SlideShare a Scribd company logo
1 of 3
Download to read offline
Emat 213: a Classification
                                  Instructor: Dr. Marco Bertola
                       Provided AS IS: no guarantee of being typo-free


            1    First Order ODEs
      Separable: prototype
                                                           dy
                                   y = h(y)f (x) ;             =     f (x)dx
                                                          h(y)

          Exact: prototype
                                                                             ∂M   ∂N
                                       M (x, y)dx + N (x, y)dy = 0 ;            =
                                                                             ∂y   ∂x
                                       ∂F                     ∂F
                      F (x, y) = C ,      (x, y) = M (x, y) ;    (x, y) = N (x, y)
                                       ∂x                     ∂y

  Homogeneous: prototype

                 M (x, y)dx + N (x, y)dy = 0 ; M (tx, ty) = td M (x, y) ; N (tx, ty) = td N (x, y)
                                                                      Substitute: y = x · u(x)

      Bernoulli: prototype
                                                                               1
                             y + P (x)y = f (x)y n ; Substitute: y = u 1−n

By Substitution: prototype

                       y = F (Ax + By + C) ; Substitute: u = Ax + By + C

         Linear: prototype

                 y + P (x)y = f (x) ; y = e−    P (x)dx
                                                          f (x)e   P (x)dx
                                                                             dx + Ce−   P (x)dx




                                                     1
2     Second (and higher) order Linear ODEs
Const-Coeffs (CC): prototype
                         ay + by + cy = f (x)
                         Auxiliary Eq. am2 + bm + c = 0

                                
                                     c 1 e m1 x + c 2 e m2 x     Real and distinct m1 , m2
                         yc =   c1 e cos(βx) + c2 eαx sin(βx) Complex conjugate m1,2 = α ± iβ
                                         αx
                              
                                      c1 emx + c2 x emx         Only one root m1 = m2 = m
                         yp = By undetermined coefficients or Variation of parameters

    Cauchy–Euler: prototype
                         a x2 y + b x y + c y = f (x) , (x > 0)
                         Auxiliary Eq. am(m − 1) + bm + c = 0

                                
                                           c 1 x m1 + c 2 x m2                               Real and distinct m1 , m2
                         yc =   c1 x cos(β ln(x)) + c2 xα sin(β ln(x))
                                          α
                                                                                           Complex conjugate m1,2 = α ± iβ
                              
                                          c1 xm + c2 ln(x) xm                                Only one root m1 = m2 = m
                         yp = Variation of parameters

Variation of Parms : put in normal form the equation
                                               y + P (x)y + Q(x)y = f (x)
                     Find complementary solutions y1 and y2 then
                                                yp = u 1 y1 + u 2 y2
                                                     −y2 f (x)           y1 f (x)
                                                u1 =              ; u2 =
                                                          W                 W
                                                             y1 y2
                                                W := det               = y 1 y2 − y 1 y2
                                                             y1 y2

               3     Series and solution by series (centered at x=0)
                                                                    y + P (x)y + Q(x)y = 0
                            ∞
                       y=         cn x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + c 4 x 4 + c 5 x 5 + . . .
                            n=0


               4     Homogeneous Systems
                   • Being able to convert from system form to matrix form and viceversa.
                                                  
                                                   x1 = a11 x1 + · · · + a1n xn
                                                  
                                                       .
                                                       .
                                                   .
                                                  
                                                     xn = an1 x1 + · · · + ann xn
                                                                           
                                                 a11 · · · a1n                 x1
                                                  .         .                  .
                           X = AX ,       A= .   .         .
                                                            .    ;     X= .   .
                                                 an1 · · · ann                xn


                                                                2
• Find Eigenvalues and Eigenvectors of A

                          det(A − λI) = 0 ⇒ λ1 , . . . ,

                                            A − λI K = λK

       (a) Matrix is diagonalizable (n eigenvectors) and eigenvalues are real

                              X = c 1 e λ1 t K 1 + . . . + c n e λn t K n

       (b) There are repeated eigenvalues and less than n eigenvectors; e.g. λ 1
           has multiplicity 2 but there is only one eigenvector

                           X1 = c1 eλ1 t K + c2 eλ1 t (tK + P)

                                                  A − λ1 I P = K

       (c) There are complex conjugate eigenvalues: find complex eigenvector
           and split in real and imaginary part.

                                                         λ = α ± iβ
                                                       K = A ± iB
                                   αt
                          X1 = e            A cos(βt) − B sin(βt)

                          X2 = eαt A sin(βt) + B cos(βt)

    • Solution by exponentiation

                                            Φ(t) = eAt


5     Nonhomogeneous Systems
In matrix form
                                 X = AX + F(t)
Complementary solution from above, particular solution by

    1. Variation of parameters

                           Xp = Φ(t)           Φ(t)−1 F(t) dt


    2. Diagonalization

                         X = P Y ; Y = DY + P −1 F(t)
                                                  
                                  λ1 0 · · ·
                                 0 λ2             
                            D= .
                                 .      ..        
                                                   
                                   .        .
                                        0                   λn




                                              3

More Related Content

What's hot

Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009akabaka12
 
Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010akabaka12
 
Engr 213 midterm 1b sol 2009
Engr 213 midterm 1b sol 2009Engr 213 midterm 1b sol 2009
Engr 213 midterm 1b sol 2009akabaka12
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Kuan-Lun Wang
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009akabaka12
 
Implicit differentiation
Implicit differentiationImplicit differentiation
Implicit differentiationSporsho
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsA Jorge Garcia
 
Week 3 [compatibility mode]
Week 3 [compatibility mode]Week 3 [compatibility mode]
Week 3 [compatibility mode]Hazrul156
 
4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiationdicosmo178
 
CHAIN RULE AND IMPLICIT FUNCTION
CHAIN RULE AND IMPLICIT FUNCTIONCHAIN RULE AND IMPLICIT FUNCTION
CHAIN RULE AND IMPLICIT FUNCTIONNikhil Pandit
 
On the Stick and Rope Problem - Draft 1
On the Stick and Rope Problem - Draft 1On the Stick and Rope Problem - Draft 1
On the Stick and Rope Problem - Draft 1Iwan Pranoto
 

What's hot (20)

Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009
 
Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010
 
Engr 213 midterm 1b sol 2009
Engr 213 midterm 1b sol 2009Engr 213 midterm 1b sol 2009
Engr 213 midterm 1b sol 2009
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
 
Sect1 2
Sect1 2Sect1 2
Sect1 2
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009
 
Chapter 3 (maths 3)
Chapter 3 (maths 3)Chapter 3 (maths 3)
Chapter 3 (maths 3)
 
Implicit differentiation
Implicit differentiationImplicit differentiation
Implicit differentiation
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
 
Imc2017 day1-solutions
Imc2017 day1-solutionsImc2017 day1-solutions
Imc2017 day1-solutions
 
Week 3 [compatibility mode]
Week 3 [compatibility mode]Week 3 [compatibility mode]
Week 3 [compatibility mode]
 
4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiation
 
CHAIN RULE AND IMPLICIT FUNCTION
CHAIN RULE AND IMPLICIT FUNCTIONCHAIN RULE AND IMPLICIT FUNCTION
CHAIN RULE AND IMPLICIT FUNCTION
 
Sol83
Sol83Sol83
Sol83
 
Imc2017 day2-solutions
Imc2017 day2-solutionsImc2017 day2-solutions
Imc2017 day2-solutions
 
Hw2 s
Hw2 sHw2 s
Hw2 s
 
On the Stick and Rope Problem - Draft 1
On the Stick and Rope Problem - Draft 1On the Stick and Rope Problem - Draft 1
On the Stick and Rope Problem - Draft 1
 
mathematics formulas
mathematics formulasmathematics formulas
mathematics formulas
 
Hw1
Hw1Hw1
Hw1
 
Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
 

Similar to Emat 213 study guide

Maths assignment
Maths assignmentMaths assignment
Maths assignmentNtshima
 
Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006akabaka12
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problemsDelta Pi Systems
 
Beam theory
Beam theoryBeam theory
Beam theorybissla19
 
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve FittingScientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve FittingEnthought, Inc.
 
Integral table
Integral tableIntegral table
Integral tablebags07
 
Varian, microeconomic analysis, solution book
Varian, microeconomic analysis, solution bookVarian, microeconomic analysis, solution book
Varian, microeconomic analysis, solution bookJosé Antonio PAYANO YALE
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 
Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009akabaka12
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 

Similar to Emat 213 study guide (20)

Maths assignment
Maths assignmentMaths assignment
Maths assignment
 
Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Beam theory
Beam theoryBeam theory
Beam theory
 
iTute Notes MM
iTute Notes MMiTute Notes MM
iTute Notes MM
 
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve FittingScientific Computing with Python Webinar 9/18/2009:Curve Fitting
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
 
Figures
FiguresFigures
Figures
 
Assignment6
Assignment6Assignment6
Assignment6
 
Sect1 4
Sect1 4Sect1 4
Sect1 4
 
01 regras diferenciacao
01   regras diferenciacao01   regras diferenciacao
01 regras diferenciacao
 
Regras diferenciacao
Regras diferenciacaoRegras diferenciacao
Regras diferenciacao
 
Integral table
Integral tableIntegral table
Integral table
 
Varian, microeconomic analysis, solution book
Varian, microeconomic analysis, solution bookVarian, microeconomic analysis, solution book
Varian, microeconomic analysis, solution book
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Chapter 2 (maths 3)
Chapter 2 (maths 3)Chapter 2 (maths 3)
Chapter 2 (maths 3)
 
Double integration
Double integrationDouble integration
Double integration
 
Taylor problem
Taylor problemTaylor problem
Taylor problem
 

More from akabaka12

Engr 213 midterm 2a 2009
Engr 213 midterm 2a 2009Engr 213 midterm 2a 2009
Engr 213 midterm 2a 2009akabaka12
 
Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005akabaka12
 
Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006akabaka12
 
Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009akabaka12
 
Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005akabaka12
 
Engr 213 midterm 1b 2009
Engr 213 midterm 1b 2009Engr 213 midterm 1b 2009
Engr 213 midterm 1b 2009akabaka12
 
Engr 213 final 2007
Engr 213 final 2007Engr 213 final 2007
Engr 213 final 2007akabaka12
 
Engr 213 final sol 2007
Engr 213 final sol 2007Engr 213 final sol 2007
Engr 213 final sol 2007akabaka12
 

More from akabaka12 (8)

Engr 213 midterm 2a 2009
Engr 213 midterm 2a 2009Engr 213 midterm 2a 2009
Engr 213 midterm 2a 2009
 
Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005
 
Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006
 
Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009
 
Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005
 
Engr 213 midterm 1b 2009
Engr 213 midterm 1b 2009Engr 213 midterm 1b 2009
Engr 213 midterm 1b 2009
 
Engr 213 final 2007
Engr 213 final 2007Engr 213 final 2007
Engr 213 final 2007
 
Engr 213 final sol 2007
Engr 213 final sol 2007Engr 213 final sol 2007
Engr 213 final sol 2007
 

Emat 213 study guide

  • 1. Emat 213: a Classification Instructor: Dr. Marco Bertola Provided AS IS: no guarantee of being typo-free 1 First Order ODEs Separable: prototype dy y = h(y)f (x) ; = f (x)dx h(y) Exact: prototype ∂M ∂N M (x, y)dx + N (x, y)dy = 0 ; = ∂y ∂x ∂F ∂F F (x, y) = C , (x, y) = M (x, y) ; (x, y) = N (x, y) ∂x ∂y Homogeneous: prototype M (x, y)dx + N (x, y)dy = 0 ; M (tx, ty) = td M (x, y) ; N (tx, ty) = td N (x, y) Substitute: y = x · u(x) Bernoulli: prototype 1 y + P (x)y = f (x)y n ; Substitute: y = u 1−n By Substitution: prototype y = F (Ax + By + C) ; Substitute: u = Ax + By + C Linear: prototype y + P (x)y = f (x) ; y = e− P (x)dx f (x)e P (x)dx dx + Ce− P (x)dx 1
  • 2. 2 Second (and higher) order Linear ODEs Const-Coeffs (CC): prototype ay + by + cy = f (x) Auxiliary Eq. am2 + bm + c = 0   c 1 e m1 x + c 2 e m2 x Real and distinct m1 , m2 yc = c1 e cos(βx) + c2 eαx sin(βx) Complex conjugate m1,2 = α ± iβ αx  c1 emx + c2 x emx Only one root m1 = m2 = m yp = By undetermined coefficients or Variation of parameters Cauchy–Euler: prototype a x2 y + b x y + c y = f (x) , (x > 0) Auxiliary Eq. am(m − 1) + bm + c = 0   c 1 x m1 + c 2 x m2 Real and distinct m1 , m2 yc = c1 x cos(β ln(x)) + c2 xα sin(β ln(x)) α Complex conjugate m1,2 = α ± iβ  c1 xm + c2 ln(x) xm Only one root m1 = m2 = m yp = Variation of parameters Variation of Parms : put in normal form the equation y + P (x)y + Q(x)y = f (x) Find complementary solutions y1 and y2 then yp = u 1 y1 + u 2 y2 −y2 f (x) y1 f (x) u1 = ; u2 = W W y1 y2 W := det = y 1 y2 − y 1 y2 y1 y2 3 Series and solution by series (centered at x=0) y + P (x)y + Q(x)y = 0 ∞ y= cn x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + c 4 x 4 + c 5 x 5 + . . . n=0 4 Homogeneous Systems • Being able to convert from system form to matrix form and viceversa.   x1 = a11 x1 + · · · + a1n xn  . .  .  xn = an1 x1 + · · · + ann xn     a11 · · · a1n x1 . .  . X = AX , A= . . . . ; X= .  . an1 · · · ann xn 2
  • 3. • Find Eigenvalues and Eigenvectors of A det(A − λI) = 0 ⇒ λ1 , . . . , A − λI K = λK (a) Matrix is diagonalizable (n eigenvectors) and eigenvalues are real X = c 1 e λ1 t K 1 + . . . + c n e λn t K n (b) There are repeated eigenvalues and less than n eigenvectors; e.g. λ 1 has multiplicity 2 but there is only one eigenvector X1 = c1 eλ1 t K + c2 eλ1 t (tK + P) A − λ1 I P = K (c) There are complex conjugate eigenvalues: find complex eigenvector and split in real and imaginary part. λ = α ± iβ K = A ± iB αt X1 = e A cos(βt) − B sin(βt) X2 = eαt A sin(βt) + B cos(βt) • Solution by exponentiation Φ(t) = eAt 5 Nonhomogeneous Systems In matrix form X = AX + F(t) Complementary solution from above, particular solution by 1. Variation of parameters Xp = Φ(t) Φ(t)−1 F(t) dt 2. Diagonalization X = P Y ; Y = DY + P −1 F(t)   λ1 0 · · ·  0 λ2  D= .  . ..   . . 0 λn 3