INDEX
 Fourier Series
 General Fourier
 Discontinuous Functions
 Change Of Interval Method
 Even And Odd Functions
 Half Range Fourier Cosine & Sine Series
FOURIER SERIES
 A Fourier series is an expansion of a periodic
function in terms of an infinite sum
of sines and cosines.
General Formula For Fourier
Series
Where,
Formulas To Solve Examples
 2SC = S + S
 2CS = S – S
 2CC = C + C
 2SS = cos(α-β) –cos(α+β)
 Even*Odd = Odd
 Even*Even = Even
 Odd*Odd = Even
 Odd*Even = Odd
1 2 3 4
' '' ''' ________
uv uv u v u v u v
    

Where,
u, u’, u”, u’’’,_ _ _ _ are denoted by derivatives.
And
V1,v2,v3,v4,_ _ _ _ _ are denoted by integral.
Discontinuous Type Functions
 In the interval
 The function is discontinuous at x =x0
2
C X C 
  
1 0
2 0
( ),
( ), 2
f x C x x
f x x x C 
  
   
f(x)
0 0
0
( 0) ( 0)
( )
2
f x f x
f x
  

So Fourier series formula is
0
0
2
0 1 2
1
( ) ( )
x C
C x
a f x dx f x dx



 
 
 
 
 
 
 
0
0
2
1 2
1
( )*sin( ) ( )*sin( )
x C
n
C x
b f x nx dx f x nx dx



 
 
 
 
 
 
 
0
0
2
1 2
1
( )*cos( ) ( )*cos( )
x C
n
C x
a f x nx dx f x nx dx



 
 
 
 
 
 
 
Change Of Interval Method
 In this method , function has period P=2L ,
where L is any integer number.
 In interval 0<x<2L Then l= L/2
 When interval starts from 0 then l= L/2
 In the interval –L < X < L Then l= L
 For discontinuous function , Take l = C where
C is constant.
 General Fourier series formula in interval
2
C x C L
  
2
1
( )*sin( )
C L
n
C
n x
b f x dx
l l


 
  
 

2
1
( )*cos( )
C L
n
C
n x
a f x dx
l l


 
  
 

2
0
1
( )
C L
C
a f x dx
l

 
0
1
( ) cos( ) sin( )
2
n n
n
a n x n x
f x a b
l l
 


 
  
 
 

Where,
Even Function
 The graph of even function is symmetrical
about Y – axis.
 Examples :
( ) ( )
f x f x
 
2 2
, ,cos , cos , sin
x x x x x x x
Fourier series for even function
1. In the interval x
 
  
 
0
1
0
0
0
( ) cos( )
2
2
( )
2
( )*cos( )
n
n
n
a
f x a nx
a f x dx
a f x nx dx






 

 
  
 



Fourier series for even function
(conti.)
2. In the interval l x l
  
0
1
0
0
0
( ) cos( )
2
2
( )
2
( )*cos( )
n
n
l
l
n
a n x
f x a
l
a f x dx
l
n x
a f x dx
l l




 
   
 

 
  
 



Odd Function
 The graph of odd function is passing through
origin.
 Examples:-
( ) ( )
f x f x
  
3 3
, , cos ,sin , cos
x x x x x x x
Fourier series for odd function
1. In the interval x
 
  
1
0
( ) sin( )
2
( )sin( )
n
n
n
f x b nx
b f x nx dx








Fourier series for odd function
(conti.)
 In the interval l x l
  
1
0
( ) sin( )
2
( )sin( )
n
n
n
n
f x b x
l
n
b f x x dx
l










Half Range Fourier Cosine Series
 In this method , we have 0 < x < π or 0 < x < l
type interval.
 In this method , we find only a0 and an .
 bn = 0
Half Range Fourier Cosine Series
1.In the interval 0 < x < π
 
0
1
0
0
0
( ) cos( )
2
2
( )
2
( )*cos( )
n
n
n
a
f x a nx
a f x dx
a f x nx dx






 

 
  
 



Half Range Fourier Cosine
Series(conti.)
2. In the interval 0 < x < l
Take l = L
0
1
0
0
0
( ) cos( )
2
2
( )
2
( )*cos( )
n
n
l
l
n
a n x
f x a
l
a f x dx
l
n x
a f x dx
l l




 
   
 

 
  
 



Half Range Fourier Sine Series
 In this method , we find only bn
 an =0
 a0 =0
Half Range Fourier Sine Series
1. In interval 0 < x < π
1
0
( ) sin( )
2
( )sin( )
n
n
n
f x b nx
b f x nx dx








Half Range Fourier Sine Series
(conti.)
2. In the interval 0 < x < l
1
0
( ) sin( )
2
( )sin( )
n
n
n
n
f x b x
l
n
b f x x dx
l










Thank you!!!

ilovepdf_merged.pdf

  • 2.
    INDEX  Fourier Series General Fourier  Discontinuous Functions  Change Of Interval Method  Even And Odd Functions  Half Range Fourier Cosine & Sine Series
  • 3.
    FOURIER SERIES  AFourier series is an expansion of a periodic function in terms of an infinite sum of sines and cosines.
  • 4.
    General Formula ForFourier Series Where,
  • 5.
    Formulas To SolveExamples  2SC = S + S  2CS = S – S  2CC = C + C  2SS = cos(α-β) –cos(α+β)  Even*Odd = Odd  Even*Even = Even  Odd*Odd = Even  Odd*Even = Odd
  • 6.
    1 2 34 ' '' ''' ________ uv uv u v u v u v       Where, u, u’, u”, u’’’,_ _ _ _ are denoted by derivatives. And V1,v2,v3,v4,_ _ _ _ _ are denoted by integral.
  • 7.
    Discontinuous Type Functions In the interval  The function is discontinuous at x =x0 2 C X C     1 0 2 0 ( ), ( ), 2 f x C x x f x x x C         f(x) 0 0 0 ( 0) ( 0) ( ) 2 f x f x f x    
  • 8.
    So Fourier seriesformula is 0 0 2 0 1 2 1 ( ) ( ) x C C x a f x dx f x dx                  0 0 2 1 2 1 ( )*sin( ) ( )*sin( ) x C n C x b f x nx dx f x nx dx                  0 0 2 1 2 1 ( )*cos( ) ( )*cos( ) x C n C x a f x nx dx f x nx dx                 
  • 9.
    Change Of IntervalMethod  In this method , function has period P=2L , where L is any integer number.  In interval 0<x<2L Then l= L/2  When interval starts from 0 then l= L/2  In the interval –L < X < L Then l= L  For discontinuous function , Take l = C where C is constant.
  • 10.
     General Fourierseries formula in interval 2 C x C L    2 1 ( )*sin( ) C L n C n x b f x dx l l           2 1 ( )*cos( ) C L n C n x a f x dx l l           2 0 1 ( ) C L C a f x dx l    0 1 ( ) cos( ) sin( ) 2 n n n a n x n x f x a b l l               Where,
  • 11.
    Even Function  Thegraph of even function is symmetrical about Y – axis.  Examples : ( ) ( ) f x f x   2 2 , ,cos , cos , sin x x x x x x x
  • 12.
    Fourier series foreven function 1. In the interval x        0 1 0 0 0 ( ) cos( ) 2 2 ( ) 2 ( )*cos( ) n n n a f x a nx a f x dx a f x nx dx                   
  • 13.
    Fourier series foreven function (conti.) 2. In the interval l x l    0 1 0 0 0 ( ) cos( ) 2 2 ( ) 2 ( )*cos( ) n n l l n a n x f x a l a f x dx l n x a f x dx l l                       
  • 14.
    Odd Function  Thegraph of odd function is passing through origin.  Examples:- ( ) ( ) f x f x    3 3 , , cos ,sin , cos x x x x x x x
  • 15.
    Fourier series forodd function 1. In the interval x      1 0 ( ) sin( ) 2 ( )sin( ) n n n f x b nx b f x nx dx        
  • 16.
    Fourier series forodd function (conti.)  In the interval l x l    1 0 ( ) sin( ) 2 ( )sin( ) n n n n f x b x l n b f x x dx l          
  • 17.
    Half Range FourierCosine Series  In this method , we have 0 < x < π or 0 < x < l type interval.  In this method , we find only a0 and an .  bn = 0
  • 18.
    Half Range FourierCosine Series 1.In the interval 0 < x < π   0 1 0 0 0 ( ) cos( ) 2 2 ( ) 2 ( )*cos( ) n n n a f x a nx a f x dx a f x nx dx                   
  • 19.
    Half Range FourierCosine Series(conti.) 2. In the interval 0 < x < l Take l = L 0 1 0 0 0 ( ) cos( ) 2 2 ( ) 2 ( )*cos( ) n n l l n a n x f x a l a f x dx l n x a f x dx l l                       
  • 20.
    Half Range FourierSine Series  In this method , we find only bn  an =0  a0 =0
  • 21.
    Half Range FourierSine Series 1. In interval 0 < x < π 1 0 ( ) sin( ) 2 ( )sin( ) n n n f x b nx b f x nx dx        
  • 22.
    Half Range FourierSine Series (conti.) 2. In the interval 0 < x < l 1 0 ( ) sin( ) 2 ( )sin( ) n n n n f x b x l n b f x x dx l          
  • 23.