) (sign) f(x) 1 134 135 134.5 +ve +1.5 x 10−6 2 134 134.5 134.25 +ve +3.84 10−7 3 134 134.25 134.125 -ve -1.75 x 10−7 4 134.125 134.25 134.1875 +ve +1.05 x 10−7 5 134.125 134.1875 134.15625 -ve -3.5 x 10−8 6 134.15625 134.1875 134.171875 +ve +3.5 x 10−8 7 134.15625 134.171875 134.1640625 -ve -7.22 x 10−11
  • 11. Method of False Position (0,0) X Y [a, f(a)] [b, f(b)] f(x) 𝑦−𝑓(𝑎) 𝑥−𝑎 = 𝑓 𝑏 − 𝑓(𝑎) 𝑏−𝑎 Let, y = 0, −𝑓(𝑎) 𝑥−𝑎 = 𝑓 𝑏 − 𝑓(𝑎) 𝑏−𝑎  x-a = - (𝑏−𝑎)𝑓(𝑎) 𝑓 𝑏 −𝑓(𝑎)  x = a - (𝑏−𝑎)𝑓(𝑎) 𝑓 𝑏 −𝑓(𝑎) Derive the root of a curve f(x) by False Position method.
  • 12. Newton Raphson Method Let, 𝑥0 be a root of the function f(𝑥0) = 0 and assume that 𝑥1 = 𝑥0 + h be the correct root of the function f(𝑥1) = 0. 𝑥1 = 𝑥0 + h -----------------(1) f(𝑥1) = 0 f(𝑥0 + h) = 0-----------------(2) Expanding eq (2) by Tailor’s series we get, f(𝑥0) + h𝑓′(𝑥0) + ℎ2 2! 𝑓′′(𝑥0) + ----- = 0
  • 13. Neglecting 2nd and higher order derivatives, f(𝑥0) + h𝑓′ (𝑥0) = 0 Or, h = - f( 𝑥0) 𝑓′( 𝑥0) From eq (1), 𝑥1 = 𝑥0 - f( 𝑥0) 𝑓′( 𝑥0) Similar approximation for 𝑥2, 𝑥3, ----, 𝑥 𝑛+1 we get, 𝑥2 = 𝑥1 - f( 𝑥1) 𝑓′( 𝑥1)
  • 14. 𝑥3 = 𝑥2 - f( 𝑥2) 𝑓′( 𝑥2) ------------- 𝑥 𝑛+1 = 𝑥 𝑛 - f( 𝑥 𝑛) 𝑓′( 𝑥 𝑛) This is Newton Raphson Formula.
  • 15. Problem-3: Find a real root of the equation 𝑥3- 2x-5 = 0 by Newton Raphson method. Solution: Let, f(x) = 𝑥3 - 2x -5 f(𝑥 𝑛) = 𝑥 𝑛 3 - 2𝑥 𝑛 -5 𝑓′(𝑥 𝑛) = 3𝑥 𝑛 2 - 2 From Newton Raphson Formula, 𝑥 𝑛+1 = 𝑥 𝑛 - f( 𝑥 𝑛) 𝑓′( 𝑥 𝑛) = 𝑥 𝑛 - 𝑥 𝑛 3 − 2 𝑥 𝑛 −5 3𝑥 𝑛 2 − 2
  • 16. Putting n=0, 𝑥1 = 𝑥0 - 𝑥0 3 − 2 𝑥0 −5 3𝑥0 2 − 2 Assume, 𝑥0 = 2 𝑥1 = 2 - 23 − 2(2) −5 3(22) − 2 = 2.1 𝑥2 = 2.1 - 2.13 − 2(2.1) −5 3(2.1)2 − 2 = 2.0946 𝑥3 = 2.0946 - 2.09463 − 2(2.0946) −5 3(2.0946)2 − 2 = 2.0946
  • 17. Problem-4: You are designing a spherical tank to hold water for a small village in a developing country. The volume of liquid can be calculated as V = πℎ2 [3𝑅−ℎ] 3 . If R = 3 m, to what depth must the tank be filled so that it holds 30 𝑚3 water? Solution: V = πℎ2 [3𝑅−ℎ] 3 => 30 = πℎ2 [3.3−ℎ] 3 => 90 = πℎ2(9-h) => 90 𝜋 = 9ℎ2 - ℎ3 => ℎ3 - 9ℎ2 + 28.65 = 0
  • 18. Let, f(h) = ℎ3 - 9ℎ2 + 28.65 f(ℎ 𝑛) = ℎ 𝑛 3 - 9ℎ 𝑛 2 + 28.65 𝑓′(ℎ 𝑛) = 3ℎ 𝑛 2 - 18ℎ 𝑛 From Newton Raphson Formula, ℎ 𝑛+1 = ℎ 𝑛 - f(ℎ 𝑛) 𝑓′(ℎ 𝑛) = ℎ 𝑛 - ℎ 𝑛 3 − 9ℎ 𝑛 2 + 28.65 3ℎ 𝑛 2 −18ℎ 𝑛
  • 19. Putting n=0, ℎ1 = ℎ0 - ℎ0 3 − 9ℎ0 2 + 28.65 3ℎ0 2 − 18ℎ0 Assume, ℎ0 = 2 ℎ1 = 2 - 23 − 9(2)2+28.65 3(22) −18(2) = 2.027 ℎ2 = 2.027 - 2.0273 − 9(2.027)2+28.65 3(2.0272) −18(2.027) = 2.02699 ℎ3 = 2.02699 - 2.026993 − 9(2.02699)2+28.65 3(2.026992) −18(2.02699) = 2.02699 Required depth is 2.02699 m to hold 30 𝑚3 volume of water in the tank.
  • 21. Interpolation Method Forward difference table: x y ∆ ∆2 ∆3 ∆4 ∆5 ∆6 x0 y0 ∆y0 x1 y1 ∆2y0 ∆y1 ∆3y0 x2 y2 ∆2 y1 ∆4 y0 ∆y2 ∆3 y1 ∆5 y0 x3 y3 ∆2 y2 ∆4 y1 ∆6 y0 ∆y3 ∆3y2 ∆5y1 x4 y4 ∆2 y3 ∆4 y2 ∆y4 ∆3y3 x5 y5 ∆2 y4 ∆y5 x6 y6
  • 22. ∆y0 = y1 - y0 ∆2 y0 = ∆y1 - ∆y0 = y2 - y1- y1 + y0 = y2 - 2y1 + y0 ∆3 y0 = ∆2 y1 - ∆2 y0 = y3 - 2 y2 + y1 - y2 + 2 y1 - y0 = y3 - 3 y2 + 3 y1 - y0 --------------------------------------------Continue--------------------------------------------
  • 23. Newton’s Formula for Forward Interpolation Let, y = f(x) denote a function which takes the values from y0, y1, y2, y3,……….., yn for the equidistance values x0, 𝑥1, 𝑥2, 𝑥3,……….., xn. Φ(x) denote a function of polygonal for nth degree. As x is equidistance xi = x0 + ih. Where, i = 1,2,3,…….,n. x1 = x0 + h => (x1 - x0) = h x2 = x0 + 2h => (x2 - x0) = 2h
  • 24. The polynomial φ(x) = 𝑎0 + 𝑎1 (x-x0) + 𝑎2 (x-x0) (x-x1) + 𝑎3 (x-x0) (x-x1) (x-x2) + ………………..+ 𝑎 𝑛 (x-x0) (x-x1) (x-x2)………… (x-x 𝑛−1) ………(1) When, x = 𝑥0, φ(x) = 𝑎0 = 𝑦0 When, x = 𝑥1, φ(x) = 𝑎0 + 𝑎1 (x1 -x0) = 𝑦1  𝑎1 = 𝑦1−𝑦0 𝑥1−𝑥0 = ∆y0 ℎ When, x = 𝑥2, φ(x) = 𝑎0 + 𝑎1 (x2 -x0) + 𝑎2 (x2 -x0) (x2 -x1) = 𝑦2 => 𝑦2 = 𝑦0 + ∆y0 ℎ . 2h + 𝑎2 . 2h . h [∆y0 = 𝑦1-𝑦0] => 𝑎2 = 𝑦2−2𝑦1+ 𝑦0 2ℎ2 = ∆2y0 2!ℎ2
  • 25. Similarly we can write, 𝑎3 = ∆3y0 3!ℎ3 ; 𝑎4 = ∆4y0 4!ℎ4 ; ……., 𝑎 𝑛 = ∆ny0 𝑛!ℎ 𝑛 Putting this value in eq (1), we get, φ(x) = 𝑦0 + ∆y0 ℎ (x-x0) + ∆2y0 2!ℎ2 (x-x0) (x-x1) + ∆3y0 3!ℎ3 (x-x0) (x-x1) (x-x2) + ………………..+ ∆ny0 𝑛!ℎ 𝑛(x-x0) (x-x1) (x-x2)………… (x-x 𝑛−1) Let us assume, x = x0 + ph => p = 𝑥 − 𝑥0 ℎ
  • 26. => 𝑥 − 𝑥1 ℎ = 𝑥 −𝑥0−ℎ ℎ = 𝑥 −𝑥0 ℎ - 1= p-1 => 𝑥 − 𝑥2 ℎ = 𝑥 −𝑥0−2ℎ ℎ = 𝑥 −𝑥0 ℎ - 2 = p-2 φ(x) = 𝑦0 + ∆y0 ℎ (x-x0) + ∆2y0 2!ℎ2 (x-x0) (x-x1) + ∆3y0 3!ℎ3 (x-x0) (x-x1) (x-x2) + ………………..+ ∆ny0 𝑛!ℎ 𝑛(x-x0) (x-x1) (x-x2)………… (x-x 𝑛−1)  φ(x) = 𝑦0 + p ∆y0 + p (p-1) ∆2y0 2! + p (p-1)(p-2) ∆3y0 3! + ………………..+ p (p-1) (p-2) ……… p(p-n+1) ∆ny0 𝑛!
  • 27. Problem-5: Find the cubic polynomial which takes the following values y(1) = 24 y(3) = 120 y(5) = 336 y(7) = 720 Hence, obtain the values of y(8) by Newton’s Forward Interpolation method.
  • 28. Solution: We make the forward difference table, h = (x1 - x0) = 3 – 1 = 2 x = 𝑥0 + ph => p = 𝑥 − 𝑥0 ℎ => p = 8 −1 2 = 3.5 x y ∆ ∆2 ∆3 1 24 96 3 120 120 216 48 5 336 168 384 7 720
  • 29. From Newton’s formula for forward interpolation, y(x) = 𝑦0 + p∆ 𝑦0 + p (p-1) ∆2 𝑦0 2! + p (p-1) (p-2) ∆3 𝑦0 3! => y(8)= 24 + 3.5 x 96 + 3.5 (3.5-1) x 120 2! + 3.5 (3.5-1) (3.5-2) x 48 3! = 990.
  • 30. Problem-6: Find the cubic polynomial which takes the following values y(1) = 24 y(3) = 120 y(5) = 336 y(7) = 720 Hence, obtain the values of y(6) by Newton’s Backward Interpolation method. Newton’s Formula for Backward Interpolation
  • 31. Solution: We make the backward difference table, h = (x1 - x0) = 3 – 1 = 2 x = 𝑥 𝑛 + ph => p = 𝑥 − 𝑥 𝑛 ℎ => p = 6 −7 2 = -0.5 x y ∇ ∇ 2 ∇ 3 1 24 96 3 120 120 216 48 5 336 168 384 7 720
  • 32. From Newton’s formula for backward interpolation, y(x) = 𝑦𝑛 + p∆ 𝑦𝑛 + p (p+1) ∆2 𝑦 𝑛 2! + p (p+1)(p+2) ∆3 𝑦 𝑛 3! => y(6)= 720 + (-0.5) x 384 + (-0.5) (-0.5+1) x 168 2! + (-0.5) (-0.5+1) (-0.5+2) x 48 3! = 576.
  • 33. Problem-6: The table shows the value of tanx for 0.1 ≤ x ≤ 0.3 Find, (a) tan(0.12) by Forward Interpolation Method (b) tan(0.26) by Backward Interpolation Method. x Y = tanx 0.10 0.1745 0.15 0.2618 0.20 0.3491 0.25 0.4363 0.30 0.5236
  • 34. Solution: We make the forward difference table, x y ∆ ∆2 ∆3 ∆4 0.10 0.1745 0.0873 0.15 0.2618 0 0.0873 0 0.20 0.3491 0 0 0.0873 0 0.25 0.4364 0 0.0873 0.30 0.5237
  • 35. (a) h = (x1 - x0) = 0.15 – 0.10 = 0.05 x = 𝑥0 + ph => p = 𝑥 − 𝑥0 ℎ => p = 0.12 −0.10 0.05 = 0.4 For Newton’s Forward formula, tan(0.12) = 𝑦0 + p∆ 𝑦0 + p (p-1) ∆2 𝑦0 2! + p (p-1) (p-2) ∆3 𝑦0 3! + p (p-1) (p-2) (p-3) ∆4 𝑦0 4! = 0.1745 + 0.4 x 0.0873 + 0.4 (0.4-1) 0 2! + 0.4 (0.4-1) (0.4-2) 0 3! + 0.4 (0.4-1) (0.4-2) 0 4! = 0.2094
  • 36. (b) h = (x1 - x0) = 0.15 – 0.10 = 0.05 x = 𝑥 𝑛 + ph => p = 𝑥 − 𝑥 𝑛 ℎ => p = 0.26 −0.30 0.05 = -0.8 For Newton’s Backward formula, tan(0.26) = 𝑦𝑛 + p∆ 𝑦𝑛 + p (p+1) ∆2 𝑦 𝑛 2! + p (p+1) (p+2) ∆3 𝑦 𝑛 3! + p (p+1) (p+2) (p+3) ∆4 𝑦 𝑛 4! = 0.5237 + -0.8 x 0.0873 + -0.8 (-0.8+1) 0 2! - 0.8 (-0.8+1) (-0.8+2) 0 3! - 0.8 (-0.8+1) (-0.8+2) 0 4! = 0.4538
  • 37. Problem-7: The discharge through a hydraulic structure for different values of head (H) is shown in table. Calculate discharge, Q for H=3 ft using Lagrange formula. H (ft) 1.2 2.1 2.7 4.0 Q (cusec) 25 60 90 155
  • 38. Solution: From Lagrange formula, Q (cusec) = (𝑥−𝑥1)(𝑥−𝑥2)(𝑥−𝑥3) (𝑥0−𝑥1)(𝑥0−𝑥2)(𝑥0−𝑥3) 𝑦0 + (𝑥−𝑥0)(𝑥−𝑥2)(𝑥−𝑥3) (𝑥1−𝑥0)(𝑥1−𝑥2)(𝑥1−𝑥3) 𝑦1 + (𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥3) (𝑥2−𝑥0)(𝑥2−𝑥1)(𝑥2−𝑥3) 𝑦2 + (𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥2) (𝑥3−𝑥0)(𝑥3−𝑥1)(𝑥3−𝑥2) 𝑦3 = (3−2.1)(3−2.7)(3−4) (1.2−2.1)(1.2−2.7)(1.2−4) 25 + (3−1.2)(3−2.7)(3−4) (2.1−1.2)(2.1−2.7)(2.1−4) 60 + (3−1.2)(3−2.1)(3−4) 2.7−1.2 2.7−2.1 (2.7−4) 90 + (3−1.2)(3−2.1)(3−2.7) (4−1.2)(4−2.1)(4−2.7) 155 = 1.78 – 31.58 + 124.62 + 10.89 = 105.71 cusec.
  • 39. Exercise: The load bearing capacity on different penetration level is given below. Calculate Load for D = 3.00 cm using Lagrange formula. D (cm) 2.35 2.75 3.30 3.60 Load (KN) 25 43 66 70
  • 40. Solution: From Lagrange formula, Q (cusec) = (𝑥−𝑥1)(𝑥−𝑥2)(𝑥−𝑥3) (𝑥0−𝑥1)(𝑥0−𝑥2)(𝑥0−𝑥3) 𝑦0 + (𝑥−𝑥0)(𝑥−𝑥2)(𝑥−𝑥3) (𝑥1−𝑥0)(𝑥1−𝑥2)(𝑥1−𝑥3) 𝑦1 + (𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥3) (𝑥2−𝑥0)(𝑥2−𝑥1)(𝑥2−𝑥3) 𝑦2 + (𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥2) (𝑥3−𝑥0)(𝑥3−𝑥1)(𝑥3−𝑥2) 𝑦3 = (3−2.75)(3−3.30)(3−3.60) (2.35−2.75)(2.35−3.30)(2.35−3.60) 25 + (3−2.35)(3−3.30)(3−3.60) (2.75−2.35)(2.75−3.30)(2.75−3.60) 43 + (3−2.35)(3−2.75)(3−3.60) 3.30−2.35 3.30−2.75 (3.30−3.60) 66 + (3−2.35)(3−2.75)(3−3.30) (3.60−2.35)(3.60−2.75)(3.60−3.30) 70 = −2.37 + 26.90 + 41.05 −10.71 = 54.87 KN
  • 42. Problem-8: Solve the following equations by Gauss-Jordan Elimination method. x + y + z = 5 2x + 3y +5z = 8 4x +5z = 2 Solution: The augmented matrix = = = 1 1 1 5 2 3 5 8 4 0 5 2 1 1 1 5 0 1 3 -2 4 0 5 2 𝑅2 ′ = 𝑅2- 2𝑅1 1 1 1 5 0 1 3 -2 0 4 -1 18 𝑅3 ′ = 4𝑅1- 𝑅3
  • 43. 1 1 1 5 0 1 3 -2 0 4 -1 18 𝑅3 ′ = 4𝑅1- 𝑅3 1 1 1 5 0 1 3 -2 0 0 13 -26 𝑅3 ′ = 4𝑅2- 𝑅3 1 1 1 5 0 1 3 -2 0 0 1 -2 13z = -26 => Z = -2 𝑅2 ′ = 𝑅2- 3𝑅3 = 1 1 1 5 0 1 0 4 0 0 1 -2 = = = 𝑅1 ′ = 𝑅1 - 𝑅2- 𝑅3 1 0 0 3 0 1 0 4 0 0 1 -2 =
  • 44. Example: Solve the following equations by Gauss-Jordan Elimination method. 5x + 2y + 3z = 1 2x + 2y = 7 8y + 7z = 14 Solution: The augmented matrix = = = 5 2 3 1 2 2 0 7 0 8 7 14 1 -2 3 -13 2 2 0 7 0 8 7 14 𝑅1 ′ = 𝑅1- 2𝑅2 𝑅2 ′ = 𝑅2- 2𝑅1 1 -2 3 -13 0 6 -6 33 0 8 7 14
  • 45. 𝑅2 ′ = 1/6𝑅2 𝑅3 ′ = 𝑅3- 8𝑅2 15z = -30 => Z = -2 = = = = 𝑅1 ′ = 𝑅1 + 2𝑅2 -3𝑅3 1 -2 3 -13 0 6 -6 33 0 8 7 14 1 -2 3 -13 0 1 -1 5.5 0 8 7 14 1 -2 3 -13 0 1 -1 5.5 0 0 15 -30 1 -2 3 -13 0 1 -1 5.5 0 0 1 -2 = 1 -2 3 -13 0 1 0 3.5 0 0 1 -2 = 1 0 0 0 0 1 0 3.5 0 0 1 -2 𝑅2 ′ = 𝑅2+ 𝑅3
  • 46. Example: Solve the following equations by Gauss-Jordan Elimination method. x + 3y + 6z = 12 2x + 3y = 16 x + 9z = 14 Solution: x = 8, y = 0, z = 2/3
  • 47. Problem-9: Find whether the following system is consistent or not. x - 4y + 5z = 8 3x + 7y - z = 3 x + 15y -11z = -14 Solution: Forming the matrix, A= Now, A = 0 and ≠ 0. r (A) = 2 1 -4 5 3 7 -1 1 15 -11 1 -4 3 7 
  • 48. Forming the augmented matrix, (A,b)= Determinant of = 31≠ 0. r (A,b) = 3 When, r (A,b) ≥ r(A), the equation will be inconsistence (No solution). As, r(A) < r (A,b) ; Hence the system is inconsistence. 1 -4 5 8 3 7 -1 3 1 15 -11 -14 -4 5 8 7 -1 3 15 -11 -14
  • 50. Problem-10: In a laboratory the data of water demand with respect to population is shown in the following table . Population (thousand) 2.10 6.22 7.17 10.52 13.68 Water Demand (cumec) 2.90 3.83 5.98 5.71 7.74 Fit a straight line from this data to find the discharge for any corresponding area using least square method. Linear Curve Fitting
  • 51. Solution: i x y 𝑥2 xy 1 2.10 2.90 4.41 6.09 2 6.22 3.83 38.69 23.83 3 7.17 5.98 51.40 42.90 4 10.52 5.71 110.67 60.10 5 13.68 7.74 187.14 105.88 ∑ 39.69 26.16 392.30 238.74 m𝑎0 + 𝑎1∑𝑥𝑖 = ∑𝑦𝑖 ………..(1) 𝑎0∑𝑥𝑖 + 𝑎1 ∑𝑥𝑖 2 = ∑𝑥𝑖 𝑦𝑖 ………..(2) From eq (1), 5 𝑎0 + 39.69 𝑎1 = 26.16 From eq (2), 39.69 𝑎0 + 392.30 𝑎1 = 238.74 Solving the equation, 𝑎0 = 2.04 & 𝑎1 = 0.402 ⸫ y = 𝑎0 + 𝑎1x = 2.04 + 0.402x
  • 52. Non-Linear Curve Fitting Problem-11: In a laboratory the deformation (mm) of a pre-stressed cantilever beam with respect to distance (m) from the fixed support is shown below: Fit a parabolic curve line from this data to find the deflection for any point from the fixed support. 2 12 10 8 6 4 0.01 0.36 0.29 0.22 0.18 0.09
  • 53. Solution: i x y 𝑥2 𝑥3 𝑥4 xy 𝑥2y 1 2 0.01 4 8 16 0.02 0.04 2 4 0.09 16 64 256 0.36 1.44 3 6 0.18 36 216 1296 1.08 6.48 4 8 0.22 64 512 4096 1.76 14.08 5 10 0.29 100 1000 10000 2.90 29.00 6 12 0.36 144 1728 20736 4.32 51.84 ∑ 42 1.15 364 3528 36400 10.44 102.88 m𝑎0 + 𝑎1∑𝑥𝑖 + 𝑎2 ∑𝑥𝑖 2 = ∑𝑦𝑖 ………..(1) 𝑎0∑𝑥𝑖 + 𝑎1 ∑𝑥𝑖 2 + 𝑎2 ∑𝑥𝑖 3 = ∑𝑥𝑖 𝑦𝑖 ………..(2) 𝑎0∑ 𝑥𝑖 2 + 𝑎1 ∑𝑥𝑖 3 + 𝑎2 ∑𝑥𝑖 4 = ∑𝑥𝑖 2 𝑦𝑖 ………..(3)
  • 54. From eq (1), 6 𝑎0 + 42 𝑎1 + 364 𝑎2 = 1.15 From eq (2), 42 𝑎0 + 364 𝑎1 + 3528 𝑎2 = 10.44 From eq (3), 364 𝑎0 + 3528 𝑎1 + 36400 𝑎2 = 102.88 Solving the equation, 𝑎0 = -0.069, 𝑎1 = 0.042 & 𝑎2 = -5.803 x 10−4 ⸫ y = 𝑎0 + 𝑎1x + 𝑎2 𝑥2 = -0.069 + 0.042 x + -5.803 x 10−4 𝑥2 Distance (m) 2 4 6 8 10 12 Deflection (mm) y = -0.069 + 0.042 x + -5.803 x 10−4 𝑥2 0.01 0.10 0.18 0.27 0.35 0.43 Original Value(mm) 0.01 0.09 0.18 0.22 0.29 0.36
  • 55. Problem-12: Use 4 segment to calculate the are of a function f(x) = 0.2 + 25 x + 3𝑥2 + 2𝑥4 from a = 0 to b = 2 by using Trapezoidal rule and Simpson's rule and determine percentage of error. Solution: For four segment n = 4. So, the value of x will be 0.5, 1.0, 1.5, 2.0. Using Trapezoidal rules, 0 2 𝑦𝑑𝑥 = ℎ 2 [𝑦0+ 𝑦𝑛 + 2 (𝑦1 +……..+ 𝑦(𝑛−1))] = 0.5 2 [ 0.2 + 94.2 + 2(13.575 + 30.2 + 54.575)] = 72.775 unit x 0 0.5 1.0 1.5 2.0 y 0.2 13.575 30.2 54.575 94.2
  • 56. Using Simpson’s rules, 0 2 𝑦𝑑𝑥 = ℎ 3 [𝑦0+ 𝑦𝑛 + 4 (𝑦1 + 𝑦3 + 𝑦5 +……..+ 𝑦(𝑛−1)) + 2 (𝑦2 + 𝑦4 + 𝑦6 + ……..+ 𝑦(𝑛−2))] = 0.5 3 [ 0.2 + 94.2 + 4(13.575 + 54.575) + 2 (30.2)] = 71.23 unit Actual area by integration method, 0 2 𝑦𝑑𝑥 = 0 2 (0.2 + 25 x + 3𝑥2 + 2𝑥4)𝑑𝑥 = 0.2x + 25 𝑥2 2 + 3 𝑥3 3 + 2 𝑥5 5 0 2 = 71.2 unit Percentage of error for Trapezoidal rule = 72.775 −71.2 71.2 x 100% = 2.21% Percentage of error for Simpson’s rule = 721.23 −71.2 71.2 x 100% = 0.042%
  • 57. Problem-13: A irrigation reservoir discharging through sluice at a depth h, below the water surface as a surface area A, for various value of h as given below: If t denotes the time in min & the rate of fall of the surface is given by 𝑑ℎ 𝑑𝑡 = - 48 𝐴 ℎ , estimate the time taken for the water level to fall from 14 ft to 10 ft above the sluice. Solution: Area of the water reservoir, A = ℎ 2 [ 950 + 1530 + 2 (1070 + 1200 + 1350)] = 4860 𝑓𝑡2 h (ft) 10 11 12 13 14 A (𝑓𝑡2 ) 950 1070 1200 1350 1530
  • 58. 𝑑ℎ 𝑑𝑡 = - 48 𝐴 ℎ  𝑑ℎ ℎ 1 2 = - 48 𝐴 dt  10 14 ℎ−1 2 𝑑ℎ = - 48 𝐴 0 𝑡 𝑑𝑡  [ ℎ 1 2 1 2 ] 10 14 = - 48 4860 t  t = 4860 48 x 0.58 1 2 = 117.45 min.