SlideShare a Scribd company logo
CHAPTER 2

                                            FOURIER SERIES
PERIODIC FUNCTIONS
     A function f (x ) is said to have a period T if for all x, f ( x + T ) = f ( x) , where T is a

positive constant. The least value of T>0 is called the period of f (x) .


EXAMPLES
          We know that f (x ) = sin x = sin (x + 4 π ) = … Therefore the function has period 2 π , 4
π , 6 π , etc. However, 2 is the least value and therefore is the period of f(x).
         Similarly cos x is a periodic function with the period 2 π and tan x has period π .


DIRICHLET’S CONDITIONS
        A function f (x ) defined in c ≤ x ≤ c+2l can be expanded as an infinite trigonometric
                   a               nπx              nπx
series of the form o + ∑ a n cos        + ∑ bn sin      , provided
                    2               l                 l
        1. f (x) is single- valued and finite in (c , c+2l)
         2. f (x) is continuous or piecewise continuous with finite number of finite
             discontinuities in (c , c+2l).
         3. f (x) has no or finite number of maxima or minima in (c , c+2l).


EULER’S FORMULAS
         If a function f (x) defined in (c , c+2l) can be expanded as the infinite trigonometric

         ao     ∞
                           nπx ∞         nπx
series
         2
            +   ∑ an cos
                n =1        l
                              + ∑ bn sin
                                n =1      l
                                             then

                                c + 2l
                            1                         nπx
                       an =
                            l     ∫
                                  c
                                         f ( x) cos
                                                       l
                                                          dx, n ≥ 0

                                c + 2l
                            1                         nπx
                       bn =
                            l     ∫c
                                         f ( x) sin
                                                       l
                                                          dx, n ≥ 1


[ Formulas given above for a n and bn are called Euler’s formulas for Fourier coefficients]
DEFINITION OF FOURIER SERIES
                                                 ao     ∞
                                                                   nπx ∞         nπx
             The infinite trigonometric series
                                                 2
                                                    +   ∑ an cos
                                                        n =1        l
                                                                      + ∑ bn sin
                                                                        n =1      l
                                                                                     is called the

Fourier series of f (x) in the interval c ≤ x ≤ c+2l, provided the coefficients are given by the
Euler’s formulas.
EVEN FUNCTION
            If f (x) = φ (x) in (-l , l) such that φ (− x) = φ (x) , then f (x ) is said to be an even
function of x in (-l , l).
                        φ1 ( x ) in (−l ,0)
            If f ( x) = 
                        φ 2 ( x) in (0, l )
Such that φ1 (− x) = φ 2 ( x) or φ 2 ( − x ) = φ1 ( x ) , then f (x) is said to be an even function of x in
(-l , l).
EXAMPLE
    y = cos x , y = x 2 are even functions.

ODD FUNCTION
            If f (x) = φ (x) in (-l , l) such that φ (− x) = - φ (x) , then f (x) is said to be an odd
function of x in (-l , l).
                        φ1 ( x ) in (−l ,0)
            If f ( x) = 
                        φ 2 ( x) in (0, l )
Such that φ1 (− x) = - φ 2 ( x ) or φ 2 ( − x ) = - φ1 ( x ) , then f (x) is said to be an odd function of x in
(-l , l).
EXAMPLE
    y = sin x , y = x are odd functions.

FOURIER SERIES OF EVEN AND ODD FUNCTIONS
            1. The Fourier series of an even function f (x ) in (-l , l) contains only cosine terms




                                                                                                              2
(constant term included), i.e. the Fourier series of an even function f (x) in (-l , l) is
            given by
                                          ao                         nπx
                           f (x) =
                                          2
                                             +       ∑a    n   cos
                                                                      l
                                                                         ,

                                      nπx
                            l
                       2
            where a n = ∫ f ( x ) cos     dx.
                       l 0             l

       2. The Fourier series of an odd function f (x) in (-l , l) contains only sine terms, i.e.

            the Fourier series of an odd function f (x ) in (-l , l) is given by
                                                           nπx
                           f (x) =        ∑b     n   sin
                                                            l
                                                               ,

                                       nπx
                           l
                         2
            where bn =     ∫ f ( x) sin l dx.
                         l 0

PROBLEMS
1. Find the Fourier series of period 2l for the function f (x ) = x(2l – x) in (0 , 2l). Deduce

                         1   1   1
the sum of f (x) =       2
                           − 2 + 2 −
                        1   2   3
Solution:
                                   ao     ∞
                                                           nπx ∞         nπx
                 Let f (x ) =
                                   2
                                      +   ∑a
                                          n =1
                                                 n   cos
                                                            l
                                                              + ∑ bn sin
                                                                n =1      l
                                                                             in (0 , 2l)      …………(1)

                                                 nπx
                                  2l
                                1
                        an =
                                l0∫ x(2l − x) cos l dx
                                                                                                         2l
                                          nπx                       nπx               nπx 
                                      sin                    − cos             − sin      
                          1         2        l  − (2l − 2 x )         l  + (−2)         l  ,
                         = (2lx − x )
                          l           nπ                     n 2π 2            n 3π 3 
                                                                                          
                                          l                      l2                l3      0
                                                                                  using Bernoulli’s formula.
                                                                    2
                                   1
                          =            [ − 2l cos 2nπ − 2l ] = − 4l 2
                                n 2π 2                          n 2π
                                                                             2l
                                             1      x3 
                              2l
                            1                             4
                       a o = ∫ x(2l − x )dx = lx 2 −  = l 2 .
                            l0               l      3 0 3




                                                                                                               3
nπx
                                        2l
                                     1
                             bn =
                                     l0∫ x(2l − x) sin l dx
                                   =0
  Using these values in (1), we have

                                     2 2 4l 2                     ∞
                                                                         1          nπx
                         x (2l - x) = l − 2
                                     3   π
                                                                  ∑n
                                                                  n =1
                                                                         2
                                                                             cos
                                                                                     l
                                                                                        in (0, 2l)   ……………..(2)

                                              1   1   1
        The required series                   2
                                                − 2 + 2 − … ∞ can be obtained by putting x = l in the Fourier
                                             1   2   3
series in (2).
        x = l lies in (0 , 2l) and is a point of continuity of the function f (x) = x(2l – x).
                 ∴   [   Sum the Fourier series in (2)                        ] x =1   = f(l)
                                             ∞
                      2 2 4l 2                         1
                 i.e. l − 2
                      3   π
                                            ∑n
                                            n =1
                                                       2
                                                           cos nπ = l(2l - l)

                           4l 2    1     1   1         l
                                                           2
                 i.e.. -           − 2 + 2 − 2 + ...∞  =
                           π2      1    2   3          3

                 ∴
                          1   1   1        π2
                            − 2 + 2 − …∞ =
                         12 2    3         12


2. Find the Fourier series of period 2 π for the function f (x) = x cos x in 0 < x < 2 π .
Solution:
                                                           ∞                    ∞
                                             ao
                     Let f (x ) =
                                             2
                                                +          ∑ an cos nx + ∑ bn sin nx
                                                           n =1                n =1
                                                                                                     .……..…………(1)

                                            2π
                                        1
                             an =
                                        π    ∫ x cos x cos nxdx
                                             0

                                                 2π
                                         1
                                    =
                                        2π         ∫ x[ cos(n + 1) x + cos(n − 1) x]dx
                                                   0


                                       1          sin( n + 1) x cos(n + 1) x  2π  sin( n − 1) x cos(n − 1) x  2π 
                                    =             x.           +              +  x.            +              ,
                                      2π             n +1        (n + 1) 2  0        n −1        ( n − 1) 2  0 
                                                                                                                     
                                                                                                          if n ≠ 1
                                    =0,            if n ≠ 1
                                  ao = 0


                                                                                                                     4
2π                       2π
                             1                      1
                        an =         ∫ x cos xdx = 2π        ∫ x(1 + cos 2 x)dx
                                                  2

                             π       0                       0
                                                                           2π
                               1        x   sin 2 x cos 2 x 
                                             2
                            =            +x        +         = π.
                              2π        2      2      4 0
                                    2π
                                1
                        bn =
                                π   ∫ x cos x sin nxdx
                                    0



                                        2π
                               1
                            =
                              2π         ∫ x[ sin(n + 1) x + sin(n − 1) x]dx
                                         0


                               1         − cos(n + 1) x sin( n + 1) x  2π  − cos(n − 1) x sin( n − 1) x  2π 
                            =            x.            +               +  x.             +               ,
                              2π             n +1         (n + 1) 2  0         n −1         (n − 1) 2  0 
                                                                                                                
                           if n ≠ 1
                                      1    1      1       1     2n
                           =−           −     = −      +     =− 2   ,             if n ≠ 1
                                    n +1 n −1     n + 1 n − 1  n −1
                                    2π                            2π
                                1                             1
                         b1 =
                                π   ∫ x cos x sin xdx =
                                    0
                                                             2π   ∫ x sin 2 xdx
                                                                  0

                                                                      2π
                              1        − cos 2 x  sin 2 x    1
                           =          x          +         =−2
                             2π           2          4 0

Using these values in (1), we get
                                                     ∞
                                       1                          n
                       f(x) = π cos x − sin x − 2 ∑                  sin nx
                                                 n = 2 , 3,... n − 1
                                                                2
                                       2


3. Find the Fourier series expansion of f (x) = sin ax in (-l , l).
Solution:
             Since f (x) is defined in a range of length 2l, we can expand f (x ) in Fourier series of
period 2l.
             Also f ( − x) = sin[a(-x)] = -sin ax = - f (x)
         ∴ f (x) is an odd function of x in (-l , l).

 Hence Fourier series of f (x ) will not contain cosine terms.
                                     ∞
                                                       nπx
                  Let f (x ) =      ∑b
                                    n =1
                                             n   sin
                                                        l
                                                                                    ………………….(1)




                                                                                                            5
1   nπ                nπ
                                  l
                                                                
                             =     ∫ cos l − a  − cos l + a  xdx
                                 l 0                         
                                                                         l
                                  nπ                nπ     
                              1  sin  l − a  x sin  l + a  x 
                             =               −             
                              l       nπ              nπ
                                          −a               +a 
                                       l               l         
                                                                 0
                                 1            nπ            1         nπ      
                            =            sin      − a l −        sin      + a l
                              nπ − la  l               nπ + la  l             
                            =
                                 1
                              nπ − al
                                         {− (−1) n sin al} − nπ 1 al {(−1) n sin al}
                                                                +
                                                1             1 
                            = (−1) n +1 sin al           +        
                                                nπ − al nπ + al 
                              (−1) n +1 2nπ sin al
                            =
                                n 2π 2 − a 2 l 2
Using these values in (1), we get
                                   ∞
                                           (−1) n +1 n       nπx
               sin ax = 2π sin al ∑                      sin
                                  n =1   n π −a l
                                          2 2        2 2
                                                              l

4. Find the Fourier series expansion of f (x) = e − x in (−π , π ) . Hence obtain a series for
cosec π
Solution:
          Though the range (−π , π ) is symmetric about the origin, e − x is neither an even function
nor an odd function.
                                             ∞               ∞
                                      ao
∴                   Let f (x) =
                                      2
                                         +   ∑ an cos nx + ∑ bn sin nx
                                             n =1            n =1
                                                                                       ..…..…………(1)

in (−π , π ) [ the length of the range is 2π ]




                                                                                                      6
π
                                    1
                                      ∫π e cos nxdx
                                          −x
                            an =
                                    π−
                                                                                 π
                                 1  e −x                         
                                =  2     ( − cos nx + n sin nx ) 
                                 π n +1                           −π

                                =−
                                          1
                                                    {e   −π
                                                              (−1) n − e π (−1) n }
                                     π ( n + 1)
                                          2


                                     2( −1) n
                                =               sinh π
                                    π (n 2 + 1)


                                    2 sinh π
                            ao =
                                        π

                                      π
                                    1
                                      ∫π e sin nxdx
                                          −x
                            bn =
                                    π−
                                                                                π
                                 1  e −x                         
                                =  2     ( − sin nx − n cos nx ) 
                                 π n +1                           −π

                                =−
                                          n
                                                    {e   −π
                                                              (−1) n − e π (−1) n }
                                     π ( n 2 + 1)
                                    2n(−1) n
                                =               sinh π
                                    π (n 2 + 1)
Using these values in (1), we get
        sinh π 2 sinh π     ∞
                                (−1) n       2 sinh π                ∞
                                                                         (−1) n n
e−x =
          π
              +
                   π
                           ∑ n 2 + 1 cos nx + π
                           n =1
                                                                    ∑ n 2 + 1 sin nx
                                                                    n =1
                                                                                       in (−π , π )

[ Sum of   the Fourier series of f ( x )] x =0 = f (0),

                                              [Since x=0 is a point of continuity of f(x)]
              sinh π         ∞
                                  (−1) n 
i.e.,                  1 + 2∑ 2              −0
                                          = e =1
                π           n =1 n + 1

                                 −1   ∞
                                           (−1) n
i.e.,        π cos ech π = 1 + 2  + 2∑ 2
                                 2   n=2 n + 1


                            2 ∞ (−1) n
i.e.,         cos ech π =     ∑
                            π n=2 n 2 + 1




                                                                                                      7
HALF-RANGE FOURIER SERIES AND PARSEVAL’S THEOREM
    (i) The half range cosine series in (0 , l) is
                                                         ao     ∞
                                                                                 nπx
                                      f (x) =
                                                         2
                                                            +   ∑a
                                                                n =1
                                                                       n   cos
                                                                                  l
                                                     l
                                                   2
                                                   l∫
                           where a o =                 f ( x )dx.
                                                     0


                                                                 nπx
                                                     l
                                                   2
                                         an =        ∫ f ( x) cos l dx.
                                                   l 0

    (ii) The half range sine series in (0 , l) is
                                  ∞
                                                   nπx
                       f (x) =    ∑b
                                  n =1
                                         n   sin
                                                    l
                                                       ,

                                          nπx
                              l
                            2
              where bn =      ∫ f ( x) sin l dx.
                            l 0

    (iii) The half range cosine series in (0 , π ) is given by


                                                                ∞
                                                         ao
                                      f (x) =
                                                         2
                                                            +   ∑a
                                                                n =1
                                                                       n   cos nx

                                                     π
                                      2
                           where a o = ∫ f ( x )dx.
                                      π 0
                                                     π
                                                   2
                                                   π∫
                                         an =          f ( x ) cos nxdx.
                                                     0


    (iv) The half range sine series in (0 , π ) is given by


                                  ∞
                       f (x) =    ∑b
                                  n =1
                                         n   sin nx ,

                              π
                        2
              where bn = ∫ f ( x) sin nxdx.
                        π 0




                                                                                       8
ROOT-MEAN SQUARE VALUE OF A FUNCTION
Definition
                                                                                                                   c +2 l
                                                                                                              1
                                                                                                                     ∫y
                                                                                                                            2
           If a function y = f (x ) is defined in (c , c+2l), then                                                              dx is called the root mean-
                                                                                                              2l     c


square(R.M.S.) value of y in (c , c+2l) and is denoted by y.
                                                      c + 2l
                                  1 2
                         Thus y =                       ∫y
                                                               2
                                                                   dx.
                                  2l                    c


PARSEVAL’S THEOREM
           If y = f (x ) can be expanded as a Fourier series of the form
ao        ∞
                              nπx ∞         nπx
2
   +     ∑ an cos
         n =1                  l
                                 + ∑ bn sin
                                   n =1      l
                                                in (c , c+2l), then the root-mean square value y of y = f (x)

in       (c , c+2l) is given by
                               1 2 1 ∞        1 ∞
                            y = a o + ∑ a n + ∑ bn
                             2              2        2

                               4     2 n =1   2 n =1
PROOF
                                 ao      ∞
                                                               nπx ∞         nπx
                f (x) =
                                 2
                                    +   ∑ an cos
                                         n =1                   l
                                                                  + ∑ bn sin
                                                                    n =1      l
                                                                                 in (c , c+2l)                                       ....……………….(1)

∴ By Euler’s formulas for the Fourier coefficients,
                                                                        c + 2l
                                                             1                                nπx
                                                        an =
                                                             l            ∫ c
                                                                                 f ( x) cos
                                                                                               l
                                                                                                  dx, n ≥ 0                         ..…………………(2)

                                                                        c + 2l
                                                                    1                         nπx
                                                        bn =
                                                                    l     ∫
                                                                          c
                                                                                 f ( x) sin
                                                                                               l
                                                                                                  dx, n ≥ 1                        …....……………..(3)

Now, by definition,
                   c + 2l                    c + 2l
              1                         1
                                                ∫ [ f ( x)]
     2
                     ∫ y dx =
                                                                   2
     y =                2
                                                                       dx
              2l     c
                                        2l      c

                   c + 2l
           1                       a    ∞
                                                   nπx ∞         nπx 
         =           ∫      f ( x)  o + ∑ a n cos    + ∑ bn sin       dx,                                               using (1)
           2l        c              2 n =1         l   n =1      l 
           ao1 c + 2l          ∞ a 1 c + 2l        nπx  ∞ bn 1
                                                                          c + 2l
                                                                                 nπx 
         =    ∫      f ( x)dx  + ∑ n  ∫ f ( x) cos    dx  + ∑  ∫ f ( x) sin    dx 
           4  l c                n =1 2  l c        l       n =1 2  l c      l    
                        ∞             ∞
          ao                an            bn
         = .a o + ∑ .a n + ∑ .bn ,                       by using (2) and (3)
          4            n =1 2        n =1 2




                                                                                                                                                          9
∞2      ∞     2            2
        ao      an      b
      =    +∑      +∑ n .
         4  n =1 2  n =1 2

EXAMPLES
1. Find the half-range (i) cosine series and (ii) sine series for f (x ) = x 2 in (0 , π )
Solution:
           (i) To get the half-range cosine series for f (x ) in (0 , π ), we should give an even

extension for f (x) in ( − π , 0).

      i.e. put f (x) = ( − x ) 2 = x 2 in ( − π , 0)

Now f (x) is even in ( − π , π ).
                                                       ∞
                                                ao
                  ∴            f (x) =
                                                2
                                                   +   ∑a
                                                       n =1
                                                              n   cos nx          ………………….(1)

                                            π
                                       2
                               an =
                                       π    ∫ f ( x) cos nxdx.
                                            0


                                            π
                                       2 2
                                       π∫
                                  =       x cos nxdx
                                        0

                                                                                  π
                                   2   sin nx        − cos nx   − sin nx 
                                  = x2         − 2 x           + 2       
                                   π  n              n
                                                             2
                                                                    n
                                                                          3
                                                                                0
                                        4               4(−1) n
                                  =         .π (−1) n =         ,n ≠ 0
                                       πn 2               n2
                                            π                      π
                                       2              2 2        2 2
                               ao =      ∫ f ( x)dx = π ∫ x dx = 3 π
                                       π 0              0

∴ The Fourier half-range cosine series of x 2 is given by

                                       π2     ∞
                                                 (−1) n
                                x2 =      + 4∑ 2 cos nx in (0 , π ).
                                       3     n =1 n


      (ii) To get the half-range sine series of f (x ) in (0 , π ), we should give an odd extension

for f (x) in (- π , 0).

    i.e.              Put f (x ) = - ( − x ) 2 in (- π , 0)

                                = - x 2 in (- π , 0)
Now f (x) is odd in (- π , π ).




                                                                                                      10
∞
     ∴                  f (x) =   ∑b
                                  n =1
                                          n   sin nx                                          ……………….(2)

                                  π                                      π
                             2                   2
                         bn = ∫ f ( x) sin nxdx = ∫ x 2 sin nxdx
                             π 0                 π 0
                                                                                         π
                              2   cos nx        sin nx   cos nx 
                             = x2  −      − 2 x −       + 2     
                              π      n            n 2   n 3  0  
                               2 π 2                      
                                   (−1) + 3 {(−1) − 1} 
                                        n +1 2
                             =                        n

                               π n          n             
                                2 π 2 4 
                                     − , if n is odd
                             = π  n n 3 
                               − 2π ,         if n is even
                                n
Using this value in(2), we get the half-range sine series of x 2 in (0 , π ).


2.     Find the half-range sine series of f (x) = sin ax in (0 , l).
Solution:
       We give an odd extension for f (x) in (-l , 0).
     i.e. we put f (x) = -sin[a(-x)] = sin ax in (-l , 0)
     ∴     f (x) is odd in (-l , l)
                                                  ∞
                                                                   nπx
     Let                       f (x ) =           ∑b
                                                  n =1
                                                         n   sin
                                                                    l

                                                         nπx
                                              l
                                          2
                                 bn =       ∫ sin ax. sin l dx
                                          l 0
                                          1   nπ                  nπ
                                              l
                                                                           
                                      =     ∫ cos l − a  x − cos l + a  x dx
                                          l 0                           
                                                                                  l
                                            nπ                     nπ       
                                        1  sin  l − a  x sin  l + a  x 
                                      =                  −                  
                                        l   nπ                    nπ       
                                            l − a                     + a 
                                                                  l        0
                                             1                                   1
                                      =           (−1) n +1 sin ( nπ − al ) −         sin ( nπ + al )
                                        nπ − al                               nπ + al




                                                                                                           11
1                             1
                                  =            (−1) n +1 sin al +         ( −1) n +1 sin al
                                    nπ − al                       nπ + al
                                                           2nπ
                                  = (−1) n +1 sin al. 2 2
                                                      n π − a 2l 2
Using this values in (1), we get the half-range sine series as
                                              ∞
                                                   (−1) n +1 .n       nπx
                          sin ax = 2π sin al ∑ 2 2                sin
                                             n =1 n π − a l
                                                              2 2
                                                                       l
3.    Find the half-range cosine series of f (x ) = a in (0 , l). Deduce the sum of

      1   1   1
      2
        + 2 + 2 + ∞ .
     1   3   5
 Solution:
     Giving an odd extension for f (x) in (-l , 0), f (x ) is made an odd function in (-l , l).
                                                          nπx
        ∴ Let                  f(x) =    ∑b     n   sin
                                                           l
                                                                                              ..……………(1)

                                               nπx
                                           l
                                      2
                                  bn = ∫ a sin     dx
                                      l 0       l
                                                                 l
                                                   nπx 
                                             − cos l 
                                       =
                                         2a 
                                             nπ
                                          l 
                                                        
                                                         =
                                                            2a
                                                            nπ
                                                               1 − ( − 1)
                                                                          n
                                                                           {      }
                                                        
                                            
                                                 l     0
                                                        

                                           4a
                                           ,               if n is odd
                                        =  nπ
                                          0,
                                                           if n is even
     Using this value in (1), we get
                                               4a ∞      1   nπx
                                      a=            ∑5 n sin l in (0 , l )
                                               π n =1,3,

     Since the series whose sum is required contains constant multiples of squares of bn , we apply
Parseval’s theorem.
                              l
                1        1
                  ∑ bn = l ∫ [ f ( x)] dx
                      2               2

                2          0




                                                                                                           12
∞
                     1 16a 2                     1
             i.e.     .
                     2 π2
                                  ∑ ( 2n − 1)
                                n =1, 3, 5
                                                         2
                                                             = a2

                                          ∞
                               8a 2              1
             i.e.
                               π2
                                          ∑ ( 2n − 1)
                                          n =1
                                                         2
                                                             = a2

                                          ∞
                                             1       π2
             ∴                        ∑ ( 2n − 1) 2 8 .
                                      n =1
                                                   =

4. Expand f (x) = x - x 2 as a Fourier series in -1 < x < 1 and using this series find the

   r.m.s. value of f (x ) in the interval.
Solution:
     The Fourier series of f (x ) in (-1 , -1) is given by
                                           ∞                    ∞
                              ao
                    f (x) =
                              2
                                 +        ∑ an cos nπx + ∑ bn sin nπx
                                          n =1                  n =1
                                                                                         .………………(1)

                                  1                  1
                         a o = ∫ f ( x)dx = ∫ ( x − x 2 ) dx
                              1
                              1 −1          −1
                                                 1
                               x2 x3    1 1  1 1
                            =  −  =  − − + 
                               2     
                                  3  −1  2 3   2 3 
                              −2
                         ao =                                                              ..........................(2)
                                3
                         1                               1

                        ∫1 f ( x) cos nπx dx = −∫1( x − x ) cos nπx dx
                      1
               an =                                      2

                      1−
                                                                                               1
                                   sin nπx                − cos nπx         − sin nπx 
                    = ( x − x 2 )           − (1 − 2 x )       2     + (−2)      3    
                                   n                         n              n          −1
                         − cos nπ 3 cos nπ
                     =           −
                            n2       n2
                              4 cos nπ
                    an = −                                                              ……………….(3)
                                 n2




                                                                                                                     13
1                       1

              ∫1 f ( x) sin nπx dx = −∫1( x − x ) sin nπx dx
            1
     bn =                                      2

            1−
                                                                                        1
                        − cos nπx                − sin nπx         cos nπx 
         = ( x − x 2 )             − (1 − 2 x )             + (−2) 3 3 
                         nπ                        nπ                 n π  −1
                                                         2 2
                                                             
           − 2 cos nπ 2 cos nπ 2 cos nπ
         =                 −           + 3 3
               n 3π 3           nπ          nπ
                   n +1
            2(−1)
      bn =                                                                          ..........................( 4)
               nπ
Substituting (2), (3), (4) in (1) we get
                            1 ∞ 4(−1) n +1                 ∞
                                                               2(−1) n +1
                 f (x) = − + ∑                  cos nπx + ∑               sin nπx
                            3 n =1 n 2                    n =1   nπ
We know that r.m.s. value of f(x) in (-l , l) is
                             1 2 1 ∞         1 ∞
                               a o + ∑ a n + ∑ bn
                        2                  2        2
                       y =                                                                   ……………….(5)
                             4      2 n =1   2 n =1
From (2) we get
                             −2     2  4
                      ao =      ⇒ ao =                                                      .………………..(6)
                              3        9
From (3) we get
                             4( −1) n +1     2 16
                      an =        2
                                         ⇒ an = 4                                           ………………..(7)
                                n              n
From (4) we get
                             2(−1) n +1     2   4
                      bn =              ⇒ bn = 2 2                                           ..………………(8)
                               nπ             nπ
Substituting (6), (7) and (8) in (5) we get
                             1 1 ∞  16    4 
                              + ∑ 4 + 2 2 
                        2
                       y =
                             9 2 n =1  n nπ 
5. Find the Fourier series for f (x) = x 2 in − π < x < π . Hence show that

 1   1   1      π4
   + 4 + 4 + =
14 2    3       90
Solution:
      The Fourier series of f (x ) in (-1 , 1) is given by

                                                      π2         ∞
                                                                     4(−1) n
                                              f (x) =
                                                       3
                                                         +      ∑ n 2 cos nx
                                                                n =1




                                                                                                                     14
The co-efficients a o , a n , bn are

                                                            2π 2        4(−1) n
                                                ao =             , an =         , bn = 0
                                                             3            n2
Parseval’s theorem is

                                                                               (a                      )
                               π                                        ∞
                        1                      1 2 1
                               ∫ [ f ( x)] dx = ao + ∑
                                          2                                             2          2
                                                                                    n       + bn
                       2π      −π
                                                              4     2   n =1

                                                             ao 2 1 ∞        2 
                                                                                (                          )
                                    π

                                    ∫ [x ]                        + ∑ a n + bn 
                                          2 2
                                                    dx = 2π 
                                                                          2
                      ∴
                                    −π                       4
                                                                  2 n =1       
                                                                                
                                                        π
                                          x5              π 4 1 ∞ 16 
                       i.e.,             
                                          5         = 2π 
                                                               + ∑ 4
                                                    −π    9 2 n =1 n 
                                   2π 5 2π 5    ∞
                                                    16
                       i.e.,           −     =π∑ 4
                                    5    9     n =1 n


                                                8π 4   ∞
                                                           16
                                                     =∑ 4
                                                 45   n =1 n
                                                ∞
                                                  1 π4
                       i.e.,                 ∑ n 4 = 90
                                             n =1


                     1   1   1        π4
          i.e.,        + 2 + 2 + ∞ =
                    12 3    5         90

HARMONIC ANALYSIS
        The process of finding the Fourier series for a function given by numerical value is
known as harmonic analysis. In harmonic analysis the Fourier coefficients ao , a n , and bn of the
function y = f (x) in (0 , 2 π ) are given by
             a o = 2[mean value of y in (0 , 2 π )]

                  a n = 2[mean value of y cos nx in (0 , 2 π )]

                  bn = 2[mean value of y sin nx in (0 , 2 π )]

(i) Suppose the function f (x) is defined in the interval (0 , 2l), then its Fourier series is,
                               ao        ∞
                                                              nπx ∞         nπx
                  f (x) =
                               2
                                  +      ∑a
                                         n =1
                                                    n   cos
                                                               l
                                                                 + ∑ bn sin
                                                                   n =1      l

   and now, a o = 2[mean value of y in (0 , 2l)]

                                              nπx             
                  a n = 2 mean value of y cos     in (0 , 2l )
                                               l              




                                                                                                               15
                    nπx             
               bn = 2 mean value of y sin     in (0 , 2l )
                                           l              
(ii) If the half range Fourier sine series of f (x) in (0 , l) is,
                          ∞
                                            nπx
               f (x) =   ∑b
                         n =1
                                 n   sin
                                             l
                                                , then

                                          nπx            
               bn = 2 mean value of y sin     in (0 , l )
                                           l             
(iii) If the half range Fourier sine series of f (x) in (0 , π ) is,
                           ∞
                                            nπx
               f (x) =    ∑b
                          n =1
                                 n    sin
                                             l
                                                , then


                bn = 2[ mean value of y sin nx in (0 , π )]

(iv) If the half range Fourier cosine series of f (x) in (0 , l) is,
                        ao    ∞
                                       nπx
                f (x) =    + ∑ a n cos       , then
                         2 n =1         l
                a o = 2[mean value of y in (0 , l)]

                                            nπx            
                a n = 2 mean value of y cos     in (0 , l )
                                             l             
(v) If the half range Fourier cosine series of f (x) in (0 , π ) is,
                         ao          ∞
                                                      nπx
               f (x) =
                         2
                            +        ∑a
                                     n =1
                                            n   cos
                                                       l
                                                          , then

                a o = 2[mean value of y in (0 , π )]

                a n = 2[ mean value of y cos nx in (0 , π )] .

EXAMPLES
1. The following table gives the variations of a periodic function over a period T.
                                      0               T             T      T           2T      5T      T
                   x                                  6              3     2            3       6
                 f (x)           1.98                 1.3          1.05   1.3         -0.88   -0.25   1.98
                                                                                2πx
Show that f (x ) = 0.75 + 0.37 cos θ +1.004 sin θ , where θ =
                                                                                 T
Solution:
       Here the last value is a mere repetition of the first therefore we omit that value and
consider the remaining 6 values. ∴ n = 6.


                                                                                                             16
2πx
               Given          θ=                                                 ..………………..(1)
                                    T
                                               T T T 2T 5T                                π 2π
     ∴ when x takes the values of 0,            , , ,  ,          θ takes the values 0,    ,   ,
                                               6 3 2 3   6                                3 3

     4π       5π
π,        ,      . (By using (1))
      3        3
Let the Fourier series be of the form
                              ao
                   f ( x) =      + a1 cos θ + b1 sin θ ,                            ………………(2)
                              2
                               ∑y
          where         a o = 2   ,
                                n 
                                  
                                  ∑ y cos θ 
                           a1 = 2           ,
                                     n      
                                            
                                  ∑ y sin θ 
                           b1 = 2           ,       n=6
                                     n      
                                            
              θ                   y           cos θ        sin θ          y cos θ          y sin θ
              0°                1.98           1.0           0             1.98               0
              π
                                1.30          0.500        0.866           0.65           1.1258
               3




          2π 3                  1.05         -0,500        0.866          -0.525          0.9093
           π                    1.30            -1           0             -1.3               0
          4π 3                -0.88          -0.500       -0.866           0.44            0.762
          5π 3                -0.25           0.500       -0.866          -0.125           0.2165
                                 4.6                                       1.12            3.013
                                     ∑y
                            a o = 2      = 1.5, a1 = 2 ∑ y cos θ = 0.37
                                      6              6
                                        
                                   2
                            b1 = ∑ y sin θ = 1.00456
                                   6
Substituting these values of a o , a1 , and b1 in (2), we get
                           ∴ f (x) = 0.75 + 0.37 cos θ + 1.004 sin θ

2. Find the Fourier series upto the third harmonic for the function y = f (x) defined in
     (0 , π ) from the table
                       x             0            π         2π   3π         4π        5π             π
                                                  6          6    6          6         6



                                                                                                         17
f (x)       2.34         2.2           1.6          0.83      0.51        0.88         1.19
   Solution:
       We can express the given data in a half range Fourier sine series.
                 f ( x) = b1 sin x + b2 sin 2 x + b3 sin 3 x           ..………………...(1)
               x      y = f(0)      sin x     sin 2x       sin 3x    y sin x    y sin 2x      y sin 3x
             0          2.34          0          0           0          0             0           0
             30          2.2         0.5       0.87          1         1.1          1.91         2.2
             60          1.6        0.87       0.87          0       1.392         1.392          0
             90         0.83          1          0          -1        0.83            0        -0.83
            120         0.51        0.87      -0.87          0        0.44         -0.44          0
            150         0.88         0.5      -0.87          1        0.44          0.76        0.88
            180         1.19          0          0           0          0             0           0
                                                                     4.202         3.622        2.25
                               ∑ y sin x  1
       Now             b1 = 2             = [ 4.202] = 1.40
                              
                                  6       3
                                          
                               ∑ y sin 2 x  1
                       b2 = 2               = [ 3.622] = 1.207
                              
                                   6        3
                                            
                                ∑ y sin 3 x  1
                        b3 = 2               = [ 2.25] = 0.75
                               
                                    6        3
                                             
       Substituting these values in (1), we get


                        f (x) = 1.4 sin x + 1.21 sin 2x + 0.75 sin 3x
3. Compute the first two harmonics of the Fourier series for f(x) from the following data

              x              0         30            60            90        120        150           180
            f (x )           0        5224          8097          7850      5499       2626            0




Solution:
      Here the length of the interval is π . ∴ we can express the given data in a half range
Fourier sine series
       i.e.,           f ( x) = b1 sin x + b2 sin 2 x                               ………………………(1)



                                                                                                                   18
x                 y            sin x            sin 2x
                   0                 0                0               0
                  30              5224               .5             0.87
                  60              8097             0.87             0.87
                  90              7850                1               0
                 120              5499             0.87            -0.87
                 150              2626              0.5            -0.87
                               ∑ y sin x 
       Now              b1 = 2            = 7867.84
                              
                                  6      
                                          
                                  ∑ y sin 2 x 
                          b2 = 2               = 1506.84
                                 
                                      6       
                                               
                 ∴ f (x) = 7867.84 sin x + 1506.84 sin 2x
4. Find the Fourier series as far as the second harmonic to represent the function given in
   the following data.
                   x             0           1          2          3            4          5
                 f (x )          9          18         24         28           26         20
Solution:
    Here the length of the interval is 6 (not 2 π )
       i.e., 2l = 6 or l = 3
 ∴ The Fourier series is

                       ao         πx         2πx         πx        2πx
            f ( x) =      + a1 cos + a 2 cos     + b1 sin + b2 sin                  …………………..(1)
                       2           3          3           3         3


                  πx             2πx                         πx           πx            2πx            2πx
                                                     y cos        y sin         y cos          y sin
      x            3              3          y                3            3             3              3
     0           0               0           9           9          0                 9           0
     1           π 3            2π 3       18           9          15.7             -9           15.6
     2          2π 3            4π 3        24         -12         20.9             -24           0
     3            π              2π         28         -28          0                28           0
     4          4π 3            8π 3        26         -13        -22.6             -13          22.6
     5          5π 3           10 π 3       20          10        -17.4             -10         -17.4
                                           125         -25         -3.4             -19          20.8




                                                                                                             19
 ∑ y  2(125)
                               Now a o = 2     =        = 41.66,
                                           6        6
                                               
                                         2         πx
                                   a1 = ∑ y cos = −8.33
                                         6          3
                                         2        πx
                                   b1 = ∑ y sin       = −1.13
                                         6         3
                                                                  2        2πx
                                                  a2 =
                                                                  6
                                                                    ∑ y cos 3 = −6.33
                                                              2        2πx
                                                 b2 =
                                                              6
                                                                ∑ y sin 3 = 6.9
Substituting these values of a o , a1 , b1 , a 2 and b2 in (1), we get
                        41.66                                     πx                     2πx                πx               2πx
             f ( x) =             − 8.33 cos                           − 6.33 cos              − 1.13 sin        + 6.9 sin
                           2                                      3                        3                3                3
COMPLEX FORM OF FOURIER SERIES
                                                                             ∞
        The equation of the form                           f ( x) =         ∑c e
                                                                         n = −∞
                                                                                  n
                                                                                      inπx l




is called the complex form or exponential form of the Fourier series of f (x) in (c , c+2l). The

coefficient c n is given by
                                  c + 2l
                          1
                                     ∫ f ( x )e
                                                            −inπx l
                     cn =                                              dx
                          2l         c


When l = π , the complex form of Fourier series of f (x) in (c , c+2 π ) takes the form
                                 ∞
                   f ( x) =    ∑c e
                               n = −∞
                                         n
                                                 inx
                                                       ,          where

                                        c + 2π
                              1
                                          ∫ f ( x )e
                                                              −inx
                        cn =                                           dx.
                             2π           c


PROBLEMS
1. Find the complex form of the Fourier series of f (x) = e x in (0 , 2).
Solution:
   Since 2l = 2 or l = 1, the complex form of the Fourier series is
                                         ∞
                         f ( x) =       ∑c e
                                     n = −∞
                                                  n
                                                           inπx




                                                                                                                                   20
2
                             1
                        c n = ∫ f ( x)e −inπx dx
                             20
                                  2
                            1
                           = ∫ e x e −inπx dx
                            20
                                                       2
                            1  e ( 1−inπ ) x 
                           =                 
                            2  1 − inπ  0

                           =
                                     1
                                2(1 − inπ )
                                            {e 2(1−inπ ) − 1}

                            =
                                  (1 + inπ )               {e ( cos 2nπ − i sin 2nπ ) − 1}
                                                              2

                                2(1 + n π     2    2
                                                       )
                            =
                                (e    2
                                       − 1)(1 + inπ )
                                      2(1 + n 2π 2 )
Using this value in (1), we get
                      e 2 − 1  ∞ (1 + inπ ) inπx
                      2  ∑ (1 + n 2π 2 ) e
                ex =          
                               n =−∞
2. Find the complex form of the Fourier series of f (x) = sin x in (0 , π ).
Solution:
     Here 2l = π or l = π 2 .
      ∴ The complex form of Fourier series is
                                                    ∞
                                  f ( x) =        ∑c e
                                                  n = −∞
                                                             n
                                                                  i 2 nx
                                                                                                      …………………..(1)

                                                        π
                                               1
                                          c n = ∫ sin xe −i 2 nx dx
                                               π 0
                                                                                                 π
                                                1           e −i 2 nx                           
                                              =                         { − i 2n sin x − cos x} 
                                                π          1 − 4n
                                                                       2
                                                                                                 0

                                              =
                                                        1
                                                  π ( 4n − 1)
                                                         2
                                                                           [
                                                              − e i 2 nx − 1 = −   ]   2
                                                                                 π ( 4n 2 − 1)
Using this value in (1), we get
                                          2 ∞     1
                        sin x = −            ∑ 4n 2 − 1 .e i 2nx
                                          π n =−∞
                                                                                in (0 , π )

3.   Find the complex form of the Fourier series of f (x) = e − ax in (-l , l).
Solution:


                                                                                                                     21
Let the complex form of the Fourier series be
                                            ∞
                         f ( x) =           ∑c e
                                        n = −∞
                                                     n
                                                         inπx l



                                                 l
                                   1
                              c n = ∫ f ( x)e −inπx l dx
                                   2l −l

                                                 l
                                     1
                                    = ∫ e − ax e −inπx l dx
                                     2l −l
                                             l
                                  1
                                 = ∫ e −( al +inπ ) x / l dx
                                  2l −l
                                                                           l
                                  1  e −( al +inπ ) x l                  
                                 =                                       
                                  2l  − ( al + inπ )                   l  −l

                                    =
                                             1
                                      2( al + inπ )
                                                                  [
                                                     e −( al +inπ ) − e ( al +inπ )    ]
                                    =
                                      2
                                             1
                                        ( al + inπ )
                                                                  [
                                                     e al (−1) n − e − al (−1) n           ]
                                                     [ e   ± inπ
                                                                      = cos nπ ± i sin nπ = (−1) n   ]
                                      sinh al (−1) n
                                    =
                                        al + inπ
                                      sinh al.( al − inπ ) (−1) n
                                    =
                                           a 2 l 2 + n 2π 2
Using this value in (1), we have
                                                              ∞
                                                                  (−1) n ( al − inπ ) inπx l
                              e − ax = sinh al               ∑ 22 2 2 e
                                                            n = −∞ a l + n π
                                                                                                     in (-l , l)

4. Find the complex form of the Fourier series of f (x) = cos ax in (- π , π ), where a is
   neither zero nor an integer.
Solution:
   Here 2l = 2 π or l = π .
   ∴ The complex form of Fourier series is
                                ∞
                   f ( x) =    ∑c e
                              n = −∞
                                        n
                                            inx
                                                                                                         ………………….(1)




                                                                                                                       22
π
                                   1
                                       ∫π cos ax.e
                                                     − inx
                          cn =                               dx
                                  2π   −
                                                                                 π
                            1  e −inx                               
                         =      2        { − in cos ax + a sin ax} 
                           2π  a − n   2
                                                                      −π
                         =
                                 1
                           2π ( a − n 2 )
                                 2
                                                  [
                                           e −inπ ( − in cos aπ + a sin aπ ) − e inπ ( − in cos aπ − a sin aπ )   ]
                                 1
                         =                (−1) n 2a sin aπ
                           2π ( a − n )
                                 2    2


Using this value in (1), we get

                                    a sin aπ     ∞
                                                          (−1) n inx
                         cos ax =
                                        π
                                               ∑
                                               n = −∞    a2 − n2
                                                                 e         in (- π , π ).



                                                                  UNIT 2
                                                             PART – A
    1. Determine the value of a n in the Fourier series expansion of f ( x) = x 3 in − π < x < π .

     Ans: f ( x) = x 3 is an odd function.
     ∴ an = 0

    2. Find the root mean square value of f ( x) = x 2 in the interval (0 , π ) .
    Ans:
         RMS Vale of f ( x ) = x 2 in (0 , π ) is
                     π               π                             π
                                              1  x5              
                     ∫ [x ]
           2 1           2 2       1
         y =                   dx = ∫ x 4 dx =                   
             π       0
                                   π 0        π 5
                                                
                                                                  
                                                                  0
                   1 π 5  π 4
               =           =
                   π5  5
                      

3. Find the coefficient b5 of cos 5 x in the Fourier cosine series of the function f ( x ) = sin 5 x in

the interval (0 , 2π )
Ans: Here f ( x) = sin 5 x
Fourier cosine series is




                                                                                                                      23
∞
                            ao
                  f (x) =
                            2
                               +   ∑a
                                    n =1
                                           n   cos nx , where




          π                                π
        2                      2
an =      ∫ f ( x) cos nx dx = π ∫ sin 5 x cos nx dx
        π 0                      0
              π
       2
    =
      2π      ∫ [ sin(5 + n) x + sin(5 − n) x] dx
              0
                                                    π
      − 1  cos(5 + n) x cos(5 − n) x 
    =                   +               =0
      π  5+n
                           5 − n 0  
               cos x, if 0 < x < π
4. If f ( x) =                      and f ( x) = f ( x + 2π ) for all x, find the sum of the Fourier
               50,    if π < x ≤ 2π

series of f (x ) at x = π .
Ans:          Here π is a point of discontinuity.
∴ The sum of the Fourier series is equal to the average of right hand and left hand limit of the
given function at x = π .


                                f (π − 0) + f (π + 0)
i.e.,              f (π ) =
                                          2
                                cos π + 50 49
                            =             =
                                     2      2
5. Find bn in the expansion of x 2 as a Fourier series in (−π , π ) .

Ans:                   bn = 0

Since f ( x) = x 2 is an even function in (−π , π ) .

6. If f (x) is an odd function defined in (-l , l) what are the values of a 0

Ans:                   a0 = 0

a n = 0 since f (x) is an odd function.

7. Find the Fourier constants bn for x sin x in (−π , π ) .

Ans:              bn = 0

Since f ( x) = x sin x is an even function in (−π , π ) .



                                                                                                   24
8. State Parseval’s identity for the half-range cosine expansion of f (x ) in (0 , 1).
Ans:
                 1                          2
                                            ∞
                                      a0
              2 ∫ [ f ( x)] dx =         + ∑ an
                            2                   2

                 0
                                       2   n =1


where
                                        1
                                a 0 = 2 ∫ f ( x) dx
                                        0
                                        1
                                a n = 2 ∫ f ( x) cos nx dx
                                        0


9. Find the constant term in the Fourier series expansion of f ( x ) = x in (−π , π ) .
Ans:
           a 0 = 0 since f (x ) is an odd function in (−π , π ) .

10. State Dirichlet’s conditions for Fourier series.
Ans:
(i)    f (x) is defined and single valued except possibly at a finite number of points in (−π , π ) .

(ii) f (x) is periodic with period 2 π .
(iii) f (x) and f ′(x) are piecewise continuous in (−π , π ) .
      Then the Fourier series of f (x ) converges to
           (a) f (x) if x is a point of continuity
                     f ( x + 0) + f ( x − 0)
           (b)                               if x is a point of discontinuity.
                                2
11. What you mean by Harmonic Analysis?
Ans:
         The process of finding the Fourier series for a function given by numerical value is

known as harmonic analysis. In harmonic analysis the Fourier coefficients ao , a n , and bn of the

function y = f (x) in (0 , 2 π ) are given by


                 a o = 2[mean value of y in (0 , 2 π )]

                 a n = 2[mean value of y cos nx in (0 , 2 π )]

                 bn = 2[mean value of y sin nx in (0 , 2 π )]



                                                                                                        25
 2x
                                         1 + π , − π < x < 0
                                         
12. In the Fourier expansion of f ( x) =                     in (−π , π ) . Find the value of bn ,
                                         1 − 2 x , 0 < x < π
                                          π
                                         
the coefficient of sin nx.
Ans:
             Since f (x) is an even function the value of bn = 0.

                                                  2( − x)  2x         
 In − π ≤ x ≤ 0 i.e., 0 ≤ − x ≤ π , f (− x ) = 1 − π = 1 + π = f ( x )
                                                                      
13. What is the constant term and the coefficient of cos nx, a n in the Fourier expansion of

f ( x) = x − x 3 in (-7 , 7)?
Ans:
Given                 f ( x) = x − x 3

                      f ( − x ) = − x + x 3 = −( x − x 3 ) = − f ( x )

The given function is an odd function. Hence a 0 and a n are zero.


14. State Parseval’s identity for full range expansion of f (x ) as Fourier series in (0 , 2l).
Ans:
             c + 2l                      2                 2            2
        1                              ∞       ∞

               ∫ [ f ( x)] dx. = ao + ∑ a n + ∑ bn .
                           2

        2l     c                  4   n =1 2  n =1 2


       where
                                                  c + 2l
                                              1                         nπx
                                       an =
                                              l     ∫
                                                    c
                                                           f ( x) cos
                                                                         l
                                                                            dx, n ≥ 0

                                                  c + 2l
                                              1                         nπx
                                       bn =
                                              l     ∫
                                                    c
                                                           f ( x) sin
                                                                         l
                                                                            dx, n ≥ 1

15. Find a Fourier sine series for the function f (x ) = 1; 0 < x < π .
Ans:
                                                     ∞
The Fourier sine series of f ( x) = ∑ bn sin nx                                         …………………….(1)
                                                    n =1




                                                                                                   26
π
                                    2
                            bn =
                                    π   ∫ f ( x) sin nx dx
                                        0
                                        π                        π
                                              2  − cos nx 
                                2
                               = ∫ sin nx dx = 
                                π 0           π  n 0
                                                            =−
                                                                 2
                                                                nπ
                                                                   ( (−1) n − 1)
                            bn = 0, when ' n' is even
                                   4
                                =     , when ' n' is odd
                                  nπ
                                           ∞
                                                    4
                            ∴ f ( x) = ∑              . sin nπ
                                       n =1, 3, 5, nπ


                                                     0     0< x<π
16. If the Fourier series for the function f ( x ) =                  is
                                                     sin x 0 < x < 2π

           − 1 2  cos 2 x cos 4 x     1                    1   1   1         π −2
f ( x) =      +          +        +  + sin x Deduce that    −   +    − ∞ =      .
           π π  1.3        3.5        2                   1.3 3.5 5.7          4
Ans:
                          π
            Putting x =     we get
                          2
                      π  −1 2  1   1   1        1
                    f =    + −   +   −    +  ∞ +
                      2  π π  1.3 3.5 5.7       2
                            −1 2  1   1   1       1
                       0=     + −   +   −    + ∞ +
                            π π  1.3 3.5 5.7      2
 1   1   1         π −2
   −   +    − ∞ =      .
1.3 3.5 5.7          4




17. Define Root mean square value of a function?
Ans:
                                                                          c +2 l
                                                                     1
                                                                            ∫y
                                                                                   2
           If a function y = f (x ) is defined in (c , c+2l), then                     dx is called the root mean-
                                                                     2l     c


square(R.M.S.) value of y in (c , c+2l) and is denoted by y.



                                                                                                                 27
c + 2l
                       2 1
                Thus y =        ∫y
                                       2
                                           dx.
                         2l     c


18. If f ( x) = x 2 + x is expressed as a Fourier series in the interval (-2 , 2), to which value this
series converges at x = 2.
Ans:
        Since x = 2 is a point of continuity, the Fourier series converges to the arithmetic mean of
f (x) at x = -2 and x = 2
                  f (2) + f (−2) 4 − 2 + 4 + 2
        i.e.,                   =              =4
                         2             2
19. If the Fourier series corresponding to f ( x ) = x in the interval (0 , 2π ) is

a0 ∞
  + ∑ (a n cos nx + bn sin nx), without finding the values of a 0, a n , bn find the value of
2 n =1

   2  ∞
a0
   + ∑ (a n + bn ).
           2    2

 2   n =1

Ans:
By using Parseval’s identity,
           2                   2π                    2π
         a0    ∞
                             1          1  x3  8
            + ∑ (a n + bn ) = ∫ x 2 dx =   = π 2 .
                    2    2

          2                  π 0           3 
                                        π  0   3
              n =1


20. Find the constant term in the Fourier series corresponding to f ( x) = cos 2 x expressed in the

interval (−π , π ) .
Ans:
       Given f ( x) = cos 2 x
                  π                    π                              π
           1                    1  1 + cos 2 x  1   sin 2 x 
 Now a 0 =        ∫π cos x dx = π −∫π  2 dx = π  x + 2  0 = 1
                       2

           π      −                                         


                                                 PART B
1. (i) Express f ( x) = x sin x as a Fourier series in 0 ≤ x ≤ 2π .




                                                                                                     28
2l  πx 1      2πx 1    3πx 
  (ii) Show that for 0 < x <l, x =                  sin − sin    + sin     . Using root mean square
                                                p      l 2     l  3     l  

                                            1   1   1
value of x, deduce the value of             2
                                              + 2 + 2 +
                                           1   2   3
2. (i) Find the Fourier series of periodicity 3 for f ( x ) = 2 x − x 2 in 0 < x < 3.
  (ii) Find the Fourier series expansion of period 2 π for the function y = f (x) which is defined

in (0 , 2π ) by means of the table of values given below. Find the series upto the third harmonic.
             x               0             π           2π        π         4π         5π        2π
                                           3            3                   3          3
           f (x )            1.0          1.4          1.9       1.7       1.5        1.2       1.0


3.(i) Find the Fourier series of periodicity 2 π for f ( x) = x 2 for 0 < x < 2 π .

                                                l 4l        πx 1     3πx    
   (ii) Show that for 0 < x <l, x =              −       cos + 2 cos     +  . Deduce that
                                                2 π2         l 3      l     

 1   1   1      π4
   + 4 + 4 + =    .
14 3    5       96
                                            l − x, 0 < x ≤ l
4. (i) Find the Fourier series for f ( x) =                   . Hence deduce the sum to infinity of
                                            0,     l ≤ x ≤ 2l

              ∞
                         1
the series   ∑ (2n + 1)
             n =0
                              2
                                  .

   (ii) Find the complex form of Fourier series of f ( x ) = e ax (−π < x < π ) in the form

         sinh aπ    ∞
                                    a + in inx                        π     ∞
                                                                                (−1) n
e ax =
            π
                    ∑ (−1) n
                    −∞             a2 + n2
                                           e and hence prove that          =∑ 2
                                                                  a sinh aπ −∞ n + a 2
                                                                                       .

5. Obtain the half range cosine series for f ( x) = x in (0 , π ).

6. Find the Fourier series for f ( x) = cos x in the interval (−π , π ) .

                                                                                 1   1      π3
7. (i) Expanding x(π − x) as a sine series in (0 , π ) show that 1 −               + 3 + =    .
                                                                                 33 5       32
  (ii) Find the Fourier series as far as the second harmonic to represent the function given in the
following data.
                         x            0            1         2         3          4         5



                                                                                                      29
f (x )       9            18          24          28         26        20


8. Obtain the Fourier series for f (x ) of period 2l and defined as follows
               L + x in ( − L,0)
     f ( x) = 
               L − x in (0, L)
                        1   1   1      π2
Hence deduce that         + 2 + 2 + =    .
                       12 3    5       8
9. Obtain the half range cosine series for f ( x) = x in (0 , π ).
                                             1 in (0, π )
10. (i) Find the Fourier series of f ( x ) = 
                                             2 in (π ,2π )
    (ii) Obtain the sine series for the function
                                         l
                            x in 0 ≤ x ≤ 2
                           
                  f ( x) = 
                           l − x in l ≤ x ≤ l
                           
                                    2
11. (i) Find the Fourier series for the function
                  0 in (−1, 0)
         f ( x) =              and f ( x + 2) = f ( x ) for all x.
                  1 in (0, 1)
    (ii) Determine the Fourier series for the function
                   πx,         0 ≤ x ≤1
          f ( x) = 
                   π (2 − x ), 1 ≤ x ≤ 2
12. Obtain the Fourier series for f ( x ) = 1 + x + x 2 in (−π , π ) . Deduce that

 1   1   1      π2
   + 2 + 2 + =    .
12 2    3       6


13. Obtain the constant term and the first harmonic in the Fourier series expansion for f (x)

where f (x) is given in the following table.
            x         0     1        2       3     4          5    6     7    8     9    10    11
          f (x)      18.   18.      17.     15.   11.        8.3   6.    5.   6.    9.   12.   15.7
                                                                   0     3    4     0    4
                      0    7        6        0     6


14. (i) Express f ( x) = x sin x as a Fourier series in (−π , π ).


                                                                                                      30
(ii) Obtain the half range cosine series for f ( x) = ( x − 2) 2 in the interval 0 < x < 2.
15. Find the half range sine series of f ( x) = x cos x in (0 , π ).
16. (i) Find the Fourier series expansion of f (x ) = e − x in (−π , π )
    (ii) Find the half-range sine series of f (x ) = sin ax in (0 , l).
17. Expand f (x ) = x - x 2 as a Fourier series in -1 < x < 1 and using this series find the r.m.s.

value of f (x) in the interval.
18. The following table gives the variations of a periodic function over a period T.
                              0         T            T           T   2T                5T          T
                 x                      6             3          2    3                 6
               f (x)       1.98         1.3         1.05        1.3 -0.88             -0.25       1.98
                                                                    2πx
      Show that f (x ) = 0.75 + 0.37 cos θ +1.004 sin θ , where θ =
                                                                     T
19. Find the Fourier series upto the third harmonic for the function y = f (x) defined in (0 , π )
from the table
                  x           0          π          2π          3π          4π         5π          π
                                         6           6           6           6          6
                 f (x)      2.34        2.2         1.6        0.83        0.51       0.88        1.19


20. (i) Find the half-range (i) cosine series and (ii) sine series for f (x ) = x 2 in (0 , π )
    (ii) Find the complex form of the Fourier series of f (x) = cos ax in (- π , π ).




                                                                                                         31

More Related Content

What's hot

Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODE
kishor pokar
 
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
saahil kshatriya
 
Fourier series
Fourier seriesFourier series
Fourier series
kishor pokar
 
Complex form fourier series
Complex form fourier seriesComplex form fourier series
Complex form fourier seriesderry92
 
Partial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examplesPartial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examples
Enrique Valderrama
 
Limit and continuity (2)
Limit and continuity (2)Limit and continuity (2)
Limit and continuity (2)
Digvijaysinh Gohil
 
Power series convergence ,taylor & laurent's theorem
Power series  convergence ,taylor & laurent's theoremPower series  convergence ,taylor & laurent's theorem
Power series convergence ,taylor & laurent's theorem
PARIKH HARSHIL
 
Metric space
Metric spaceMetric space
Metric space
NaliniSPatil
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiation
JaydevVadachhak
 
Runge kutta
Runge kuttaRunge kutta
Runge kutta
Shubham Tomar
 
Euler and improved euler method
Euler and improved euler methodEuler and improved euler method
Euler and improved euler method
Sohaib Butt
 
Fourier series and its applications by md nazmul islam
Fourier series and its applications by md nazmul islamFourier series and its applications by md nazmul islam
Fourier series and its applications by md nazmul islam
Md Nazmul Islam
 
Differential geometry three dimensional space
Differential geometry   three dimensional spaceDifferential geometry   three dimensional space
Differential geometry three dimensional space
Solo Hermelin
 
Beta & Gamma Functions
Beta & Gamma FunctionsBeta & Gamma Functions
Beta & Gamma Functions
DrDeepaChauhan
 
Fourier series
Fourier series Fourier series
Fourier series
Santhanam Krishnan
 
Tensor analysis
Tensor analysisTensor analysis
Tensor analysis
University of Education
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
Mohammed Waris Senan
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1Pokkarn Narkhede
 
Chapter 16 2
Chapter 16 2Chapter 16 2
Chapter 16 2
EasyStudy3
 

What's hot (20)

Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODE
 
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Complex form fourier series
Complex form fourier seriesComplex form fourier series
Complex form fourier series
 
Partial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examplesPartial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examples
 
Limit and continuity (2)
Limit and continuity (2)Limit and continuity (2)
Limit and continuity (2)
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Power series convergence ,taylor & laurent's theorem
Power series  convergence ,taylor & laurent's theoremPower series  convergence ,taylor & laurent's theorem
Power series convergence ,taylor & laurent's theorem
 
Metric space
Metric spaceMetric space
Metric space
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiation
 
Runge kutta
Runge kuttaRunge kutta
Runge kutta
 
Euler and improved euler method
Euler and improved euler methodEuler and improved euler method
Euler and improved euler method
 
Fourier series and its applications by md nazmul islam
Fourier series and its applications by md nazmul islamFourier series and its applications by md nazmul islam
Fourier series and its applications by md nazmul islam
 
Differential geometry three dimensional space
Differential geometry   three dimensional spaceDifferential geometry   three dimensional space
Differential geometry three dimensional space
 
Beta & Gamma Functions
Beta & Gamma FunctionsBeta & Gamma Functions
Beta & Gamma Functions
 
Fourier series
Fourier series Fourier series
Fourier series
 
Tensor analysis
Tensor analysisTensor analysis
Tensor analysis
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
 
Chapter 16 2
Chapter 16 2Chapter 16 2
Chapter 16 2
 

Viewers also liked

Numerical Solution of Nth - Order Fuzzy Initial Value Problems by Fourth Orde...
Numerical Solution of Nth - Order Fuzzy Initial Value Problems by Fourth Orde...Numerical Solution of Nth - Order Fuzzy Initial Value Problems by Fourth Orde...
Numerical Solution of Nth - Order Fuzzy Initial Value Problems by Fourth Orde...
IOSR Journals
 
N.P. BALI ENGINEERING MATH REAL
N.P. BALI ENGINEERING MATH REALN.P. BALI ENGINEERING MATH REAL
N.P. BALI ENGINEERING MATH REAL
chucky oz
 
Free Ebooks Download ! Edhole
Free Ebooks Download ! EdholeFree Ebooks Download ! Edhole
Free Ebooks Download ! Edhole
Edhole.com
 
Free Download Powerpoint Slides
Free Download Powerpoint SlidesFree Download Powerpoint Slides
Free Download Powerpoint Slides
George
 

Viewers also liked (9)

Chapter 1 (maths 3)
Chapter 1 (maths 3)Chapter 1 (maths 3)
Chapter 1 (maths 3)
 
Chapter 3 (maths 3)
Chapter 3 (maths 3)Chapter 3 (maths 3)
Chapter 3 (maths 3)
 
Chapter 4 (maths 3)
Chapter 4 (maths 3)Chapter 4 (maths 3)
Chapter 4 (maths 3)
 
Chapter 5 (maths 3)
Chapter 5 (maths 3)Chapter 5 (maths 3)
Chapter 5 (maths 3)
 
mathematics formulas
mathematics formulasmathematics formulas
mathematics formulas
 
Numerical Solution of Nth - Order Fuzzy Initial Value Problems by Fourth Orde...
Numerical Solution of Nth - Order Fuzzy Initial Value Problems by Fourth Orde...Numerical Solution of Nth - Order Fuzzy Initial Value Problems by Fourth Orde...
Numerical Solution of Nth - Order Fuzzy Initial Value Problems by Fourth Orde...
 
N.P. BALI ENGINEERING MATH REAL
N.P. BALI ENGINEERING MATH REALN.P. BALI ENGINEERING MATH REAL
N.P. BALI ENGINEERING MATH REAL
 
Free Ebooks Download ! Edhole
Free Ebooks Download ! EdholeFree Ebooks Download ! Edhole
Free Ebooks Download ! Edhole
 
Free Download Powerpoint Slides
Free Download Powerpoint SlidesFree Download Powerpoint Slides
Free Download Powerpoint Slides
 

Similar to Chapter 2 (maths 3)

Varian, microeconomic analysis, solution book
Varian, microeconomic analysis, solution bookVarian, microeconomic analysis, solution book
Varian, microeconomic analysis, solution bookJosé Antonio PAYANO YALE
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16derry92
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Fourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lFourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 l
Pepa Vidosa Serradilla
 
Lattices and codes
Lattices and codesLattices and codes
Lattices and codesSpringer
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdf
habtamu292245
 
Cs229 cvxopt
Cs229 cvxoptCs229 cvxopt
Cs229 cvxoptcerezaso
 
Fourier 3
Fourier 3Fourier 3
Fourier 3
nugon
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrix
Rumah Belajar
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Matthew Leingang
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Mel Anthony Pepito
 
SOME THOUGHTS ON DIVERGENT SERIES
SOME THOUGHTS ON DIVERGENT SERIESSOME THOUGHTS ON DIVERGENT SERIES
SOME THOUGHTS ON DIVERGENT SERIESgenius98
 

Similar to Chapter 2 (maths 3) (20)

Fourier series
Fourier seriesFourier series
Fourier series
 
Fourier series 2
Fourier series 2Fourier series 2
Fourier series 2
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Varian, microeconomic analysis, solution book
Varian, microeconomic analysis, solution bookVarian, microeconomic analysis, solution book
Varian, microeconomic analysis, solution book
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Fourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lFourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 l
 
Lattices and codes
Lattices and codesLattices and codes
Lattices and codes
 
Cap4 lec5
Cap4 lec5Cap4 lec5
Cap4 lec5
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdf
 
Cs229 cvxopt
Cs229 cvxoptCs229 cvxopt
Cs229 cvxopt
 
Fourier 3
Fourier 3Fourier 3
Fourier 3
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrix
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
 
SOME THOUGHTS ON DIVERGENT SERIES
SOME THOUGHTS ON DIVERGENT SERIESSOME THOUGHTS ON DIVERGENT SERIES
SOME THOUGHTS ON DIVERGENT SERIES
 
senior seminar
senior seminarsenior seminar
senior seminar
 

Recently uploaded

LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Jeffrey Haguewood
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Product School
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
Product School
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Inflectra
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Tobias Schneck
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Albert Hoitingh
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
g2nightmarescribd
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Ramesh Iyer
 

Recently uploaded (20)

LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 

Chapter 2 (maths 3)

  • 1. CHAPTER 2 FOURIER SERIES PERIODIC FUNCTIONS A function f (x ) is said to have a period T if for all x, f ( x + T ) = f ( x) , where T is a positive constant. The least value of T>0 is called the period of f (x) . EXAMPLES We know that f (x ) = sin x = sin (x + 4 π ) = … Therefore the function has period 2 π , 4 π , 6 π , etc. However, 2 is the least value and therefore is the period of f(x). Similarly cos x is a periodic function with the period 2 π and tan x has period π . DIRICHLET’S CONDITIONS A function f (x ) defined in c ≤ x ≤ c+2l can be expanded as an infinite trigonometric a nπx nπx series of the form o + ∑ a n cos + ∑ bn sin , provided 2 l l 1. f (x) is single- valued and finite in (c , c+2l) 2. f (x) is continuous or piecewise continuous with finite number of finite discontinuities in (c , c+2l). 3. f (x) has no or finite number of maxima or minima in (c , c+2l). EULER’S FORMULAS If a function f (x) defined in (c , c+2l) can be expanded as the infinite trigonometric ao ∞ nπx ∞ nπx series 2 + ∑ an cos n =1 l + ∑ bn sin n =1 l then c + 2l 1 nπx an = l ∫ c f ( x) cos l dx, n ≥ 0 c + 2l 1 nπx bn = l ∫c f ( x) sin l dx, n ≥ 1 [ Formulas given above for a n and bn are called Euler’s formulas for Fourier coefficients]
  • 2. DEFINITION OF FOURIER SERIES ao ∞ nπx ∞ nπx The infinite trigonometric series 2 + ∑ an cos n =1 l + ∑ bn sin n =1 l is called the Fourier series of f (x) in the interval c ≤ x ≤ c+2l, provided the coefficients are given by the Euler’s formulas. EVEN FUNCTION If f (x) = φ (x) in (-l , l) such that φ (− x) = φ (x) , then f (x ) is said to be an even function of x in (-l , l). φ1 ( x ) in (−l ,0) If f ( x) =  φ 2 ( x) in (0, l ) Such that φ1 (− x) = φ 2 ( x) or φ 2 ( − x ) = φ1 ( x ) , then f (x) is said to be an even function of x in (-l , l). EXAMPLE y = cos x , y = x 2 are even functions. ODD FUNCTION If f (x) = φ (x) in (-l , l) such that φ (− x) = - φ (x) , then f (x) is said to be an odd function of x in (-l , l). φ1 ( x ) in (−l ,0) If f ( x) =  φ 2 ( x) in (0, l ) Such that φ1 (− x) = - φ 2 ( x ) or φ 2 ( − x ) = - φ1 ( x ) , then f (x) is said to be an odd function of x in (-l , l). EXAMPLE y = sin x , y = x are odd functions. FOURIER SERIES OF EVEN AND ODD FUNCTIONS 1. The Fourier series of an even function f (x ) in (-l , l) contains only cosine terms 2
  • 3. (constant term included), i.e. the Fourier series of an even function f (x) in (-l , l) is given by ao nπx f (x) = 2 + ∑a n cos l , nπx l 2 where a n = ∫ f ( x ) cos dx. l 0 l 2. The Fourier series of an odd function f (x) in (-l , l) contains only sine terms, i.e. the Fourier series of an odd function f (x ) in (-l , l) is given by nπx f (x) = ∑b n sin l , nπx l 2 where bn = ∫ f ( x) sin l dx. l 0 PROBLEMS 1. Find the Fourier series of period 2l for the function f (x ) = x(2l – x) in (0 , 2l). Deduce 1 1 1 the sum of f (x) = 2 − 2 + 2 − 1 2 3 Solution: ao ∞ nπx ∞ nπx Let f (x ) = 2 + ∑a n =1 n cos l + ∑ bn sin n =1 l in (0 , 2l) …………(1) nπx 2l 1 an = l0∫ x(2l − x) cos l dx 2l   nπx   nπx   nπx    sin   − cos   − sin  1 2  l  − (2l − 2 x ) l  + (−2) l  , = (2lx − x ) l  nπ   n 2π 2   n 3π 3           l   l2   l3  0 using Bernoulli’s formula. 2 1 = [ − 2l cos 2nπ − 2l ] = − 4l 2 n 2π 2 n 2π 2l 1 x3  2l 1 4 a o = ∫ x(2l − x )dx = lx 2 −  = l 2 . l0 l 3 0 3 3
  • 4. nπx 2l 1 bn = l0∫ x(2l − x) sin l dx =0 Using these values in (1), we have 2 2 4l 2 ∞ 1 nπx x (2l - x) = l − 2 3 π ∑n n =1 2 cos l in (0, 2l) ……………..(2) 1 1 1 The required series 2 − 2 + 2 − … ∞ can be obtained by putting x = l in the Fourier 1 2 3 series in (2). x = l lies in (0 , 2l) and is a point of continuity of the function f (x) = x(2l – x). ∴ [ Sum the Fourier series in (2) ] x =1 = f(l) ∞ 2 2 4l 2 1 i.e. l − 2 3 π ∑n n =1 2 cos nπ = l(2l - l) 4l 2  1 1 1  l 2 i.e.. -  − 2 + 2 − 2 + ...∞  = π2  1 2 3  3 ∴ 1 1 1 π2 − 2 + 2 − …∞ = 12 2 3 12 2. Find the Fourier series of period 2 π for the function f (x) = x cos x in 0 < x < 2 π . Solution: ∞ ∞ ao Let f (x ) = 2 + ∑ an cos nx + ∑ bn sin nx n =1 n =1 .……..…………(1) 2π 1 an = π ∫ x cos x cos nxdx 0 2π 1 = 2π ∫ x[ cos(n + 1) x + cos(n − 1) x]dx 0 1  sin( n + 1) x cos(n + 1) x  2π  sin( n − 1) x cos(n − 1) x  2π  =  x. +  +  x. +  , 2π  n +1 (n + 1) 2  0  n −1 ( n − 1) 2  0    if n ≠ 1 =0, if n ≠ 1 ao = 0 4
  • 5. 2π 1 1 an = ∫ x cos xdx = 2π ∫ x(1 + cos 2 x)dx 2 π 0 0 2π 1 x sin 2 x cos 2 x  2 =  +x +  = π. 2π 2 2 4 0 2π 1 bn = π ∫ x cos x sin nxdx 0 2π 1 = 2π ∫ x[ sin(n + 1) x + sin(n − 1) x]dx 0 1  − cos(n + 1) x sin( n + 1) x  2π  − cos(n − 1) x sin( n − 1) x  2π  =  x. +  +  x. +  , 2π  n +1 (n + 1) 2  0  n −1 (n − 1) 2  0    if n ≠ 1 1 1  1 1  2n =− − = − + =− 2 , if n ≠ 1 n +1 n −1  n + 1 n − 1 n −1 2π 2π 1 1 b1 = π ∫ x cos x sin xdx = 0 2π ∫ x sin 2 xdx 0 2π 1   − cos 2 x  sin 2 x  1 =  x +  =−2 2π   2  4 0 Using these values in (1), we get ∞ 1 n f(x) = π cos x − sin x − 2 ∑ sin nx n = 2 , 3,... n − 1 2 2 3. Find the Fourier series expansion of f (x) = sin ax in (-l , l). Solution: Since f (x) is defined in a range of length 2l, we can expand f (x ) in Fourier series of period 2l. Also f ( − x) = sin[a(-x)] = -sin ax = - f (x) ∴ f (x) is an odd function of x in (-l , l). Hence Fourier series of f (x ) will not contain cosine terms. ∞ nπx Let f (x ) = ∑b n =1 n sin l ………………….(1) 5
  • 6. 1   nπ  nπ l    = ∫ cos l − a  − cos l + a  xdx l 0      l   nπ   nπ   1  sin  l − a  x sin  l + a  x  =    −    l nπ nπ −a +a   l l   0 1  nπ  1  nπ  = sin  − a l − sin  + a l nπ − la  l  nπ + la  l  = 1 nπ − al {− (−1) n sin al} − nπ 1 al {(−1) n sin al} +  1 1  = (−1) n +1 sin al  +   nπ − al nπ + al  (−1) n +1 2nπ sin al = n 2π 2 − a 2 l 2 Using these values in (1), we get ∞ (−1) n +1 n nπx sin ax = 2π sin al ∑ sin n =1 n π −a l 2 2 2 2 l 4. Find the Fourier series expansion of f (x) = e − x in (−π , π ) . Hence obtain a series for cosec π Solution: Though the range (−π , π ) is symmetric about the origin, e − x is neither an even function nor an odd function. ∞ ∞ ao ∴ Let f (x) = 2 + ∑ an cos nx + ∑ bn sin nx n =1 n =1 ..…..…………(1) in (−π , π ) [ the length of the range is 2π ] 6
  • 7. π 1 ∫π e cos nxdx −x an = π− π 1  e −x  =  2 ( − cos nx + n sin nx )  π n +1  −π =− 1 {e −π (−1) n − e π (−1) n } π ( n + 1) 2 2( −1) n = sinh π π (n 2 + 1) 2 sinh π ao = π π 1 ∫π e sin nxdx −x bn = π− π 1  e −x  =  2 ( − sin nx − n cos nx )  π n +1  −π =− n {e −π (−1) n − e π (−1) n } π ( n 2 + 1) 2n(−1) n = sinh π π (n 2 + 1) Using these values in (1), we get sinh π 2 sinh π ∞ (−1) n 2 sinh π ∞ (−1) n n e−x = π + π ∑ n 2 + 1 cos nx + π n =1 ∑ n 2 + 1 sin nx n =1 in (−π , π ) [ Sum of the Fourier series of f ( x )] x =0 = f (0), [Since x=0 is a point of continuity of f(x)] sinh π  ∞ (−1) n  i.e., 1 + 2∑ 2 −0  = e =1 π  n =1 n + 1  −1 ∞ (−1) n i.e., π cos ech π = 1 + 2  + 2∑ 2  2  n=2 n + 1 2 ∞ (−1) n i.e., cos ech π = ∑ π n=2 n 2 + 1 7
  • 8. HALF-RANGE FOURIER SERIES AND PARSEVAL’S THEOREM (i) The half range cosine series in (0 , l) is ao ∞ nπx f (x) = 2 + ∑a n =1 n cos l l 2 l∫ where a o = f ( x )dx. 0 nπx l 2 an = ∫ f ( x) cos l dx. l 0 (ii) The half range sine series in (0 , l) is ∞ nπx f (x) = ∑b n =1 n sin l , nπx l 2 where bn = ∫ f ( x) sin l dx. l 0 (iii) The half range cosine series in (0 , π ) is given by ∞ ao f (x) = 2 + ∑a n =1 n cos nx π 2 where a o = ∫ f ( x )dx. π 0 π 2 π∫ an = f ( x ) cos nxdx. 0 (iv) The half range sine series in (0 , π ) is given by ∞ f (x) = ∑b n =1 n sin nx , π 2 where bn = ∫ f ( x) sin nxdx. π 0 8
  • 9. ROOT-MEAN SQUARE VALUE OF A FUNCTION Definition c +2 l 1 ∫y 2 If a function y = f (x ) is defined in (c , c+2l), then dx is called the root mean- 2l c square(R.M.S.) value of y in (c , c+2l) and is denoted by y. c + 2l 1 2 Thus y = ∫y 2 dx. 2l c PARSEVAL’S THEOREM If y = f (x ) can be expanded as a Fourier series of the form ao ∞ nπx ∞ nπx 2 + ∑ an cos n =1 l + ∑ bn sin n =1 l in (c , c+2l), then the root-mean square value y of y = f (x) in (c , c+2l) is given by 1 2 1 ∞ 1 ∞ y = a o + ∑ a n + ∑ bn 2 2 2 4 2 n =1 2 n =1 PROOF ao ∞ nπx ∞ nπx f (x) = 2 + ∑ an cos n =1 l + ∑ bn sin n =1 l in (c , c+2l) ....……………….(1) ∴ By Euler’s formulas for the Fourier coefficients, c + 2l 1 nπx an = l ∫ c f ( x) cos l dx, n ≥ 0 ..…………………(2) c + 2l 1 nπx bn = l ∫ c f ( x) sin l dx, n ≥ 1 …....……………..(3) Now, by definition, c + 2l c + 2l 1 1 ∫ [ f ( x)] 2 ∫ y dx = 2 y = 2 dx 2l c 2l c c + 2l 1 a ∞ nπx ∞ nπx  = ∫ f ( x)  o + ∑ a n cos + ∑ bn sin dx, using (1) 2l c  2 n =1 l n =1 l  ao1 c + 2l  ∞ a 1 c + 2l nπx  ∞ bn 1 c + 2l nπx  =  ∫ f ( x)dx  + ∑ n  ∫ f ( x) cos dx  + ∑  ∫ f ( x) sin dx  4  l c  n =1 2  l c l  n =1 2  l c l  ∞ ∞ ao an bn = .a o + ∑ .a n + ∑ .bn , by using (2) and (3) 4 n =1 2 n =1 2 9
  • 10. ∞2 ∞ 2 2 ao an b = +∑ +∑ n . 4 n =1 2 n =1 2 EXAMPLES 1. Find the half-range (i) cosine series and (ii) sine series for f (x ) = x 2 in (0 , π ) Solution: (i) To get the half-range cosine series for f (x ) in (0 , π ), we should give an even extension for f (x) in ( − π , 0). i.e. put f (x) = ( − x ) 2 = x 2 in ( − π , 0) Now f (x) is even in ( − π , π ). ∞ ao ∴ f (x) = 2 + ∑a n =1 n cos nx ………………….(1) π 2 an = π ∫ f ( x) cos nxdx. 0 π 2 2 π∫ = x cos nxdx 0 π 2   sin nx   − cos nx   − sin nx  = x2   − 2 x  + 2  π  n   n 2   n 3  0 4 4(−1) n = .π (−1) n = ,n ≠ 0 πn 2 n2 π π 2 2 2 2 2 ao = ∫ f ( x)dx = π ∫ x dx = 3 π π 0 0 ∴ The Fourier half-range cosine series of x 2 is given by π2 ∞ (−1) n x2 = + 4∑ 2 cos nx in (0 , π ). 3 n =1 n (ii) To get the half-range sine series of f (x ) in (0 , π ), we should give an odd extension for f (x) in (- π , 0). i.e. Put f (x ) = - ( − x ) 2 in (- π , 0) = - x 2 in (- π , 0) Now f (x) is odd in (- π , π ). 10
  • 11. ∴ f (x) = ∑b n =1 n sin nx ……………….(2) π π 2 2 bn = ∫ f ( x) sin nxdx = ∫ x 2 sin nxdx π 0 π 0 π 2   cos nx   sin nx   cos nx  = x2  −  − 2 x −  + 2  π  n   n 2   n 3  0  2 π 2   (−1) + 3 {(−1) − 1}  n +1 2 = n π n n   2 π 2 4    − , if n is odd = π  n n 3  − 2π , if n is even  n Using this value in(2), we get the half-range sine series of x 2 in (0 , π ). 2. Find the half-range sine series of f (x) = sin ax in (0 , l). Solution: We give an odd extension for f (x) in (-l , 0). i.e. we put f (x) = -sin[a(-x)] = sin ax in (-l , 0) ∴ f (x) is odd in (-l , l) ∞ nπx Let f (x ) = ∑b n =1 n sin l nπx l 2 bn = ∫ sin ax. sin l dx l 0 1   nπ  nπ l    = ∫ cos l − a  x − cos l + a  x dx l 0      l   nπ   nπ   1  sin  l − a  x sin  l + a  x  =    −    l   nπ   nπ     l − a  + a      l  0 1 1 = (−1) n +1 sin ( nπ − al ) − sin ( nπ + al ) nπ − al nπ + al 11
  • 12. 1 1 = (−1) n +1 sin al + ( −1) n +1 sin al nπ − al nπ + al 2nπ = (−1) n +1 sin al. 2 2 n π − a 2l 2 Using this values in (1), we get the half-range sine series as ∞ (−1) n +1 .n nπx sin ax = 2π sin al ∑ 2 2 sin n =1 n π − a l 2 2 l 3. Find the half-range cosine series of f (x ) = a in (0 , l). Deduce the sum of 1 1 1 2 + 2 + 2 + ∞ . 1 3 5 Solution: Giving an odd extension for f (x) in (-l , 0), f (x ) is made an odd function in (-l , l). nπx ∴ Let f(x) = ∑b n sin l ..……………(1) nπx l 2 bn = ∫ a sin dx l 0 l l  nπx   − cos l  = 2a   nπ l    = 2a nπ 1 − ( − 1) n { }    l 0   4a  , if n is odd =  nπ 0,  if n is even Using this value in (1), we get 4a ∞ 1 nπx a= ∑5 n sin l in (0 , l ) π n =1,3, Since the series whose sum is required contains constant multiples of squares of bn , we apply Parseval’s theorem. l 1 1 ∑ bn = l ∫ [ f ( x)] dx 2 2 2 0 12
  • 13. 1 16a 2 1 i.e. . 2 π2 ∑ ( 2n − 1) n =1, 3, 5 2 = a2 ∞ 8a 2 1 i.e. π2 ∑ ( 2n − 1) n =1 2 = a2 ∞ 1 π2 ∴ ∑ ( 2n − 1) 2 8 . n =1 = 4. Expand f (x) = x - x 2 as a Fourier series in -1 < x < 1 and using this series find the r.m.s. value of f (x ) in the interval. Solution: The Fourier series of f (x ) in (-1 , -1) is given by ∞ ∞ ao f (x) = 2 + ∑ an cos nπx + ∑ bn sin nπx n =1 n =1 .………………(1) 1 1 a o = ∫ f ( x)dx = ∫ ( x − x 2 ) dx 1 1 −1 −1 1  x2 x3  1 1  1 1 =  −  =  − − +   2   3  −1  2 3   2 3  −2 ao = ..........................(2) 3 1 1 ∫1 f ( x) cos nπx dx = −∫1( x − x ) cos nπx dx 1 an = 2 1− 1   sin nπx   − cos nπx   − sin nπx  = ( x − x 2 )   − (1 − 2 x )  2  + (−2) 3    n   n   n  −1 − cos nπ 3 cos nπ = − n2 n2 4 cos nπ an = − ……………….(3) n2 13
  • 14. 1 1 ∫1 f ( x) sin nπx dx = −∫1( x − x ) sin nπx dx 1 bn = 2 1− 1   − cos nπx   − sin nπx   cos nπx  = ( x − x 2 )   − (1 − 2 x )   + (−2) 3 3   nπ  nπ  n π  −1 2 2    − 2 cos nπ 2 cos nπ 2 cos nπ = − + 3 3 n 3π 3 nπ nπ n +1 2(−1) bn = ..........................( 4) nπ Substituting (2), (3), (4) in (1) we get 1 ∞ 4(−1) n +1 ∞ 2(−1) n +1 f (x) = − + ∑ cos nπx + ∑ sin nπx 3 n =1 n 2 n =1 nπ We know that r.m.s. value of f(x) in (-l , l) is 1 2 1 ∞ 1 ∞ a o + ∑ a n + ∑ bn 2 2 2 y = ……………….(5) 4 2 n =1 2 n =1 From (2) we get −2 2 4 ao = ⇒ ao = .………………..(6) 3 9 From (3) we get 4( −1) n +1 2 16 an = 2 ⇒ an = 4 ………………..(7) n n From (4) we get 2(−1) n +1 2 4 bn = ⇒ bn = 2 2 ..………………(8) nπ nπ Substituting (6), (7) and (8) in (5) we get 1 1 ∞  16 4  + ∑ 4 + 2 2  2 y = 9 2 n =1  n nπ  5. Find the Fourier series for f (x) = x 2 in − π < x < π . Hence show that 1 1 1 π4 + 4 + 4 + = 14 2 3 90 Solution: The Fourier series of f (x ) in (-1 , 1) is given by π2 ∞ 4(−1) n f (x) = 3 + ∑ n 2 cos nx n =1 14
  • 15. The co-efficients a o , a n , bn are 2π 2 4(−1) n ao = , an = , bn = 0 3 n2 Parseval’s theorem is (a ) π ∞ 1 1 2 1 ∫ [ f ( x)] dx = ao + ∑ 2 2 2 n + bn 2π −π 4 2 n =1  ao 2 1 ∞ 2  ( ) π ∫ [x ] + ∑ a n + bn  2 2 dx = 2π  2 ∴ −π  4  2 n =1   π  x5   π 4 1 ∞ 16  i.e.,   5  = 2π   + ∑ 4   −π  9 2 n =1 n  2π 5 2π 5 ∞ 16 i.e., − =π∑ 4 5 9 n =1 n 8π 4 ∞ 16 =∑ 4 45 n =1 n ∞ 1 π4 i.e., ∑ n 4 = 90 n =1 1 1 1 π4 i.e., + 2 + 2 + ∞ = 12 3 5 90 HARMONIC ANALYSIS The process of finding the Fourier series for a function given by numerical value is known as harmonic analysis. In harmonic analysis the Fourier coefficients ao , a n , and bn of the function y = f (x) in (0 , 2 π ) are given by a o = 2[mean value of y in (0 , 2 π )] a n = 2[mean value of y cos nx in (0 , 2 π )] bn = 2[mean value of y sin nx in (0 , 2 π )] (i) Suppose the function f (x) is defined in the interval (0 , 2l), then its Fourier series is, ao ∞ nπx ∞ nπx f (x) = 2 + ∑a n =1 n cos l + ∑ bn sin n =1 l and now, a o = 2[mean value of y in (0 , 2l)]  nπx  a n = 2 mean value of y cos in (0 , 2l )  l  15
  • 16. nπx  bn = 2 mean value of y sin in (0 , 2l )  l  (ii) If the half range Fourier sine series of f (x) in (0 , l) is, ∞ nπx f (x) = ∑b n =1 n sin l , then  nπx  bn = 2 mean value of y sin in (0 , l )  l  (iii) If the half range Fourier sine series of f (x) in (0 , π ) is, ∞ nπx f (x) = ∑b n =1 n sin l , then bn = 2[ mean value of y sin nx in (0 , π )] (iv) If the half range Fourier cosine series of f (x) in (0 , l) is, ao ∞ nπx f (x) = + ∑ a n cos , then 2 n =1 l a o = 2[mean value of y in (0 , l)]  nπx  a n = 2 mean value of y cos in (0 , l )  l  (v) If the half range Fourier cosine series of f (x) in (0 , π ) is, ao ∞ nπx f (x) = 2 + ∑a n =1 n cos l , then a o = 2[mean value of y in (0 , π )] a n = 2[ mean value of y cos nx in (0 , π )] . EXAMPLES 1. The following table gives the variations of a periodic function over a period T. 0 T T T 2T 5T T x 6 3 2 3 6 f (x) 1.98 1.3 1.05 1.3 -0.88 -0.25 1.98 2πx Show that f (x ) = 0.75 + 0.37 cos θ +1.004 sin θ , where θ = T Solution: Here the last value is a mere repetition of the first therefore we omit that value and consider the remaining 6 values. ∴ n = 6. 16
  • 17. 2πx Given θ= ..………………..(1) T T T T 2T 5T π 2π ∴ when x takes the values of 0, , , , , θ takes the values 0, , , 6 3 2 3 6 3 3 4π 5π π, , . (By using (1)) 3 3 Let the Fourier series be of the form ao f ( x) = + a1 cos θ + b1 sin θ , ………………(2) 2 ∑y where a o = 2 ,  n     ∑ y cos θ  a1 = 2 ,  n     ∑ y sin θ  b1 = 2 , n=6  n    θ y cos θ sin θ y cos θ y sin θ 0° 1.98 1.0 0 1.98 0 π 1.30 0.500 0.866 0.65 1.1258 3 2π 3 1.05 -0,500 0.866 -0.525 0.9093 π 1.30 -1 0 -1.3 0 4π 3 -0.88 -0.500 -0.866 0.44 0.762 5π 3 -0.25 0.500 -0.866 -0.125 0.2165 4.6 1.12 3.013 ∑y a o = 2  = 1.5, a1 = 2 ∑ y cos θ = 0.37  6  6   2 b1 = ∑ y sin θ = 1.00456 6 Substituting these values of a o , a1 , and b1 in (2), we get ∴ f (x) = 0.75 + 0.37 cos θ + 1.004 sin θ 2. Find the Fourier series upto the third harmonic for the function y = f (x) defined in (0 , π ) from the table x 0 π 2π 3π 4π 5π π 6 6 6 6 6 17
  • 18. f (x) 2.34 2.2 1.6 0.83 0.51 0.88 1.19 Solution: We can express the given data in a half range Fourier sine series. f ( x) = b1 sin x + b2 sin 2 x + b3 sin 3 x ..………………...(1) x y = f(0) sin x sin 2x sin 3x y sin x y sin 2x y sin 3x 0 2.34 0 0 0 0 0 0 30 2.2 0.5 0.87 1 1.1 1.91 2.2 60 1.6 0.87 0.87 0 1.392 1.392 0 90 0.83 1 0 -1 0.83 0 -0.83 120 0.51 0.87 -0.87 0 0.44 -0.44 0 150 0.88 0.5 -0.87 1 0.44 0.76 0.88 180 1.19 0 0 0 0 0 0 4.202 3.622 2.25  ∑ y sin x  1 Now b1 = 2   = [ 4.202] = 1.40   6  3   ∑ y sin 2 x  1 b2 = 2   = [ 3.622] = 1.207   6  3   ∑ y sin 3 x  1 b3 = 2   = [ 2.25] = 0.75   6  3  Substituting these values in (1), we get f (x) = 1.4 sin x + 1.21 sin 2x + 0.75 sin 3x 3. Compute the first two harmonics of the Fourier series for f(x) from the following data x 0 30 60 90 120 150 180 f (x ) 0 5224 8097 7850 5499 2626 0 Solution: Here the length of the interval is π . ∴ we can express the given data in a half range Fourier sine series i.e., f ( x) = b1 sin x + b2 sin 2 x ………………………(1) 18
  • 19. x y sin x sin 2x 0 0 0 0 30 5224 .5 0.87 60 8097 0.87 0.87 90 7850 1 0 120 5499 0.87 -0.87 150 2626 0.5 -0.87  ∑ y sin x  Now b1 = 2  = 7867.84   6    ∑ y sin 2 x  b2 = 2   = 1506.84   6   ∴ f (x) = 7867.84 sin x + 1506.84 sin 2x 4. Find the Fourier series as far as the second harmonic to represent the function given in the following data. x 0 1 2 3 4 5 f (x ) 9 18 24 28 26 20 Solution: Here the length of the interval is 6 (not 2 π ) i.e., 2l = 6 or l = 3 ∴ The Fourier series is ao πx 2πx πx 2πx f ( x) = + a1 cos + a 2 cos + b1 sin + b2 sin …………………..(1) 2 3 3 3 3 πx 2πx πx πx 2πx 2πx y cos y sin y cos y sin x 3 3 y 3 3 3 3 0 0 0 9 9 0 9 0 1 π 3 2π 3 18 9 15.7 -9 15.6 2 2π 3 4π 3 24 -12 20.9 -24 0 3 π 2π 28 -28 0 28 0 4 4π 3 8π 3 26 -13 -22.6 -13 22.6 5 5π 3 10 π 3 20 10 -17.4 -10 -17.4 125 -25 -3.4 -19 20.8 19
  • 20.  ∑ y  2(125) Now a o = 2 = = 41.66,  6  6   2 πx a1 = ∑ y cos = −8.33 6 3 2 πx b1 = ∑ y sin = −1.13 6 3 2 2πx a2 = 6 ∑ y cos 3 = −6.33 2 2πx b2 = 6 ∑ y sin 3 = 6.9 Substituting these values of a o , a1 , b1 , a 2 and b2 in (1), we get 41.66 πx 2πx πx 2πx f ( x) = − 8.33 cos − 6.33 cos − 1.13 sin + 6.9 sin 2 3 3 3 3 COMPLEX FORM OF FOURIER SERIES ∞ The equation of the form f ( x) = ∑c e n = −∞ n inπx l is called the complex form or exponential form of the Fourier series of f (x) in (c , c+2l). The coefficient c n is given by c + 2l 1 ∫ f ( x )e −inπx l cn = dx 2l c When l = π , the complex form of Fourier series of f (x) in (c , c+2 π ) takes the form ∞ f ( x) = ∑c e n = −∞ n inx , where c + 2π 1 ∫ f ( x )e −inx cn = dx. 2π c PROBLEMS 1. Find the complex form of the Fourier series of f (x) = e x in (0 , 2). Solution: Since 2l = 2 or l = 1, the complex form of the Fourier series is ∞ f ( x) = ∑c e n = −∞ n inπx 20
  • 21. 2 1 c n = ∫ f ( x)e −inπx dx 20 2 1 = ∫ e x e −inπx dx 20 2 1  e ( 1−inπ ) x  =   2  1 − inπ  0 = 1 2(1 − inπ ) {e 2(1−inπ ) − 1} = (1 + inπ ) {e ( cos 2nπ − i sin 2nπ ) − 1} 2 2(1 + n π 2 2 ) = (e 2 − 1)(1 + inπ ) 2(1 + n 2π 2 ) Using this value in (1), we get  e 2 − 1  ∞ (1 + inπ ) inπx  2  ∑ (1 + n 2π 2 ) e ex =     n =−∞ 2. Find the complex form of the Fourier series of f (x) = sin x in (0 , π ). Solution: Here 2l = π or l = π 2 . ∴ The complex form of Fourier series is ∞ f ( x) = ∑c e n = −∞ n i 2 nx …………………..(1) π 1 c n = ∫ sin xe −i 2 nx dx π 0 π 1  e −i 2 nx  =  { − i 2n sin x − cos x}  π 1 − 4n 2 0 = 1 π ( 4n − 1) 2 [ − e i 2 nx − 1 = − ] 2 π ( 4n 2 − 1) Using this value in (1), we get 2 ∞ 1 sin x = − ∑ 4n 2 − 1 .e i 2nx π n =−∞ in (0 , π ) 3. Find the complex form of the Fourier series of f (x) = e − ax in (-l , l). Solution: 21
  • 22. Let the complex form of the Fourier series be ∞ f ( x) = ∑c e n = −∞ n inπx l l 1 c n = ∫ f ( x)e −inπx l dx 2l −l l 1 = ∫ e − ax e −inπx l dx 2l −l l 1 = ∫ e −( al +inπ ) x / l dx 2l −l l 1  e −( al +inπ ) x l  =   2l  − ( al + inπ ) l  −l = 1 2( al + inπ ) [ e −( al +inπ ) − e ( al +inπ ) ] = 2 1 ( al + inπ ) [ e al (−1) n − e − al (−1) n ] [ e ± inπ = cos nπ ± i sin nπ = (−1) n ] sinh al (−1) n = al + inπ sinh al.( al − inπ ) (−1) n = a 2 l 2 + n 2π 2 Using this value in (1), we have ∞ (−1) n ( al − inπ ) inπx l e − ax = sinh al ∑ 22 2 2 e n = −∞ a l + n π in (-l , l) 4. Find the complex form of the Fourier series of f (x) = cos ax in (- π , π ), where a is neither zero nor an integer. Solution: Here 2l = 2 π or l = π . ∴ The complex form of Fourier series is ∞ f ( x) = ∑c e n = −∞ n inx ………………….(1) 22
  • 23. π 1 ∫π cos ax.e − inx cn = dx 2π − π 1  e −inx  =  2 { − in cos ax + a sin ax}  2π  a − n 2  −π = 1 2π ( a − n 2 ) 2 [ e −inπ ( − in cos aπ + a sin aπ ) − e inπ ( − in cos aπ − a sin aπ ) ] 1 = (−1) n 2a sin aπ 2π ( a − n ) 2 2 Using this value in (1), we get a sin aπ ∞ (−1) n inx cos ax = π ∑ n = −∞ a2 − n2 e in (- π , π ). UNIT 2 PART – A 1. Determine the value of a n in the Fourier series expansion of f ( x) = x 3 in − π < x < π . Ans: f ( x) = x 3 is an odd function. ∴ an = 0 2. Find the root mean square value of f ( x) = x 2 in the interval (0 , π ) . Ans: RMS Vale of f ( x ) = x 2 in (0 , π ) is π π π 1  x5  ∫ [x ] 2 1 2 2 1 y = dx = ∫ x 4 dx =   π 0 π 0 π 5   0 1 π 5  π 4 = = π5  5   3. Find the coefficient b5 of cos 5 x in the Fourier cosine series of the function f ( x ) = sin 5 x in the interval (0 , 2π ) Ans: Here f ( x) = sin 5 x Fourier cosine series is 23
  • 24. ao f (x) = 2 + ∑a n =1 n cos nx , where π π 2 2 an = ∫ f ( x) cos nx dx = π ∫ sin 5 x cos nx dx π 0 0 π 2 = 2π ∫ [ sin(5 + n) x + sin(5 − n) x] dx 0 π − 1  cos(5 + n) x cos(5 − n) x  = + =0 π  5+n  5 − n 0  cos x, if 0 < x < π 4. If f ( x) =  and f ( x) = f ( x + 2π ) for all x, find the sum of the Fourier 50, if π < x ≤ 2π series of f (x ) at x = π . Ans: Here π is a point of discontinuity. ∴ The sum of the Fourier series is equal to the average of right hand and left hand limit of the given function at x = π . f (π − 0) + f (π + 0) i.e., f (π ) = 2 cos π + 50 49 = = 2 2 5. Find bn in the expansion of x 2 as a Fourier series in (−π , π ) . Ans: bn = 0 Since f ( x) = x 2 is an even function in (−π , π ) . 6. If f (x) is an odd function defined in (-l , l) what are the values of a 0 Ans: a0 = 0 a n = 0 since f (x) is an odd function. 7. Find the Fourier constants bn for x sin x in (−π , π ) . Ans: bn = 0 Since f ( x) = x sin x is an even function in (−π , π ) . 24
  • 25. 8. State Parseval’s identity for the half-range cosine expansion of f (x ) in (0 , 1). Ans: 1 2 ∞ a0 2 ∫ [ f ( x)] dx = + ∑ an 2 2 0 2 n =1 where 1 a 0 = 2 ∫ f ( x) dx 0 1 a n = 2 ∫ f ( x) cos nx dx 0 9. Find the constant term in the Fourier series expansion of f ( x ) = x in (−π , π ) . Ans: a 0 = 0 since f (x ) is an odd function in (−π , π ) . 10. State Dirichlet’s conditions for Fourier series. Ans: (i) f (x) is defined and single valued except possibly at a finite number of points in (−π , π ) . (ii) f (x) is periodic with period 2 π . (iii) f (x) and f ′(x) are piecewise continuous in (−π , π ) . Then the Fourier series of f (x ) converges to (a) f (x) if x is a point of continuity f ( x + 0) + f ( x − 0) (b) if x is a point of discontinuity. 2 11. What you mean by Harmonic Analysis? Ans: The process of finding the Fourier series for a function given by numerical value is known as harmonic analysis. In harmonic analysis the Fourier coefficients ao , a n , and bn of the function y = f (x) in (0 , 2 π ) are given by a o = 2[mean value of y in (0 , 2 π )] a n = 2[mean value of y cos nx in (0 , 2 π )] bn = 2[mean value of y sin nx in (0 , 2 π )] 25
  • 26.  2x 1 + π , − π < x < 0  12. In the Fourier expansion of f ( x) =  in (−π , π ) . Find the value of bn , 1 − 2 x , 0 < x < π  π  the coefficient of sin nx. Ans: Since f (x) is an even function the value of bn = 0.  2( − x) 2x   In − π ≤ x ≤ 0 i.e., 0 ≤ − x ≤ π , f (− x ) = 1 − π = 1 + π = f ( x )   13. What is the constant term and the coefficient of cos nx, a n in the Fourier expansion of f ( x) = x − x 3 in (-7 , 7)? Ans: Given f ( x) = x − x 3 f ( − x ) = − x + x 3 = −( x − x 3 ) = − f ( x ) The given function is an odd function. Hence a 0 and a n are zero. 14. State Parseval’s identity for full range expansion of f (x ) as Fourier series in (0 , 2l). Ans: c + 2l 2 2 2 1 ∞ ∞ ∫ [ f ( x)] dx. = ao + ∑ a n + ∑ bn . 2 2l c 4 n =1 2 n =1 2 where c + 2l 1 nπx an = l ∫ c f ( x) cos l dx, n ≥ 0 c + 2l 1 nπx bn = l ∫ c f ( x) sin l dx, n ≥ 1 15. Find a Fourier sine series for the function f (x ) = 1; 0 < x < π . Ans: ∞ The Fourier sine series of f ( x) = ∑ bn sin nx …………………….(1) n =1 26
  • 27. π 2 bn = π ∫ f ( x) sin nx dx 0 π π 2  − cos nx  2 = ∫ sin nx dx =  π 0 π  n 0  =− 2 nπ ( (−1) n − 1) bn = 0, when ' n' is even 4 = , when ' n' is odd nπ ∞ 4 ∴ f ( x) = ∑ . sin nπ n =1, 3, 5, nπ 0 0< x<π 16. If the Fourier series for the function f ( x ) =  is sin x 0 < x < 2π − 1 2  cos 2 x cos 4 x  1 1 1 1 π −2 f ( x) = +  + +  + sin x Deduce that − + − ∞ = . π π  1.3 3.5  2 1.3 3.5 5.7 4 Ans: π Putting x = we get 2  π  −1 2  1 1 1  1 f = + − + − +  ∞ +  2  π π  1.3 3.5 5.7  2 −1 2  1 1 1  1 0= + − + − + ∞ + π π  1.3 3.5 5.7  2 1 1 1 π −2 − + − ∞ = . 1.3 3.5 5.7 4 17. Define Root mean square value of a function? Ans: c +2 l 1 ∫y 2 If a function y = f (x ) is defined in (c , c+2l), then dx is called the root mean- 2l c square(R.M.S.) value of y in (c , c+2l) and is denoted by y. 27
  • 28. c + 2l 2 1 Thus y = ∫y 2 dx. 2l c 18. If f ( x) = x 2 + x is expressed as a Fourier series in the interval (-2 , 2), to which value this series converges at x = 2. Ans: Since x = 2 is a point of continuity, the Fourier series converges to the arithmetic mean of f (x) at x = -2 and x = 2 f (2) + f (−2) 4 − 2 + 4 + 2 i.e., = =4 2 2 19. If the Fourier series corresponding to f ( x ) = x in the interval (0 , 2π ) is a0 ∞ + ∑ (a n cos nx + bn sin nx), without finding the values of a 0, a n , bn find the value of 2 n =1 2 ∞ a0 + ∑ (a n + bn ). 2 2 2 n =1 Ans: By using Parseval’s identity, 2 2π 2π a0 ∞ 1 1  x3  8 + ∑ (a n + bn ) = ∫ x 2 dx =   = π 2 . 2 2 2 π 0  3  π  0 3 n =1 20. Find the constant term in the Fourier series corresponding to f ( x) = cos 2 x expressed in the interval (−π , π ) . Ans: Given f ( x) = cos 2 x π π π 1 1  1 + cos 2 x  1 sin 2 x  Now a 0 = ∫π cos x dx = π −∫π  2 dx = π  x + 2  0 = 1 2 π −     PART B 1. (i) Express f ( x) = x sin x as a Fourier series in 0 ≤ x ≤ 2π . 28
  • 29. 2l  πx 1 2πx 1 3πx  (ii) Show that for 0 < x <l, x =  sin − sin + sin  . Using root mean square p l 2 l 3 l  1 1 1 value of x, deduce the value of 2 + 2 + 2 + 1 2 3 2. (i) Find the Fourier series of periodicity 3 for f ( x ) = 2 x − x 2 in 0 < x < 3. (ii) Find the Fourier series expansion of period 2 π for the function y = f (x) which is defined in (0 , 2π ) by means of the table of values given below. Find the series upto the third harmonic. x 0 π 2π π 4π 5π 2π 3 3 3 3 f (x ) 1.0 1.4 1.9 1.7 1.5 1.2 1.0 3.(i) Find the Fourier series of periodicity 2 π for f ( x) = x 2 for 0 < x < 2 π . l 4l  πx 1 3πx  (ii) Show that for 0 < x <l, x = −  cos + 2 cos +  . Deduce that 2 π2  l 3 l  1 1 1 π4 + 4 + 4 + = . 14 3 5 96 l − x, 0 < x ≤ l 4. (i) Find the Fourier series for f ( x) =  . Hence deduce the sum to infinity of 0, l ≤ x ≤ 2l ∞ 1 the series ∑ (2n + 1) n =0 2 . (ii) Find the complex form of Fourier series of f ( x ) = e ax (−π < x < π ) in the form sinh aπ ∞ a + in inx π ∞ (−1) n e ax = π ∑ (−1) n −∞ a2 + n2 e and hence prove that =∑ 2 a sinh aπ −∞ n + a 2 . 5. Obtain the half range cosine series for f ( x) = x in (0 , π ). 6. Find the Fourier series for f ( x) = cos x in the interval (−π , π ) . 1 1 π3 7. (i) Expanding x(π − x) as a sine series in (0 , π ) show that 1 − + 3 + = . 33 5 32 (ii) Find the Fourier series as far as the second harmonic to represent the function given in the following data. x 0 1 2 3 4 5 29
  • 30. f (x ) 9 18 24 28 26 20 8. Obtain the Fourier series for f (x ) of period 2l and defined as follows  L + x in ( − L,0) f ( x) =   L − x in (0, L) 1 1 1 π2 Hence deduce that + 2 + 2 + = . 12 3 5 8 9. Obtain the half range cosine series for f ( x) = x in (0 , π ). 1 in (0, π ) 10. (i) Find the Fourier series of f ( x ) =  2 in (π ,2π ) (ii) Obtain the sine series for the function  l  x in 0 ≤ x ≤ 2  f ( x) =  l − x in l ≤ x ≤ l   2 11. (i) Find the Fourier series for the function 0 in (−1, 0) f ( x) =  and f ( x + 2) = f ( x ) for all x. 1 in (0, 1) (ii) Determine the Fourier series for the function πx, 0 ≤ x ≤1 f ( x) =  π (2 − x ), 1 ≤ x ≤ 2 12. Obtain the Fourier series for f ( x ) = 1 + x + x 2 in (−π , π ) . Deduce that 1 1 1 π2 + 2 + 2 + = . 12 2 3 6 13. Obtain the constant term and the first harmonic in the Fourier series expansion for f (x) where f (x) is given in the following table. x 0 1 2 3 4 5 6 7 8 9 10 11 f (x) 18. 18. 17. 15. 11. 8.3 6. 5. 6. 9. 12. 15.7 0 3 4 0 4 0 7 6 0 6 14. (i) Express f ( x) = x sin x as a Fourier series in (−π , π ). 30
  • 31. (ii) Obtain the half range cosine series for f ( x) = ( x − 2) 2 in the interval 0 < x < 2. 15. Find the half range sine series of f ( x) = x cos x in (0 , π ). 16. (i) Find the Fourier series expansion of f (x ) = e − x in (−π , π ) (ii) Find the half-range sine series of f (x ) = sin ax in (0 , l). 17. Expand f (x ) = x - x 2 as a Fourier series in -1 < x < 1 and using this series find the r.m.s. value of f (x) in the interval. 18. The following table gives the variations of a periodic function over a period T. 0 T T T 2T 5T T x 6 3 2 3 6 f (x) 1.98 1.3 1.05 1.3 -0.88 -0.25 1.98 2πx Show that f (x ) = 0.75 + 0.37 cos θ +1.004 sin θ , where θ = T 19. Find the Fourier series upto the third harmonic for the function y = f (x) defined in (0 , π ) from the table x 0 π 2π 3π 4π 5π π 6 6 6 6 6 f (x) 2.34 2.2 1.6 0.83 0.51 0.88 1.19 20. (i) Find the half-range (i) cosine series and (ii) sine series for f (x ) = x 2 in (0 , π ) (ii) Find the complex form of the Fourier series of f (x) = cos ax in (- π , π ). 31