SlideShare a Scribd company logo
1 of 28
INTERPOLATION
INTERPOLATION FOR UNEQUAL INTERVALS
 LAGRANGE’S INTERPOLATING
FORMULA
 Let y = f(x) be the given function
 Let 𝑦0, 𝑦1, … 𝑦𝑛 be the (𝑛 + 1) points of the
given function corresponding to 𝑥0, 𝑥1, … 𝑥 𝑛
 The polynomial 𝑦 = 𝑓 𝑥 can be written as
 𝑓 𝑥 =
𝑥−𝑥1 𝑥−𝑥2 ··· 𝑥−𝑥 𝑛
𝑥0−𝑥1 𝑥0−𝑥2 ··· 𝑥0−𝑥 𝑛
𝑦0 +
𝑥 − 𝑥0 𝑥 − 𝑥2 ··· 𝑥 − 𝑥 𝑛
𝑥1 − 𝑥0 𝑥1 − 𝑥2 ··· 𝑥1 − 𝑥 𝑛
𝑦1 +
𝑥 − 𝑥0 𝑥 − 𝑥1 ··· 𝑥 − 𝑥 𝑛
𝑥2 − 𝑥0 𝑥2 − 𝑥1 ··· 𝑥2 − 𝑥 𝑛
𝑦2
+ ⋯ +
𝑥−𝑥0 𝑥−𝑥1 ··· 𝑥−𝑥 𝑛−1
𝑥 𝑛−𝑥0 𝑥 𝑛−𝑥1 ··· 𝑥 𝑛−𝑥 𝑛−1
𝑦 𝑛
INVERSE INTERPOLATION
 It is the process of finding a value of x
for the corresponding value of y and
we use Lagrange’s interpolation
formula by taking the independent
variable as y and the dependent
variable as x. It is the inverse process
of direct interpolation in which we find
the values of y corresponding to a
value of x, not present in the table.
INVERSE INTERPOLATION BY LAGRANGE’S
 𝑥 =
𝑦−𝑦1 𝑦−𝑦2 ··· 𝑦−𝑦 𝑛
𝑦0−𝑦1 𝑦0−𝑦2 ··· 𝑦0−𝑦 𝑛
𝑥0 +
𝑦−𝑦0 𝑦−𝑦2 ··· 𝑦−𝑦 𝑛
𝑦1−𝑦0 𝑦1−𝑦2 ··· 𝑦1−𝑦 𝑛
𝑥1 +
⋯
+
𝑦−𝑦0 𝑦−𝑦1 ··· 𝑦−𝑦 𝑛−1
𝑦 𝑛−𝑦 𝑦 𝑛−𝑦1 ··· 𝑦 𝑛−𝑦 𝑛−1
𝑥 𝑛
USE OF LAGRANGIAN
INTERPOLATION
 It is a process of computing
intermediate values of a function from
a given set of tabular values of the
function.
DIVIDED DIFFERENCE
 Let 𝑦 = 𝑓(𝑥) be the given function
which takes the values
f(𝑥0), 𝑓(𝑥1) … 𝑓(𝑥 𝑛) corresponding to
the arguments 𝑥0, 𝑥1, … 𝑥 𝑛
respectively, where the intervals
𝑥1 – 𝑥0 , 𝑥2 − 𝑥1 , … 𝑥 𝑛 – 𝑥 𝑛−1 need not
equal
REPRESENTATION BY DIVIDED DIFFERENCE
TABLE
𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡
𝑥
𝐸𝑛𝑡𝑟𝑦
𝑓(𝑥)
𝐹𝑖𝑟𝑠𝑡 𝐷. 𝐷
Δ1 𝑓(𝑥)
𝑆𝑒𝑐𝑜𝑛𝑑 𝐷. 𝐷
Δ1
2
𝑓(𝑥)
𝑇ℎ𝑖𝑟𝑑 𝐷. 𝐷
Δ1
3
𝑓(𝑥)
𝑥0
𝑥1
𝑥2
𝑥3
𝑥4
𝑓(𝑥0)
𝑓 𝑥1
𝑓 𝑥2
𝑓 𝑥3
𝑓(𝑥4)
𝑓 𝑥1 –𝑓 𝑥0
𝑥1 –𝑥0
= 𝑓 𝑥0, 𝑥1
𝑓 𝑥2 –𝑓 𝑥1
𝑥2 –𝑥1
= 𝑓 𝑥1, 𝑥2
𝑓 𝑥3 –𝑓 𝑥2
𝑥3 –𝑥2
= 𝑓 𝑥2, 𝑥3
𝑓 𝑥4 –𝑓 𝑥3
𝑥4 –𝑥3
= 𝑓 𝑥3, 𝑥4
𝑓 𝑥1,𝑥2 −𝑓 𝑥0,𝑥1
𝑥2−𝑥0
=
𝑓(𝑥0, 𝑥1, 𝑥2)
𝑓 𝑥2,𝑥3 −𝑓 𝑥1,𝑥2
𝑥3−𝑥1
=
𝑓(𝑥1, 𝑥2, 𝑥3)
𝑓 𝑥3,𝑥4 −𝑓 𝑥2,𝑥3
𝑥4−𝑥2
=
𝑓(𝑥2, 𝑥3, 𝑥4)
𝑓 𝑥1,𝑥2,𝑥3 −𝑓 𝑥0,𝑥1,𝑥2
x3−𝑥0
=
𝑓(𝑥0, 𝑥1, 𝑥2, 𝑥3)
𝑓 𝑥2,𝑥3,𝑥4 −𝑓 𝑥1,𝑥2,𝑥3
𝑥4−𝑥1
=
𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)
PROPERTIES OF DIVIDED DIFFERENCES
 1. The divided differences are
symmetrical in all their arguments, that
is, the value of any difference is
independent of the order of the
arguments.
 2. The divided difference of the product
of a constant and a function is equal to
the product of the constant and the
divided difference of the function.
 3. The operator Δ1 is linear
 4. The 𝑛 𝑡ℎ
divided difference of a
polynomial of degree 𝑛 is a constant
NEWTON DIVIDED DIFFERENCE INTERPOLATION
 If 𝑓(𝑥) is a polynomial of degree𝑛, and
𝑓(𝑥0), 𝑓(𝑥1), … 𝑓(𝑥 𝑛) are the
corresponding values of arguments
𝑥0, 𝑥1, … . 𝑥 𝑛 respectively, not
necessarly equally spaced.
 Then 𝑓 𝑥 = 𝑓 𝑥0 + ( 𝑥 −
INTERPOLATION WITH EQUAL INTERVALS
 FORWARD DIFFERENCE
 If 𝑦0, 𝑦1, … 𝑦𝑛 are the values of 𝑦 = 𝑓(𝑥)
corresponding to the arguments 𝑥0, 𝑥1, … 𝑥 𝑛 ,
where 𝑥1 − 𝑥0 , 𝑥2 − 𝑥1, … 𝑥 𝑛 − 𝑥 𝑛−1 are equal
 𝑖. 𝑒 𝑥𝑖 = 𝑥0 + 𝑖ℎ, 𝑖 = 0,1,2 … 𝑛
 Define Δ𝑦0 = 𝑦1 − 𝑦0 , Δ𝑦1 = 𝑦2 − 𝑦1 … . Δ𝑦 𝑛−1 =
𝑦𝑛 − 𝑦 𝑛−1
 And Δ2
𝑦0 = Δ𝑦1 − Δ𝑦0 , Δ2
𝑦1 = Δ𝑦2 −
Δ𝑦1 … . Δ2
𝑦 𝑛−1 = Δ𝑦𝑛 − Δ𝑦 𝑛−1
 And so on
 Here Δ is called Newton’s forward difference
operator
 NEWTON’S FORWARD
DIFFERENCE FORMULA
 If 𝑦0, 𝑦1, … 𝑦𝑛 are the values of 𝑦 =
𝑓(𝑥) corresponding to the arguments
𝑥0, 𝑥1, … 𝑥 𝑛
 Then y = 𝑦0 + 𝑝∆𝑦0 +
𝑝 𝑝−1
2!
∆2
𝑦0 +
𝑝 𝑝−1 𝑝−2
3!
∆3
𝑦0 + ⋯
 Where 𝑝 =
𝑥−𝑥0
ℎ
.
FORWARD DIFFERENCE
TABLE
𝑥 𝑦 Δ Δ2
Δ3
Δ4
Δ5
𝑥0
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑦0
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
Δ𝑦0
Δ𝑦1
Δ𝑦2
Δ𝑦3
Δ𝑦4
Δ2
𝑦0
Δ2
𝑦1
Δ2
𝑦2
Δ2
𝑦3
Δ3
𝑦0
Δ3
𝑦1
Δ3
𝑦2
Δ4
𝑦0
Δ4
𝑦1
Δ5
𝑦0
BACKWARD DIFFERENCE
 The differences 𝑦1 − 𝑦0, 𝑦2 − 𝑦1, … . 𝑦𝑛 −
𝑦 𝑛−1 are called first backward differences
and denoted by
 𝛻𝑦1 = 𝑦1 − 𝑦0, 𝛻𝑦2 = 𝑦2 − 𝑦1, … .
𝛻𝑦𝑛 = 𝑦𝑛 − 𝑦 𝑛−1
 And 𝛻2
𝑦1 = 𝛻𝑦1 − 𝛻𝑦0,
𝛻2
𝑦2 = 𝛻𝑦2 − 𝛻𝑦1, … .
𝛻2
𝑦𝑛 = 𝛻𝑦𝑛 − 𝛻𝑦 𝑛−1
and so on
NEWTON’S BACKWARD DIFFERENCE FORMULA
 If 𝑦0, 𝑦1, … 𝑦𝑛 are the values of 𝑦 =
𝑓(𝑥) corresponding to the arguments
𝑥0, 𝑥1, … 𝑥 𝑛
 Then 𝑦 = 𝑦𝑛 + 𝑝𝛻𝑦𝑛 +
𝑝 𝑝+1
2!
𝛻2
𝑦𝑛 +
𝑝 𝑝+1 𝑝+2
3!
𝛻3
𝑦𝑛 + ⋯
 Where 𝑝 =
𝑥−𝑥 𝑛
ℎ
.
BACKWARD DIFFERENCE
TABLE
𝑥 𝑦 𝛻 𝛻2
𝛻3
𝛻4
𝛻5
𝑥0
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑦0
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝛻𝑦1
𝛻𝑦2
𝛻𝑦3
𝛻𝑦4
𝛻𝑦5
𝛻2
𝑦2
𝛻2
𝑦3
𝛻2
𝑦4
𝛻2
𝑦5
𝛻3
𝑦3
𝛻3
𝑦4
𝛻3
𝑦5
𝛻4
𝑦4
𝛻4
𝑦5
𝛻5
𝑦5
NUMERICAL
DIFFERENTIATION
DERIVATIVES USING DIVIDED DIFFERENCE
 Procedure
 Step 1. By using Newton’s divided
difference formula find 𝑓(𝑥) in terms of
x
 Step 2. Find the derivatives of 𝑓(𝑥)
DERIVATIVE - USING NEWTON’S FORWARD DIFFERENCE
FORMULA
 The first derivative of y at 𝑥 = 𝑥0 + 𝑝ℎ (near beginning of the data)
is
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑝
𝑑𝑝
𝑑𝑥

𝑑𝑦
𝑑𝑥
=
1
ℎ
∆𝑦0 +
2𝑝−1
2!
∆2 𝑦0 +
3𝑝2−6𝑝+2
3!
∆3 𝑦0 + ⋯
 The second derivative of y at 𝑥 = 𝑥0 + 𝑝ℎ is
𝑑2 𝑦
𝑑𝑥2 =
𝑑2 𝑦
𝑑𝑝2
𝑑𝑝
𝑑𝑥
2

𝑑2 𝑦
𝑑𝑥2 =
1
ℎ2 ∆2
𝑦0 + (𝑝 − 1)∆3
𝑦0 +
6𝑝2−18𝑝+11
12
∆4
𝑦0 + ⋯
 The third derivative y at 𝑥 = 𝑥0 + 𝑝ℎ

𝑑3 𝑦
𝑑𝑥3 =
1
ℎ3 ∆3
𝑦0 +
12𝑝−18
12
∆4
𝑦0+. .
 For tabular values, at 𝑥 = 𝑥0, (𝑝 = 0)

𝑑𝑦
𝑑𝑥
=
1
ℎ
∆𝑦0 −
∆2 𝑦0
2
+
∆3 𝑦0
3
−
∆4 𝑦0
4
+ ⋯

𝑑2 𝑦
𝑑𝑥2 =
1
ℎ2 ∆2
𝑦0 − ∆3
𝑦0 +
11
12
∆4
𝑦0 − ⋯

𝑑3 𝑦
𝑑𝑥3 =
1
ℎ3 ∆3 𝑦0 −
3
2
∆4 𝑦0+. .
DERIVATIVE - USING NEWTON’S BACKWARD DIFFERENCE
FORMULA
 The first derivative of y at 𝑥 = 𝑥 𝑛 + 𝑝ℎ (near end of the data) is
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑝
𝑑𝑝
𝑑𝑥

𝑑𝑦
𝑑𝑥
=
1
ℎ
𝛻𝑦 𝑛 +
2𝑝+1
2!
𝛻2 𝑦 𝑛 +
3𝑝2+6𝑝+2
3!
𝛻3 𝑦 𝑛 + ⋯
 The second derivative of y at 𝑥 = 𝑥 𝑛 + 𝑝ℎ is
𝑑2 𝑦
𝑑𝑥2 =
𝑑2 𝑦
𝑑𝑝2
𝑑𝑝
𝑑𝑥
2

𝑑2 𝑦
𝑑𝑥2 =
1
ℎ2 𝛻2
𝑦 𝑛 + (𝑝 + 1)𝛻3
𝑦 𝑛 +
6𝑝2+18𝑝+11
12
𝛻4
𝑦0 + ⋯
 The third derivative of y at 𝑥 = 𝑥 𝑛 + 𝑝ℎ

𝑑3 𝑦
𝑑𝑥3 =
1
ℎ3 𝛻3
𝑦 𝑛 +
12𝑝+18
12
𝛻4
𝑦0+. .
 For tabular values, at 𝑥 = 𝑥 𝑛, (𝑝 = 0)

𝑑𝑦
𝑑𝑥
=
1
ℎ
𝛻𝑦 𝑛 +
𝛻2 𝑦 𝑛
2
+
𝛻3 𝑦 𝑛
3
+ ⋯

𝑑2 𝑦
𝑑𝑥2 =
1
ℎ2 𝛻2
𝑦 𝑛 + 𝛻3
𝑦 𝑛 +
11
12
𝛻4
𝑦0 + ⋯

𝑑3 𝑦
𝑑𝑥3 =
1
ℎ3 𝛻3 𝑦 𝑛 +
3
2
𝛻4 𝑦0+. .
NUMERICAL INTEGRATION
SINGLE (LINEAR) INTEGRATION
1. TRAPEZOIDAL RULE
2. SIMPSON’S
𝟏
𝟑
RULE
TRAPEZOIDAL RULE

𝑥0
𝑥1
𝑓(𝑥) 𝑑𝑥 =
ℎ
2
𝑦0 + 𝑦𝑛 + 2( 𝑦1 + 𝑦2 +
SIMPSON’S
𝟏
𝟑
𝒓𝒅 RULE

𝑥0
𝑥1
𝑓(𝑥) 𝑑𝑥 =
ℎ
3
𝑦0 + 𝑦𝑛 + 4 𝑦1 + 𝑦3 + 𝑦5 + ⋯ + 2(𝑦2 + 𝑦4 + 𝑦6+. . )
=
ℎ
3
𝑓𝑖𝑟𝑠𝑡 + 𝑙𝑎𝑠𝑡 + 4 𝑠𝑢𝑚 𝑜𝑓 𝑜𝑑𝑑 𝑡𝑒𝑟𝑚𝑠 +
2 𝑠𝑢𝑚 𝑜𝑓 𝑒𝑣𝑒𝑛 𝑡𝑒𝑟𝑚𝑠 ]
 ℎ =
𝑥1−𝑥0
𝑛
, 𝑛 − 𝑖𝑠 𝑡ℎ𝑒 𝒆𝒗𝒆𝒏 𝑛𝑜 𝑜𝑓 𝑠𝑢𝑏 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑖𝑛 𝑥0 𝑥1
 Condition for applying the Simpson’s rule – Number
of subintervals must be even
NUMERICAL DOUBLE
INTEGRATION
 1. 𝐓𝐑𝐀𝐏𝐄𝐙𝐎𝐈𝐃𝐀𝐋 𝐑𝐔𝐋𝐄
 2. 𝐒𝐈𝐌𝐏𝐒𝐎𝐍’𝐒 𝐑𝐔𝐋𝐄
TRAPEZOIDAL RULE

𝑎
𝑏
𝑐
𝑑
𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦 =
ℎ𝑘
4
𝑓1 + 𝑓3 + 𝑓7 + 𝑓9 +
2 𝑓2 + 𝑓4 + 𝑓6 + 𝑓8 + 4𝑓5]
 =
ℎ𝑘
4
𝑆𝑢𝑚 𝑜𝑓 𝑐𝑜𝑟𝑛𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 +
2 𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 +
4(𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓(𝑥, 𝑦)]
y x 𝑥0 𝑥1 𝑥2 𝑥3
𝑦0 𝑓(𝑥0, 𝑦0) 𝑓(𝑥1, 𝑦0) 𝑓(𝑥2, 𝑦0) 𝑓(𝑥3, 𝑦0)
𝑦1 𝑓(𝑥0, 𝑦1) 𝑓(𝑥1, 𝑦1) 𝑓(𝑥2, 𝑦1) 𝑓(𝑥3, 𝑦1)
𝑦2 𝑓(𝑥0, 𝑦2) 𝑓(𝑥1, 𝑦2) 𝑓(𝑥2, 𝑦2) 𝑓(𝑥3, 𝑦2)
𝑦3 𝑓(𝑥0, 𝑦3) 𝑓(𝑥1, 𝑦3) 𝑓(𝑥2, 𝑦3) 𝑓(𝑥3, 𝑦3)
For example, if x takes the values 𝑥0, 𝑥1, 𝑥2, 𝑥3 and y takes values
𝑦0, 𝑦1, 𝑦2, 𝑦3
Red indicates – corner values
Blue indicates – boundary values
Black indicates – interior values
𝑺𝑰𝑴𝑷𝑺𝑶𝑵’𝑺 𝑹𝑼𝑳𝑬

𝑎
𝑏
𝑐
𝑑
𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦 =
ℎ𝑘
9
𝑓1 + 𝑓3 + 𝑓7 + 𝑓9 +
2 𝑓2 + 𝑓4 + 𝑓6 + 𝑓8 + 16𝑓5]
 =
ℎ𝑘
9
𝑆𝑢𝑚 𝑜𝑓 𝑐𝑜𝑟𝑛𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 +
4 𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 +
16(𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓(𝑥, 𝑦)]
Errors in Trapezoidal rule of numerical
integration.
 When evaluating 𝑎
𝑏
𝑓 𝑥 𝑑𝑥, the error
in the trapezoidal rule is
 <
𝑏−𝑎 2
12
ℎ2
𝑀, where ℎ =
𝑏−𝑎
𝑛
, n is the
number of subintervals of (a, b),
 And 𝑀 = 𝑚𝑎𝑥{|𝑦0
′′
|, |𝑦1
′′
|,· · ·
, |𝑦 𝑛−1
′′
|}, 𝑦𝑟′′ = 𝑓′′(𝑥 𝑟)
 Error in Trapezoidal rule is of order
𝒉 𝟐
Errors in Simpson’s rule of numerical
integration
 The error in Simpson’s rule is <
𝑏−𝑎
180
ℎ4
𝑀
 where ℎ =
𝑏−𝑎
2𝑛
, 2n is the number of
subintervals of (a, b),
 𝑀 = 𝑚𝑎𝑥 𝑦0
1
, 𝑦1
4
,· · ·

More Related Content

What's hot

Interpolation in Numerical Methods
Interpolation in Numerical Methods Interpolation in Numerical Methods
Interpolation in Numerical Methods Dr. Tushar J Bhatt
 
Numerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsNumerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsMeenakshisundaram N
 
Langrange Interpolation Polynomials
Langrange Interpolation PolynomialsLangrange Interpolation Polynomials
Langrange Interpolation PolynomialsSohaib H. Khan
 
lagrange interpolation
lagrange interpolationlagrange interpolation
lagrange interpolationayush raj
 
Runge-Kutta methods with examples
Runge-Kutta methods with examplesRunge-Kutta methods with examples
Runge-Kutta methods with examplesSajjad Hossain
 
application of differential equations
application of differential equationsapplication of differential equations
application of differential equationsVenkata.Manish Reddy
 
Newton's forward difference
Newton's forward differenceNewton's forward difference
Newton's forward differenceRaj Parekh
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Asad Ali
 
Application of analytic function
Application of analytic functionApplication of analytic function
Application of analytic functionDr. Nirav Vyas
 
Bisection & Regual falsi methods
Bisection & Regual falsi methodsBisection & Regual falsi methods
Bisection & Regual falsi methodsDivya Bhatia
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differencesDr. Nirav Vyas
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & DimensionManikanta satyala
 
False Point Method / Regula falsi method
False Point Method / Regula falsi methodFalse Point Method / Regula falsi method
False Point Method / Regula falsi methodNasima Akhtar
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference InterpolationVARUN KUMAR
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolationHarshad Koshti
 
Secent method
Secent methodSecent method
Secent methodritu1806
 
Regula Falsi (False position) Method
Regula Falsi (False position) MethodRegula Falsi (False position) Method
Regula Falsi (False position) MethodIsaac Yowetu
 

What's hot (20)

Interpolation in Numerical Methods
Interpolation in Numerical Methods Interpolation in Numerical Methods
Interpolation in Numerical Methods
 
Bisection method
Bisection methodBisection method
Bisection method
 
Numerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsNumerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential Equations
 
Langrange Interpolation Polynomials
Langrange Interpolation PolynomialsLangrange Interpolation Polynomials
Langrange Interpolation Polynomials
 
Analytic function
Analytic functionAnalytic function
Analytic function
 
lagrange interpolation
lagrange interpolationlagrange interpolation
lagrange interpolation
 
Runge-Kutta methods with examples
Runge-Kutta methods with examplesRunge-Kutta methods with examples
Runge-Kutta methods with examples
 
application of differential equations
application of differential equationsapplication of differential equations
application of differential equations
 
Newton's forward difference
Newton's forward differenceNewton's forward difference
Newton's forward difference
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2
 
Application of analytic function
Application of analytic functionApplication of analytic function
Application of analytic function
 
Bisection & Regual falsi methods
Bisection & Regual falsi methodsBisection & Regual falsi methods
Bisection & Regual falsi methods
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & Dimension
 
False Point Method / Regula falsi method
False Point Method / Regula falsi methodFalse Point Method / Regula falsi method
False Point Method / Regula falsi method
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference Interpolation
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolation
 
Secant method
Secant methodSecant method
Secant method
 
Secent method
Secent methodSecent method
Secent method
 
Regula Falsi (False position) Method
Regula Falsi (False position) MethodRegula Falsi (False position) Method
Regula Falsi (False position) Method
 

Similar to Lagrange Interpolation Formula Explained

Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variablesSanthanam Krishnan
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationMeenakshisundaram N
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IRai University
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSRai University
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiationSanthanam Krishnan
 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method AMINULISLAM439
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfAnuBajpai5
 
Lecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxLecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxPratik P Chougule
 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptxSoyaMathew1
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationRai University
 
On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions iosrjce
 
Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Nurkhalifah Anwar
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Март
 
INVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORINVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORsumanmathews
 

Similar to Lagrange Interpolation Formula Explained (20)

HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and Integration
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel Problem
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiation
 
S1230109
S1230109S1230109
S1230109
 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
 
Lecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxLecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptx
 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptx
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
 
On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
 
Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2
 
INVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORINVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATOR
 

More from Santhanam Krishnan (18)

Matrices
MatricesMatrices
Matrices
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minima
 
Differential calculus
Differential calculus  Differential calculus
Differential calculus
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transforms
 
Fourier series
Fourier series Fourier series
Fourier series
 
Solution to second order pde
Solution to second order pdeSolution to second order pde
Solution to second order pde
 
Solution to pde
Solution to pdeSolution to pde
Solution to pde
 
Pde lagrangian
Pde lagrangianPde lagrangian
Pde lagrangian
 
Laplace transformation
Laplace transformationLaplace transformation
Laplace transformation
 
Complex integration
Complex integrationComplex integration
Complex integration
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Design of experiments
Design of experimentsDesign of experiments
Design of experiments
 
Numerical solution of ordinary differential equations
Numerical solution of ordinary differential equationsNumerical solution of ordinary differential equations
Numerical solution of ordinary differential equations
 
Solution of equations and eigenvalue problems
Solution of equations and eigenvalue problemsSolution of equations and eigenvalue problems
Solution of equations and eigenvalue problems
 
Testing of hypothesis
Testing of hypothesisTesting of hypothesis
Testing of hypothesis
 

Recently uploaded

Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 

Recently uploaded (20)

Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 

Lagrange Interpolation Formula Explained

  • 2. INTERPOLATION FOR UNEQUAL INTERVALS  LAGRANGE’S INTERPOLATING FORMULA  Let y = f(x) be the given function  Let 𝑦0, 𝑦1, … 𝑦𝑛 be the (𝑛 + 1) points of the given function corresponding to 𝑥0, 𝑥1, … 𝑥 𝑛  The polynomial 𝑦 = 𝑓 𝑥 can be written as  𝑓 𝑥 = 𝑥−𝑥1 𝑥−𝑥2 ··· 𝑥−𝑥 𝑛 𝑥0−𝑥1 𝑥0−𝑥2 ··· 𝑥0−𝑥 𝑛 𝑦0 + 𝑥 − 𝑥0 𝑥 − 𝑥2 ··· 𝑥 − 𝑥 𝑛 𝑥1 − 𝑥0 𝑥1 − 𝑥2 ··· 𝑥1 − 𝑥 𝑛 𝑦1 + 𝑥 − 𝑥0 𝑥 − 𝑥1 ··· 𝑥 − 𝑥 𝑛 𝑥2 − 𝑥0 𝑥2 − 𝑥1 ··· 𝑥2 − 𝑥 𝑛 𝑦2 + ⋯ + 𝑥−𝑥0 𝑥−𝑥1 ··· 𝑥−𝑥 𝑛−1 𝑥 𝑛−𝑥0 𝑥 𝑛−𝑥1 ··· 𝑥 𝑛−𝑥 𝑛−1 𝑦 𝑛
  • 3. INVERSE INTERPOLATION  It is the process of finding a value of x for the corresponding value of y and we use Lagrange’s interpolation formula by taking the independent variable as y and the dependent variable as x. It is the inverse process of direct interpolation in which we find the values of y corresponding to a value of x, not present in the table.
  • 4. INVERSE INTERPOLATION BY LAGRANGE’S  𝑥 = 𝑦−𝑦1 𝑦−𝑦2 ··· 𝑦−𝑦 𝑛 𝑦0−𝑦1 𝑦0−𝑦2 ··· 𝑦0−𝑦 𝑛 𝑥0 + 𝑦−𝑦0 𝑦−𝑦2 ··· 𝑦−𝑦 𝑛 𝑦1−𝑦0 𝑦1−𝑦2 ··· 𝑦1−𝑦 𝑛 𝑥1 + ⋯ + 𝑦−𝑦0 𝑦−𝑦1 ··· 𝑦−𝑦 𝑛−1 𝑦 𝑛−𝑦 𝑦 𝑛−𝑦1 ··· 𝑦 𝑛−𝑦 𝑛−1 𝑥 𝑛
  • 5. USE OF LAGRANGIAN INTERPOLATION  It is a process of computing intermediate values of a function from a given set of tabular values of the function.
  • 6. DIVIDED DIFFERENCE  Let 𝑦 = 𝑓(𝑥) be the given function which takes the values f(𝑥0), 𝑓(𝑥1) … 𝑓(𝑥 𝑛) corresponding to the arguments 𝑥0, 𝑥1, … 𝑥 𝑛 respectively, where the intervals 𝑥1 – 𝑥0 , 𝑥2 − 𝑥1 , … 𝑥 𝑛 – 𝑥 𝑛−1 need not equal
  • 7. REPRESENTATION BY DIVIDED DIFFERENCE TABLE 𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑥 𝐸𝑛𝑡𝑟𝑦 𝑓(𝑥) 𝐹𝑖𝑟𝑠𝑡 𝐷. 𝐷 Δ1 𝑓(𝑥) 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷. 𝐷 Δ1 2 𝑓(𝑥) 𝑇ℎ𝑖𝑟𝑑 𝐷. 𝐷 Δ1 3 𝑓(𝑥) 𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑓(𝑥0) 𝑓 𝑥1 𝑓 𝑥2 𝑓 𝑥3 𝑓(𝑥4) 𝑓 𝑥1 –𝑓 𝑥0 𝑥1 –𝑥0 = 𝑓 𝑥0, 𝑥1 𝑓 𝑥2 –𝑓 𝑥1 𝑥2 –𝑥1 = 𝑓 𝑥1, 𝑥2 𝑓 𝑥3 –𝑓 𝑥2 𝑥3 –𝑥2 = 𝑓 𝑥2, 𝑥3 𝑓 𝑥4 –𝑓 𝑥3 𝑥4 –𝑥3 = 𝑓 𝑥3, 𝑥4 𝑓 𝑥1,𝑥2 −𝑓 𝑥0,𝑥1 𝑥2−𝑥0 = 𝑓(𝑥0, 𝑥1, 𝑥2) 𝑓 𝑥2,𝑥3 −𝑓 𝑥1,𝑥2 𝑥3−𝑥1 = 𝑓(𝑥1, 𝑥2, 𝑥3) 𝑓 𝑥3,𝑥4 −𝑓 𝑥2,𝑥3 𝑥4−𝑥2 = 𝑓(𝑥2, 𝑥3, 𝑥4) 𝑓 𝑥1,𝑥2,𝑥3 −𝑓 𝑥0,𝑥1,𝑥2 x3−𝑥0 = 𝑓(𝑥0, 𝑥1, 𝑥2, 𝑥3) 𝑓 𝑥2,𝑥3,𝑥4 −𝑓 𝑥1,𝑥2,𝑥3 𝑥4−𝑥1 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)
  • 8. PROPERTIES OF DIVIDED DIFFERENCES  1. The divided differences are symmetrical in all their arguments, that is, the value of any difference is independent of the order of the arguments.  2. The divided difference of the product of a constant and a function is equal to the product of the constant and the divided difference of the function.  3. The operator Δ1 is linear  4. The 𝑛 𝑡ℎ divided difference of a polynomial of degree 𝑛 is a constant
  • 9. NEWTON DIVIDED DIFFERENCE INTERPOLATION  If 𝑓(𝑥) is a polynomial of degree𝑛, and 𝑓(𝑥0), 𝑓(𝑥1), … 𝑓(𝑥 𝑛) are the corresponding values of arguments 𝑥0, 𝑥1, … . 𝑥 𝑛 respectively, not necessarly equally spaced.  Then 𝑓 𝑥 = 𝑓 𝑥0 + ( 𝑥 −
  • 10. INTERPOLATION WITH EQUAL INTERVALS  FORWARD DIFFERENCE  If 𝑦0, 𝑦1, … 𝑦𝑛 are the values of 𝑦 = 𝑓(𝑥) corresponding to the arguments 𝑥0, 𝑥1, … 𝑥 𝑛 , where 𝑥1 − 𝑥0 , 𝑥2 − 𝑥1, … 𝑥 𝑛 − 𝑥 𝑛−1 are equal  𝑖. 𝑒 𝑥𝑖 = 𝑥0 + 𝑖ℎ, 𝑖 = 0,1,2 … 𝑛  Define Δ𝑦0 = 𝑦1 − 𝑦0 , Δ𝑦1 = 𝑦2 − 𝑦1 … . Δ𝑦 𝑛−1 = 𝑦𝑛 − 𝑦 𝑛−1  And Δ2 𝑦0 = Δ𝑦1 − Δ𝑦0 , Δ2 𝑦1 = Δ𝑦2 − Δ𝑦1 … . Δ2 𝑦 𝑛−1 = Δ𝑦𝑛 − Δ𝑦 𝑛−1  And so on  Here Δ is called Newton’s forward difference operator
  • 11.  NEWTON’S FORWARD DIFFERENCE FORMULA  If 𝑦0, 𝑦1, … 𝑦𝑛 are the values of 𝑦 = 𝑓(𝑥) corresponding to the arguments 𝑥0, 𝑥1, … 𝑥 𝑛  Then y = 𝑦0 + 𝑝∆𝑦0 + 𝑝 𝑝−1 2! ∆2 𝑦0 + 𝑝 𝑝−1 𝑝−2 3! ∆3 𝑦0 + ⋯  Where 𝑝 = 𝑥−𝑥0 ℎ .
  • 12. FORWARD DIFFERENCE TABLE 𝑥 𝑦 Δ Δ2 Δ3 Δ4 Δ5 𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 Δ𝑦0 Δ𝑦1 Δ𝑦2 Δ𝑦3 Δ𝑦4 Δ2 𝑦0 Δ2 𝑦1 Δ2 𝑦2 Δ2 𝑦3 Δ3 𝑦0 Δ3 𝑦1 Δ3 𝑦2 Δ4 𝑦0 Δ4 𝑦1 Δ5 𝑦0
  • 13. BACKWARD DIFFERENCE  The differences 𝑦1 − 𝑦0, 𝑦2 − 𝑦1, … . 𝑦𝑛 − 𝑦 𝑛−1 are called first backward differences and denoted by  𝛻𝑦1 = 𝑦1 − 𝑦0, 𝛻𝑦2 = 𝑦2 − 𝑦1, … . 𝛻𝑦𝑛 = 𝑦𝑛 − 𝑦 𝑛−1  And 𝛻2 𝑦1 = 𝛻𝑦1 − 𝛻𝑦0, 𝛻2 𝑦2 = 𝛻𝑦2 − 𝛻𝑦1, … . 𝛻2 𝑦𝑛 = 𝛻𝑦𝑛 − 𝛻𝑦 𝑛−1 and so on
  • 14. NEWTON’S BACKWARD DIFFERENCE FORMULA  If 𝑦0, 𝑦1, … 𝑦𝑛 are the values of 𝑦 = 𝑓(𝑥) corresponding to the arguments 𝑥0, 𝑥1, … 𝑥 𝑛  Then 𝑦 = 𝑦𝑛 + 𝑝𝛻𝑦𝑛 + 𝑝 𝑝+1 2! 𝛻2 𝑦𝑛 + 𝑝 𝑝+1 𝑝+2 3! 𝛻3 𝑦𝑛 + ⋯  Where 𝑝 = 𝑥−𝑥 𝑛 ℎ .
  • 15. BACKWARD DIFFERENCE TABLE 𝑥 𝑦 𝛻 𝛻2 𝛻3 𝛻4 𝛻5 𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝛻𝑦1 𝛻𝑦2 𝛻𝑦3 𝛻𝑦4 𝛻𝑦5 𝛻2 𝑦2 𝛻2 𝑦3 𝛻2 𝑦4 𝛻2 𝑦5 𝛻3 𝑦3 𝛻3 𝑦4 𝛻3 𝑦5 𝛻4 𝑦4 𝛻4 𝑦5 𝛻5 𝑦5
  • 17. DERIVATIVES USING DIVIDED DIFFERENCE  Procedure  Step 1. By using Newton’s divided difference formula find 𝑓(𝑥) in terms of x  Step 2. Find the derivatives of 𝑓(𝑥)
  • 18. DERIVATIVE - USING NEWTON’S FORWARD DIFFERENCE FORMULA  The first derivative of y at 𝑥 = 𝑥0 + 𝑝ℎ (near beginning of the data) is 𝑑𝑦 𝑑𝑥 = 𝑑𝑦 𝑑𝑝 𝑑𝑝 𝑑𝑥  𝑑𝑦 𝑑𝑥 = 1 ℎ ∆𝑦0 + 2𝑝−1 2! ∆2 𝑦0 + 3𝑝2−6𝑝+2 3! ∆3 𝑦0 + ⋯  The second derivative of y at 𝑥 = 𝑥0 + 𝑝ℎ is 𝑑2 𝑦 𝑑𝑥2 = 𝑑2 𝑦 𝑑𝑝2 𝑑𝑝 𝑑𝑥 2  𝑑2 𝑦 𝑑𝑥2 = 1 ℎ2 ∆2 𝑦0 + (𝑝 − 1)∆3 𝑦0 + 6𝑝2−18𝑝+11 12 ∆4 𝑦0 + ⋯  The third derivative y at 𝑥 = 𝑥0 + 𝑝ℎ  𝑑3 𝑦 𝑑𝑥3 = 1 ℎ3 ∆3 𝑦0 + 12𝑝−18 12 ∆4 𝑦0+. .  For tabular values, at 𝑥 = 𝑥0, (𝑝 = 0)  𝑑𝑦 𝑑𝑥 = 1 ℎ ∆𝑦0 − ∆2 𝑦0 2 + ∆3 𝑦0 3 − ∆4 𝑦0 4 + ⋯  𝑑2 𝑦 𝑑𝑥2 = 1 ℎ2 ∆2 𝑦0 − ∆3 𝑦0 + 11 12 ∆4 𝑦0 − ⋯  𝑑3 𝑦 𝑑𝑥3 = 1 ℎ3 ∆3 𝑦0 − 3 2 ∆4 𝑦0+. .
  • 19. DERIVATIVE - USING NEWTON’S BACKWARD DIFFERENCE FORMULA  The first derivative of y at 𝑥 = 𝑥 𝑛 + 𝑝ℎ (near end of the data) is 𝑑𝑦 𝑑𝑥 = 𝑑𝑦 𝑑𝑝 𝑑𝑝 𝑑𝑥  𝑑𝑦 𝑑𝑥 = 1 ℎ 𝛻𝑦 𝑛 + 2𝑝+1 2! 𝛻2 𝑦 𝑛 + 3𝑝2+6𝑝+2 3! 𝛻3 𝑦 𝑛 + ⋯  The second derivative of y at 𝑥 = 𝑥 𝑛 + 𝑝ℎ is 𝑑2 𝑦 𝑑𝑥2 = 𝑑2 𝑦 𝑑𝑝2 𝑑𝑝 𝑑𝑥 2  𝑑2 𝑦 𝑑𝑥2 = 1 ℎ2 𝛻2 𝑦 𝑛 + (𝑝 + 1)𝛻3 𝑦 𝑛 + 6𝑝2+18𝑝+11 12 𝛻4 𝑦0 + ⋯  The third derivative of y at 𝑥 = 𝑥 𝑛 + 𝑝ℎ  𝑑3 𝑦 𝑑𝑥3 = 1 ℎ3 𝛻3 𝑦 𝑛 + 12𝑝+18 12 𝛻4 𝑦0+. .  For tabular values, at 𝑥 = 𝑥 𝑛, (𝑝 = 0)  𝑑𝑦 𝑑𝑥 = 1 ℎ 𝛻𝑦 𝑛 + 𝛻2 𝑦 𝑛 2 + 𝛻3 𝑦 𝑛 3 + ⋯  𝑑2 𝑦 𝑑𝑥2 = 1 ℎ2 𝛻2 𝑦 𝑛 + 𝛻3 𝑦 𝑛 + 11 12 𝛻4 𝑦0 + ⋯  𝑑3 𝑦 𝑑𝑥3 = 1 ℎ3 𝛻3 𝑦 𝑛 + 3 2 𝛻4 𝑦0+. .
  • 20. NUMERICAL INTEGRATION SINGLE (LINEAR) INTEGRATION 1. TRAPEZOIDAL RULE 2. SIMPSON’S 𝟏 𝟑 RULE
  • 21. TRAPEZOIDAL RULE  𝑥0 𝑥1 𝑓(𝑥) 𝑑𝑥 = ℎ 2 𝑦0 + 𝑦𝑛 + 2( 𝑦1 + 𝑦2 +
  • 22. SIMPSON’S 𝟏 𝟑 𝒓𝒅 RULE  𝑥0 𝑥1 𝑓(𝑥) 𝑑𝑥 = ℎ 3 𝑦0 + 𝑦𝑛 + 4 𝑦1 + 𝑦3 + 𝑦5 + ⋯ + 2(𝑦2 + 𝑦4 + 𝑦6+. . ) = ℎ 3 𝑓𝑖𝑟𝑠𝑡 + 𝑙𝑎𝑠𝑡 + 4 𝑠𝑢𝑚 𝑜𝑓 𝑜𝑑𝑑 𝑡𝑒𝑟𝑚𝑠 + 2 𝑠𝑢𝑚 𝑜𝑓 𝑒𝑣𝑒𝑛 𝑡𝑒𝑟𝑚𝑠 ]  ℎ = 𝑥1−𝑥0 𝑛 , 𝑛 − 𝑖𝑠 𝑡ℎ𝑒 𝒆𝒗𝒆𝒏 𝑛𝑜 𝑜𝑓 𝑠𝑢𝑏 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑖𝑛 𝑥0 𝑥1  Condition for applying the Simpson’s rule – Number of subintervals must be even
  • 23. NUMERICAL DOUBLE INTEGRATION  1. 𝐓𝐑𝐀𝐏𝐄𝐙𝐎𝐈𝐃𝐀𝐋 𝐑𝐔𝐋𝐄  2. 𝐒𝐈𝐌𝐏𝐒𝐎𝐍’𝐒 𝐑𝐔𝐋𝐄
  • 24. TRAPEZOIDAL RULE  𝑎 𝑏 𝑐 𝑑 𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦 = ℎ𝑘 4 𝑓1 + 𝑓3 + 𝑓7 + 𝑓9 + 2 𝑓2 + 𝑓4 + 𝑓6 + 𝑓8 + 4𝑓5]  = ℎ𝑘 4 𝑆𝑢𝑚 𝑜𝑓 𝑐𝑜𝑟𝑛𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 + 2 𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 + 4(𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓(𝑥, 𝑦)]
  • 25. y x 𝑥0 𝑥1 𝑥2 𝑥3 𝑦0 𝑓(𝑥0, 𝑦0) 𝑓(𝑥1, 𝑦0) 𝑓(𝑥2, 𝑦0) 𝑓(𝑥3, 𝑦0) 𝑦1 𝑓(𝑥0, 𝑦1) 𝑓(𝑥1, 𝑦1) 𝑓(𝑥2, 𝑦1) 𝑓(𝑥3, 𝑦1) 𝑦2 𝑓(𝑥0, 𝑦2) 𝑓(𝑥1, 𝑦2) 𝑓(𝑥2, 𝑦2) 𝑓(𝑥3, 𝑦2) 𝑦3 𝑓(𝑥0, 𝑦3) 𝑓(𝑥1, 𝑦3) 𝑓(𝑥2, 𝑦3) 𝑓(𝑥3, 𝑦3) For example, if x takes the values 𝑥0, 𝑥1, 𝑥2, 𝑥3 and y takes values 𝑦0, 𝑦1, 𝑦2, 𝑦3 Red indicates – corner values Blue indicates – boundary values Black indicates – interior values
  • 26. 𝑺𝑰𝑴𝑷𝑺𝑶𝑵’𝑺 𝑹𝑼𝑳𝑬  𝑎 𝑏 𝑐 𝑑 𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦 = ℎ𝑘 9 𝑓1 + 𝑓3 + 𝑓7 + 𝑓9 + 2 𝑓2 + 𝑓4 + 𝑓6 + 𝑓8 + 16𝑓5]  = ℎ𝑘 9 𝑆𝑢𝑚 𝑜𝑓 𝑐𝑜𝑟𝑛𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 + 4 𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 + 16(𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓(𝑥, 𝑦)]
  • 27. Errors in Trapezoidal rule of numerical integration.  When evaluating 𝑎 𝑏 𝑓 𝑥 𝑑𝑥, the error in the trapezoidal rule is  < 𝑏−𝑎 2 12 ℎ2 𝑀, where ℎ = 𝑏−𝑎 𝑛 , n is the number of subintervals of (a, b),  And 𝑀 = 𝑚𝑎𝑥{|𝑦0 ′′ |, |𝑦1 ′′ |,· · · , |𝑦 𝑛−1 ′′ |}, 𝑦𝑟′′ = 𝑓′′(𝑥 𝑟)  Error in Trapezoidal rule is of order 𝒉 𝟐
  • 28. Errors in Simpson’s rule of numerical integration  The error in Simpson’s rule is < 𝑏−𝑎 180 ℎ4 𝑀  where ℎ = 𝑏−𝑎 2𝑛 , 2n is the number of subintervals of (a, b),  𝑀 = 𝑚𝑎𝑥 𝑦0 1 , 𝑦1 4 ,· · ·