Basic Logic of Digital Electronics
NOT GATE
Logic Diagram
INPUT OUTPUT
0 1
1 0
Truth Table
Using NAND Gate
Using NOR Gate
Logic A=A’
AND GATE
Logic Diagram
Logic Q=A.B
Using NAND
INPUT OUTPUT
A B A AND B
0 0 0
0 1 0
1 0 0
1 1 1
Truth Table
Using NOR
OR GATE
Logic Diagram
Using NAND
Using NOR
INPUT
A B
OUTPUT
A + B
0 0 0
0 1 1
1 0 1
1 1 1
Truth Table
Logic Q=A+B
NAND GATE
Logic Diagram
Using NOR
Logic Q=A’.B’
Truth Table
Input A Input B
Output
Q
0 0 1
0 1 1
1 0 1
1 1 0
NOR GATE
Logic Diagram
Using NAND
Logic Q = A’+B’
Truth Table
Input A Input B Output Q
0 0 1
0 1 0
1 0 0
1 1 0
XOR GATE
Logic Diagram
Truth Table
Input A Input B
Output
Q
0 0 0
0 1 1
1 0 1
1 1 0
Using NAND
Using NOR
Logic Q=A B
XNOR GATE
Logic Diagram
Using NAND
Using NORTruth Table
Input A Input B
Output
Q
0 0 1
0 1 0
1 0 0
1 1 1
Logic Q=A B
Multiplexer
I0
I1
Y
S
0
1
2- to -1 Mux
S Y
0 I0
1 I1
Y = S’ I0 + S I1
I0 I1 S’ S
S’ I0
S I1
Y
0
1
4 - to -1 Mux
S0 S1
2
3
I0
I1
I2
I3
S0 S1 Y
0 0 I0
0 1 I1
1 0 I2
1 1 I3
I0 I1 S1’ S1I3I2 S0’ S0
Cont….
GATES USING MUX
NOT
1
0
A
Q
AND
INPUT OUTPUT
A B A AND B
0 0 0
0 1 0
1 0 0
1 1 1
0
0
B
B
A
Q
2:1
2:1
A Q
0 1
1 0
INPUT
A B
OUTPUT
A + B
0 0 0
0 1 1
1 0 1
1 1 1
Truth Table
Input A Input B
Output
Q
0 0 1
0 1 1
1 0 1
1 1 0
B
1
1
B’
A
A
B
1
1
B’
OR
NAND
Q
Q
2:1
2:1
Cont….
Truth Table
Input A Input B
Outpu
t Q
0 0 1
0 1 0
1 0 0
1 1 0
Truth Table
Input A Input B
Output
Q
0 0 0
0 1 1
1 0 1
1 1 0
B’
0
B
B’
Q
Q
A
A
B’
0
B
B’
NOR
XOR
2:1
2:1
Cont….
Truth Table
Input A Input B
Output
Q
0 0 1
0 1 0
1 0 0
1 1 1
B’
B
B’
B
A
Q
XNOR
2:1
Cont….
4:1 MUX USING 2:1 MUX
2:1
2:1
2:1
I0
I1
I2
I3
S0
S1
Y
S0 S1 Y
0 0 I0
0 1 I1
1 0 I2
1 1 I3
I0
I11
0Y S I0 I1
0 Y 0
1 0 Y
S
I0
YS’
I1
S
1:2 DEMUX
HALF ADDER
A B SUM CARRY
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1
CARRY
SUM = A B
CARRY = A.B
A
B
S
C
FULL ADDER
SUM
CARRY
A
B
C
A B C SUM CARRY
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1SUM= A B C
CARRY = A.B + B.C + A.C
FULL ADDER USING TWO
HALF ADDERS
H.A
H.A
A
B
C
SUM
CARRY
HALF SUBTRACTOR
DIFF
BORROW
B
A
A B D BOR
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0
DIFF = A B
BOR = A’B
FULL SUBTRACTOR
A
B
C
DIFF = A B C
BORROW = A’.B + B.C + A’.C
A B C D BO
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1
DIFF
BORROW
FULL SUBTRACTOR USING TWO HALF
SUBTRACTORS
H.S
H.S
A
B
C
DIFF
8:3 ENCODER
D0 D1 D2 D3 D4 D5 D6 D7 X Y Z
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1
D0 D1 D2 D3D4 D5 D6D7
X
Y
Z
3:8 DECODERE A B
Z0
Z1
Z2
Z3
A B E Z(0) Z(1) Z(2) Z(3)
0 0 1 0 1 1 1
0 1 1 1 0 1 1
1 0 1 1 1 0 1
1 1 1 1 1 1 0
BINARY TO GRAY
G0
G1
G2
B0 B1 B2 G0 G2 G3
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 1
0 1 1 0 1 0
1 0 0 1 1 0
1 0 1 1 1 1
1 1 0 1 0 1
1 1 1 1 0 0
B0
B1
B2
G0 = B0
G1 = B0 B1
G2 = B1 B2
GRAY TO BINARY
B0
B1
B2
G0
G1
G2
G0 G1 G2 B0 B2 B3
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 1
0 1 1 0 1 0
1 0 0 1 1 1
1 0 1 1 1 0
1 1 0 1 0 0
1 1 1 1 0 1
B0 = G0
B1 = G0 G1
B2 = G0 G1 G2

Basic electronics

  • 1.
    Basic Logic ofDigital Electronics
  • 2.
    NOT GATE Logic Diagram INPUTOUTPUT 0 1 1 0 Truth Table Using NAND Gate Using NOR Gate Logic A=A’
  • 3.
    AND GATE Logic Diagram LogicQ=A.B Using NAND INPUT OUTPUT A B A AND B 0 0 0 0 1 0 1 0 0 1 1 1 Truth Table Using NOR
  • 4.
    OR GATE Logic Diagram UsingNAND Using NOR INPUT A B OUTPUT A + B 0 0 0 0 1 1 1 0 1 1 1 1 Truth Table Logic Q=A+B
  • 5.
    NAND GATE Logic Diagram UsingNOR Logic Q=A’.B’ Truth Table Input A Input B Output Q 0 0 1 0 1 1 1 0 1 1 1 0
  • 6.
    NOR GATE Logic Diagram UsingNAND Logic Q = A’+B’ Truth Table Input A Input B Output Q 0 0 1 0 1 0 1 0 0 1 1 0
  • 7.
    XOR GATE Logic Diagram TruthTable Input A Input B Output Q 0 0 0 0 1 1 1 0 1 1 1 0 Using NAND Using NOR Logic Q=A B
  • 8.
    XNOR GATE Logic Diagram UsingNAND Using NORTruth Table Input A Input B Output Q 0 0 1 0 1 0 1 0 0 1 1 1 Logic Q=A B
  • 9.
    Multiplexer I0 I1 Y S 0 1 2- to -1Mux S Y 0 I0 1 I1 Y = S’ I0 + S I1 I0 I1 S’ S S’ I0 S I1
  • 10.
    Y 0 1 4 - to-1 Mux S0 S1 2 3 I0 I1 I2 I3 S0 S1 Y 0 0 I0 0 1 I1 1 0 I2 1 1 I3
  • 11.
    I0 I1 S1’S1I3I2 S0’ S0 Cont….
  • 12.
    GATES USING MUX NOT 1 0 A Q AND INPUTOUTPUT A B A AND B 0 0 0 0 1 0 1 0 0 1 1 1 0 0 B B A Q 2:1 2:1 A Q 0 1 1 0
  • 13.
    INPUT A B OUTPUT A +B 0 0 0 0 1 1 1 0 1 1 1 1 Truth Table Input A Input B Output Q 0 0 1 0 1 1 1 0 1 1 1 0 B 1 1 B’ A A B 1 1 B’ OR NAND Q Q 2:1 2:1 Cont….
  • 14.
    Truth Table Input AInput B Outpu t Q 0 0 1 0 1 0 1 0 0 1 1 0 Truth Table Input A Input B Output Q 0 0 0 0 1 1 1 0 1 1 1 0 B’ 0 B B’ Q Q A A B’ 0 B B’ NOR XOR 2:1 2:1 Cont….
  • 15.
    Truth Table Input AInput B Output Q 0 0 1 0 1 0 1 0 0 1 1 1 B’ B B’ B A Q XNOR 2:1 Cont….
  • 16.
    4:1 MUX USING2:1 MUX 2:1 2:1 2:1 I0 I1 I2 I3 S0 S1 Y S0 S1 Y 0 0 I0 0 1 I1 1 0 I2 1 1 I3
  • 17.
    I0 I11 0Y S I0I1 0 Y 0 1 0 Y S I0 YS’ I1 S 1:2 DEMUX
  • 18.
    HALF ADDER A BSUM CARRY 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 CARRY SUM = A B CARRY = A.B A B S C
  • 19.
    FULL ADDER SUM CARRY A B C A BC SUM CARRY 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1SUM= A B C CARRY = A.B + B.C + A.C
  • 20.
    FULL ADDER USINGTWO HALF ADDERS H.A H.A A B C SUM CARRY
  • 21.
    HALF SUBTRACTOR DIFF BORROW B A A BD BOR 0 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0 DIFF = A B BOR = A’B
  • 22.
    FULL SUBTRACTOR A B C DIFF =A B C BORROW = A’.B + B.C + A’.C A B C D BO 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 DIFF BORROW
  • 23.
    FULL SUBTRACTOR USINGTWO HALF SUBTRACTORS H.S H.S A B C DIFF
  • 24.
    8:3 ENCODER D0 D1D2 D3 D4 D5 D6 D7 X Y Z 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 D0 D1 D2 D3D4 D5 D6D7 X Y Z
  • 25.
    3:8 DECODERE AB Z0 Z1 Z2 Z3 A B E Z(0) Z(1) Z(2) Z(3) 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0
  • 26.
    BINARY TO GRAY G0 G1 G2 B0B1 B2 G0 G2 G3 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 B0 B1 B2 G0 = B0 G1 = B0 B1 G2 = B1 B2
  • 27.
    GRAY TO BINARY B0 B1 B2 G0 G1 G2 G0G1 G2 B0 B2 B3 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 B0 = G0 B1 = G0 G1 B2 = G0 G1 G2