SlideShare a Scribd company logo
1
VECTOR ANALYSIS
SOLO HERMELIN
http://www.solohermelin.com
2
Vector AnalysisSOLO
TABLE OF CONTENT
Algebras History
Vector Analysis History
Vector Algebra
Reciprocal Sets of Vectors
Vector Decomposition
The Summation Convention
The Metric Tensor or Fundamental Tensor Specified by .3321 ,, Eeee 

Change of Vector Base, Coordinate Transformation
Vector Space
Differential Geometry
Osculating Circle of C at P
Theory of Curves
Unit Tangent Vector of path C at a point P
Curvature of curve C at P
Osculating Plane of C at P
Binormal
Torsion
Seret-Frenet Equations
Involute
Evolute
Vector Identities Summary
Cartesian Coordinates
3
Vector AnalysisSOLO
TABLE OF CONTENT (continue – 1)
Differential Geometry
Conjugate Directions
Surfaces in the Three Dimensional Spaces
First Fundamental Form:
Arc Length on a Path on the Surface
Surface Area
Change of Coordinates
Second Fundamental Form
Principal Curvatures and Directions
Asymptotic Lines
Scalar and Vector Fields
Vector Differentiation
Ordinary Derivative of Scalars and Vectors
Partial Derivatives of Scalar and Vectors
Differentials of Vectors
The Vector Differential Operator Del (, Nabla)
Scalar Differential
Vector Differential
Differential Identities
4
Vector AnalysisSOLO
TABLE OF CONTENT (continue – 2)
Scalar and Vector Fields
Curvilinear Coordinates in a Three Dimensional Space
Covariant and Contravariant Components of a Vector in Base .321
,, uuu
rrr

Coordinate Transformation in Curvilinear Coordinates
Covariant Derivative
Covariant Derivative of a Vector .A

Vector Integration
Ordinary Integration of Vectors
Line Integrals
Surface Integrals
Volume Integrals
Simply and Multiply Connected Regions
Green’s Theorem in the Plane
Stoke’s Theorem
Divergence Theorem
Gauss’ Theorem Variations
Stokes’ Theorem Variations
Green’s Identities
Derivation of Nabla (  ) from Gauss’ Theorem
The Operator .
5
Vector AnalysisSOLO
TABLE OF CONTENT (continue – 3)
Scalar and Vector Fields
Fundamental Theorem of Vector Analysis for a Bounded Region V
(Helmholtz’s Theorem)
Reynolds’ Transport Theorem
Poisson’s Non-homogeneous Differential Equation
Kirchhoff’s Solution of the Scalar Helmholtz
Non-homogeneous Differential Equation
Derivation of Nabla (  ) from Gauss’ Theorem
The Operator .
Orthogonal Curvilinear Coordinates in a Three Dimensional Space
Vector Operations in Various Coordinate Systems
Applications
Laplace Fields
Harmonic Functions
Rotations
6
Synthetic Geometry
Euclid 300BC
Algebras HistorySOLO
Extensive Algebra
Grassmann 1844
Binary Algebra
Boole 1854
Complex Algebra
Wessel, Gauss 1798
Spin Algebra
Pauli, Dirac 1928
Syncopated Algebra
Diophantes 250AD
Quaternions
Hamilton 1843
Tensor Calculus
Ricci 1890
Vector Calculus
Gibbs 1881
Clifford Algebra
Clifford 1878
Differential Forms
E. Cartan 1908
First Printing
1482
http://modelingnts.la.asu.edu/html/evolution.html
Geometric Algebra
and Calculus
Hestenes 1966
Matrix Algebra
Cayley 1854
Determinants
Sylvester 1878
Analytic Geometry
Descartes 1637
Table of Content
7
Vector Analysis HistorySOLO
John Wallis
1616-1703
1673
Caspar Wessel
1745-1818
“On the Analytic Representation
of Direction; an Attempt”, 1799
bia 
Jean Robert Argand
1768-1822
1806
1i
Quaternions
1843
William Rowan Hamilton
1805-1865
3210 qkqjqiq 
Extensive Algebra
1844
Herman Günter Grassmann
1809-1877
“Elements of Vector
Analysis” 1881
Josiah Willard Gibbs
1839-1903
Oliver Heaviside
1850-1925
“Electromagnetic
Theory” 1893
3. R.S. Elliott, “Electromagnetics”,pp.564-568
http://www-groups.dcs.st-and.ac.uk/~history/index.html
Table of Content
Edwin Bidwell Wilson
1879-1964
“Vector Analysis”
1901
8
Vector AnalysisSOLO
ba


Vector Algebra
b

a

a

Addition of Vectors Parallelogram
Law of addition
Subtraction of Vectors
 baba

1
Parallelogram
Law of subtraction
b

a

b


b
 a

ba


Multiplication of Vector by a Scalar
am

a

a

am

b

a

ba


ba


b


Geometric Definition of a Vector
A Vector is defined by it’s Magnitude and Directiona
 a

a

9
Vector AnalysisSOLO








bababa

,sin
b

a

ba

,

b

a

ba

,

ba


abba


Scalar product of two vectors ba

,
Vector product of two vectors ba

,
 
2/1
2/1
,cos


















aaaaaaa
Magnitude of Vector a

Unit Vector (Vector of Unit Magnitude)aa 1ˆ  a
a
aa


1
:1:ˆ 
Zero Vector (Vector of Zero Magnitude)0

aa

0
0:0 

00 a

   ababbababa ba
  ,cos, , 







Vector Algebra (continue – 1)
10
Vector AnalysisSOLO
    n||
ˆˆˆˆ aanannana n

 
nˆ
a


n
a
n
a
ˆ
ˆ
n||





n
a
n
a
n
ˆ
ˆ





Vector decomposition in two orthogonal directions nn ,||
Vector decomposition in two given directions (geometric solution)
1
ˆn
a

2
ˆn
A B
C
Given two directions and , and the vector a

1
ˆn 2
ˆn
anBCnCA

 21
ˆˆ
1
ˆn
a

2
ˆn
A B
Draw lines parallel to those directions passing
through both ends A and B of the vector .
The vectors obtained are in the desired directions
and by rule of vector addition satisfy
a

Vector Algebra (continue – 2)
Table of Content
11
SOLO
Triple Scalar Product
Vectors & Tensors in a 3D Space
3321 ,, Eeee 

are three non-coplanar vectors, i.e.
1e

2e

3e

    0:,, 321321  eeeeee

       
      0,,
,,,,
123123213
132132132321


eeeeeeeee
eeeeeeeeeeee


Reciprocal Sets of Vectors
The sets of vectors and are called Reciprocal Sets or Systems
of Vectors if:
321 ,, eee
 321
,, eee

DeltaKroneckertheis
ji
ji
ee
j
i
j
i
j
i







1
0
Because is orthogonal to and then2e

3e
1
e

     
 321
321321
1
132
1
,,
1
,,1
eee
keeekeeekeeeeke 


and in the same way and are given by:2
e
 3
e
1
e

 
 
 
 
 
 321
213
321
132
321
321
,,,,,, eee
ee
e
eee
ee
e
eee
ee
e 







 





12
SOLO Vectors & Tensors in a 3D Space
Reciprocal Sets of Vectors (continue)
By using the previous equations we get:
   
 
     
   321
3
2
321
13323132
2
321
133221
,,,,,, eee
e
eee
eeeeeeee
eee
eeee
ee 











 
 
 
 
 
 321
213
321
132
321
321
,,,,,, eee
ee
e
eee
ee
e
eee
ee
e 







 





   
   
0
,,
1
,,
,,
321321
3
3321321



eeeeee
ee
eeeeee 


Multiplying (scalar product) this equation by we get:3
e

In the same way we can show that:
Therefore are also non-coplanar, and:321
,, eee

   1,,,, 321
321
eeeeee

 
 
 
 
 
 321
21
3321
13
2321
32
1
,,,,,, eee
ee
e
eee
ee
e
eee
ee
e 







 





1e

2e

3e

1
e

2
e

3
e

Table of Content
1e

2e

3e

13
SOLO Vectors & Tensors in a 3D Space
Vector Decomposition
Given we want to find the coefficients and such that:3
EA

321 ,, AAA 321
,, AAA






3
1
3
3
2
2
1
1
3
1
3
3
2
2
1
1
j
j
j
i
i
i
eAeAeAeA
eAeAeAeAA


3,2,1, iee i
i

are two reciprocal
vector bases
Let multiply the first row of the decomposition by :j
e

Let multiply the second row of the decomposition by :ie

j
i
j
i
i
i
j
i
ij
AAeeAeA   
3
1
3
1


i
j
i
j
j
j
i
j
ji
AAeeAeA   
3
1
3
1


Therefore:
ii
jj
eAAeAA

 &
Then:
       
       





3
1
3
3
2
2
1
1
3
1
3
3
2
2
1
1
j
j
j
i
i
i
eeAeeAeeAeeA
eeAeeAeeAeeAA


Table of Content
1e

2e

3e

14
SOLO Vectors & Tensors in a 3D Space
The Summation Convention
j
j
j
j
j
eAeAeAeAeA

 
3
1
3
3
2
2
1
1
The last notation is called the summation convention, j is called the dummy
index or the umbral index.
     
      i
i
i
i
j
j
j
j
j
j
j
j
j
i
i
i
i
i
eAeeAeeAeeA
eAeeAeeAeeAA








3
1
3
1
Instead of summation notation we shall use the shorter notation
first adopted by Einstein

3
1j
j
j
eA
 j
j eA

Table of Content
15
SOLO Vectors & Tensors in a 3D Space
Let define:
The Metric Tensor or Fundamental Tensor Specified by .3321 ,, Eeee 

jiijjiij
geeeeg 

3321 ,, Eeee 

the metric covariant tensors of
By choosing we get:
       
j
ijiii
j
jiiiii
egegegeg
eeeeeeeeeeeee




3
3
2
2
1
1
3
3
2
2
1
1
i
eA


or: j
iji ege


For i = 1, 2, 3 we have:























































3
2
1
332313
322212
312111
3
2
1
333231
232221
131211
3
2
1
e
e
e
eeeeee
eeeeee
eeeeee
e
e
e
ggg
ggg
ggg
e
e
e












1e

2e

3e

16
SOLO Vectors & Tensors in a 3D Space
We want to prove that the following determinant (g) is nonzero:
The Metric Tensor or Fundamental Tensor Specified by .3321 ,, Eeee 


























332313
322212
312111
333231
232221
131211
detdet:
eeeeee
eeeeee
eeeeee
ggg
ggg
ggg
g



g is the Gram determinant of the vectors 321 ,, eee

Jorgen Gram
1850 - 1916
Proof:
Because the vectors are non-coplanars the following equations:321 ,, eee

03
3
2
2
1
1
 eee


is true if and only if 0321
 
Let multiply (scalar product) this equation, consecutively, by :321 ,, eee












































0
0
0
0
0
0
3
2
1
332313
322212
312111
33
3
23
2
13
1
32
3
22
2
12
1
31
3
21
2
11
1






eeeeee
eeeeee
eeeeee
eeeeee
eeeeee
eeeeee






Therefore α1= α2= α3=0 if and only if g:=det {gij}≠0 q.e.d.
17
SOLO Vectors & Tensors in a 3D Space
Because g ≠ 0 we can take the inverse of gij and obtain:
The Metric Tensor or Fundamental Tensor Specified by .3321 ,, Eeee 

where Gij = minor gij having the following property: j
i
kj
ik
ggG 




















































3
2
1
333231
232221
131211
3
2
1
333231
232221
131211
3
2
1
1
e
e
e
ggg
ggg
ggg
e
e
e
GGG
GGG
GGG
g
e
e
e









and:
g
G
g
gminor
g
ij
ijij

Therefore:
g
g
g
g
G
gg
j
i
kj
ik
kj
ik 
 j
i
kj
ik
gg 
Let multiply the equation by gij and perform the summation on ij
iji ege


jj
ij
ij
i
ij
eeggeg


Therefore: i
ijj
ege


Let multiply the equation byk
kjj
ege

 i
e
 iji
k
kjijji
geegeeee 

jiijjiij
geeeeg 

i
jkj
ik
ggG 
The Operator .
18
SOLO Vectors & Tensors in a 3D Space
The Metric Tensor or Fundamental Tensor Specified by .3321 ,, Eeee 

Let find the relation between g and    321321 :,, eeeeee


We shall write the decomposition of in the vector base32 ee

 321 ,, eee

3
3
2
2
1
1
32
eeeee

 
Let find λ1, λ2, λ3. Multiply the previous equation (scalar product) by .1e

    i
i
ggggeeeeee 113
3
12
2
11
1
321321
,,  

Multiply this equation by g1i:   ii
i
ii
ggeeeg  


1
1
1321
1
,,
Therefore:  321
1
,, eeeg ii 

Let compute now:
           321
1
0
323
3
0
322
2
321
1
3232 eeeeeeeeeeeeeeee





 
    
 
  
 
    
       321
11
321
11
321
2
233322
321
3322332
321
3232
321
32321
,,,,,,,,
,,,,
eee
gg
eee
G
eee
ggg
eee
eeeeeee
eee
eeee
eee
eeee















From those equations we obtain:
 321
11
1
,, eee
gg

Finally:     geeeeee  321
2
321
1
,,,,


We can see that if are collinear than and g are zero.321 ,, eee
 321
,, eee
 Table of Content
19
SOLO Vectors & Tensors in a 3D Space
Change of Vector Base, Coordinate Transformation
Let choose another base and its reciprocal 321
,, fff

 321
,, fff

 













































3
2
1
3
2
1
3
3
2
3
1
3
3
2
2
2
1
2
3
1
2
1
1
1
3
2
1
e
e
e
L
e
e
e
f
f
f
ef j
j
ii














where j
i
j
i
ef


By tacking the inverse of those equations we obtain:
 
















































3
2
1
1
3
2
1
3
3
2
3
1
3
3
2
2
2
1
2
3
1
2
1
1
1
3
2
1
f
f
f
L
f
f
f
e
e
e
fe i
j
ij














where j
ij
i ef


Because are the coefficients of the inverse matrix with coefficients :j
i
 j
i
i
j
i
k
k
j  
20
SOLO Vectors & Tensors in a 3D Space
Change of Vector Base, Coordinate Transformation (continue – 1)
Let write any vector in those two bases:A

 



















































3
2
1
3
2
1
3
3
2
3
1
3
3
2
2
2
1
2
3
1
2
1
1
1
3
2
1
e
e
e
L
e
e
e
f
f
f
ef
ef
ji
j
i
j
j
ii
















then:
 
















































 
3
2
1
1
3
2
1
3
3
3
2
3
1
2
3
2
2
2
1
1
3
1
2
1
1
3
2
1
E
E
E
L
E
E
E
F
F
F
ef
EF T
j
ii
j
i
j
ji






i
i
j
j
fFeEA

 iijj
fAFeAE

 &
i
j
ji
i
i
j
j
j
j
i
i
EFfEeEfF  

or:
But we remember that:
We can see that the relation between the components F1, F2, F3 to E1, E2, E3 is
not similar, contravariant, to the relation between the two bases of vectors
to . Therefore we define F1, F2, F3 and E1, E2, E3 as the
contravariant components of the bases and .
 321
,, fff

 321 ,, eee

 321
,, fff

 321 ,, eee

where
21
SOLO Vectors & Tensors in a 3D Space
Change of Vector Base, Coordinate Transformation (continue – 2)
 











































3
2
1
3
2
1
3
3
2
3
1
3
3
2
2
2
1
2
3
1
2
1
1
1
3
2
1
E
E
E
L
E
E
E
F
F
F
EF j
iji




i
i
j
j fFeEA

 iijj fAFeAE

 &
then:
Let write now the vector in the two bases andA

 321
,, fff

 321
,, eee

where
and j
ij
ef
ijjjjii EfeEeEAfAF j
iji


 

We can see that the relation between the components F1, F2, F3 to E1, E2, E3 is
similar, covariant, to the relation between the two bases of vectors
to . Therefore wew define F1, F2, F3 and E1, E2, E3 as the covariant
components of the bases and .
 321
,, fff

 321
,, eee

 321
,, fff

 321
,, eee

22
SOLO Vectors & Tensors in a 3D Space
We have:
Change of Vector Base, Coordinate Transformation (continue – 3)
 
  j
j
j
j
i
i
i
i
eeAeA
eeAeAA



 Ai contravariant component
Aj covariant component
Let find the relation between covariant and the contravariant components:
j
j
j
ij
i
ege
i
i
eAegAeAA j
iji

 

i
i
i
ij
j
ege
j
j
eAegAeAA
i
ijj

 

Therefore: ij
j
i
ij
i
j gAAgAA  &
Let find the relation between gij and gij defined in the bases and to
and defined in the bases and .
ie
 i
e

i
f

i
f

ij
g ij
g
m
m
kkj
j
ii efef

  &
jm
m
k
j
imj
m
k
j
ikiik geeffg  

Hence: jm
m
k
j
iik gg 
This is a covariant relation of rank two, (similar, two times, to relation
between to .i
f

j
e

23
SOLO Vectors & Tensors in a 3D Space
Change of Vector Base, Coordinate Transformation (continue – 4)
 



















































3
2
1
3
2
1
3
3
2
3
1
3
3
2
2
2
1
2
3
1
2
1
1
1
3
2
1
e
e
e
L
e
e
e
f
f
f
ef
ef
ji
j
i
j
j
ii
















Since we have:k
iki
fgf

   m
jm
j
i
ege
j
j
i
ef
k
iki
egefgf m
jmjj
j
ii

 
 

and:     m
jm
j
i
km
kjm
j
i
gg
k
ik
egfgfg
mjm
m
k
j
iik




Therefore, by equalizing the terms that multiply we obtain:
 















































3
2
1
3
2
1
3
3
3
2
3
1
2
3
2
2
2
1
1
3
1
2
1
1
3
2
1
f
f
f
L
f
f
f
e
e
e
fe
Tkm
k
m














 jm
j
i g
We found the relation:
24
SOLO Vectors & Tensors in a 3D Space
Change of Vector Base, Coordinate Transformation (continue – 5)
Therefore:
 












































 
3
2
1
1
3
2
1
3
3
3
2
3
1
2
3
2
2
2
1
1
3
1
2
1
1
3
2
1
e
e
e
L
e
e
e
f
f
f
ef
Tmj
m
j














Let take the inverse of the relation by multiplying by and summarize on m:j
m
km
k
m
fe


jkj
k
km
k
j
m
mj
m
fffe

 
From the relation: mk
m
kjj
i
i
efef

  &
we have: jmk
m
j
i
mjk
m
j
i
kiik
geeffg  

or: jmk
m
j
i
ik
gg  This is a contravariant relation of rank two.
From the relation:
m
m
kk
jj
i
i
efef

  &
we have: m
j
m
k
i
jm
jm
k
i
j
i
kk
i
eeff  

or: This is a relation once covariant and once contravariant of
rank two.
m
j
m
k
i
j
i
k  
Table of Content
25
SOLO Vectors & Tensors in a 3D Space
Cartesian Coordinates
Three dimensional cartesian coordinates are define as coordinates in a orthonormal
basis such that:     zyxorkjieee 1,1,1ˆ,ˆ,ˆ,, 321


ix ˆ1 
jy ˆ1 
O
kz ˆ1 
x1
y1z1
0111111
1111111


zyzxyx
zzyyxx
yzxxyzzxy
yxzxzyzyx
111111111
111111111


    11111,1,12
 zyxzyxg
The reciprocal set is identical to the original set






ji
ji
ggg ij
ijj
iij
0
1

Given
  










z
y
x
zyx
A
A
A
zyxzAyAxAA 111111

 











z
y
x
A
A
A
AMatrix notation
of a vector
26
SOLO Vectors & Tensors in a 3D Space
Cartesian Coordinates (continue – 1)
ix ˆ1 
jy ˆ1 
O
kz ˆ1 
Given  











z
y
x
zyx
A
A
A
zyxzAyAxAA 111111

 











z
y
x
A
A
A
AMatrix notation
of a vector
 











z
y
x
zyx
B
B
B
zyxzByBxBB 111111

     
        ABABBABABABA
B
B
B
AAAzByBxBzAyAxABA
T
zzyyxx
T
z
y
x
zyxzyxzyx













 111111
 











z
y
x
B
B
B
B
27
SOLO Vectors & Tensors in a 3D Space
Cartesian Coordinates (continue – 2)
   
     
zyx
zyxxyyxzxxzyzzy
zyxzyx
BBB
AAA
zyx
zBABAyBABAxBABA
zByBxBzAyAxABA
111
det111
111111



         ABAB
A
A
A
BB
BB
BB
BA
B
B
B
AA
AA
AA
BA
z
y
x
xy
xz
yz
z
y
x
xy
xz
yz


















































0
0
0
0
0
0
ix ˆ1 
jy ˆ1 
O
kz ˆ1 
Given  











z
y
x
zyx
A
A
A
zyxzAyAxAA 111111

 











z
y
x
A
A
A
AMatrix notation
of a vector
 











z
y
x
zyx
B
B
B
zyxzByBxBB 111111

 











z
y
x
B
B
B
B
28
SOLO Vectors & Tensors in a 3D Space
Cartesian Coordinates (continue – 2)
Table of Content
   
     
       
        ACBACBCBACBCBACBCB
BACBACACBACACBACAC
CBABACBABACBABA
CCC
BBB
AAA
BBB
AAA
CCC
zCyCxC
BBB
AAA
zyx
CBA
zxyyxyzxxzxyzzy
zxyyxyzxxzxyzzy
zxyyxyzxxzxyzzy
zyx
zyx
zyx
zyx
zyx
zyx
zyx
zyx
zyx






 detdet111
111
det
                 ABCABCBAC
B
B
B
AA
AA
AA
CCCBAC
TT
z
y
x
xy
xz
yz
zyx


























0
0
0
Given  











z
y
x
zyx
A
A
A
zyxzAyAxAA 111111

 











z
y
x
A
A
A
A
Matrix notation
of a vector
 











z
y
x
zyx
B
B
B
zyxzByBxBB 111111

 











z
y
x
B
B
B
B
 











z
y
x
zyx
C
C
C
zyxzCyCxCC 111111

 











z
y
x
C
C
C
C
29
Vector AnalysisSOLO
           bacbacacbacbcbacba

,,,,:,, 
      cbabcacba


      
    
     cbdadbca
dcbcdba
dcbadcba






       
   adcbbdca
dcbacdbadcba


,,,,
,,,,


       2
,, cbaaccbba


           
     
     feabdcfebadc
dcefbadcfeba
fedcbafecdbafedcba



,,,,,,,,
,,,,,,,,
,,,,,,,,



Vector Identities Summary
      0 bacacbcba

Table of Content
30
SOLO
VECTOR SPACE
Given the complex numbers .C ,,
A Vector Space V (Linear Affine Space) with elements over C if its elements
satisfy the following conditions:
Vzyx 

,,
I. Exists a operation of Addition with the following properties:
xyyx

 Commutative (Abelian) Law for Addition1
   zyxzyx

 Associative Law for Addition2
xx

 0 Exists a unique vector0

3
II. Exists a operation of Multiplication by a Scalar with the following properties:
0..

 yxtsVyVx4 Inverse
xx

15
   xx

  Associative Law for Multiplication6
  xxx

  Distributive Law for Multiplication7
  yxyx

  Commutative Law for Multiplication8
   
 
 
 
00101010 3
575 
 xxxxxxxxWe can write:
Vector Analysis
31
SOLO
Scalar Product in a Vector Space
The Scalar Product of two vectors is the operation with the
symbol with the following properties:
Vyx 

,   Cyx 

,
   xyyx

,, 
   yxyx

,,  
     zyzxzyx

,,, 
    00,&0,

 xxxxx
Distance Between Two Vectors
The Distance between two Vectors is
defined by the following properties:
Vyx 

,   yxyxd

,
    00,&0,

 xxxdxxd
   xydyxd

,, 
     yzdzxdyxd

,,, 
Vector Analysis
Table of Content
32
SOLO
Differential Geometry is the study of geometric figures using the methods of Calculus.
Here we present the curves and surfaces embedded in a three dimensional space.
Properties of curves and surfaces which depend only upon points close to a particular
point of the figure are called local properties.. The study of local properties is called
differential geometry in the small.
Those properties which involve the entire geometric figure are called global properties.
The study of global properties is called differential geometry in the large.
Hyperboloid
of RotationToroyd
Mobius
Movement
Differential Geometry
Differential Geometry in the 3D Euclidean Space
Table of Content
33
SOLO
Differential Geometry in the 3D Euclidean Space
A curve C in a three dimensional space is
defined by one parameter t,  tr

 ur

rd
P
O
a
b
C
Theory of Curves
Regular Parametric Representation of a Vector Function:
parameter t, defined in the interval I and:
  Ittrr  ,

 tr

(i) is of class C1 (continuous and 1st order differentiable) in I
Arc length differential:      td
td
rd
td
td
rd
td
rd
trdtrdsd









2/1
2/1
:
We also can define      sdtrdtrdsd 
2/1*
:

(ii)
  It
td
trd
 0

  Iinconstantnottr


Arc length as a parameter: 
t
t
td
td
rd
s
0

Regular Curves:
A real valued function t = t (θ), on an interval Iθ, is an allowable change of parameter if:
(i) t (θ) is of class C1 in Iθ (ii) d t/ d θ ≠ 0 for all θ in Iθ
A representation on Is is a
representation in terms of arc length or a
natural representation
 srr


Table of Content
34
SOLO
Differential Geometry in the 3D Euclidean Space
A curve C in a three dimensional space is defined by one parameter t,  tr

 ur

rd
P
O
a
b
C
- arc length differential     td
td
rd
td
rd
trdtrdsd
2/1
2/1
: 








td
rd
td
rd
r
sd
rd
t /::   - unit tangent vector of path C at P
(tangent to C at P)
1x
2x
3x
td
rd
r '
 - tangent vector of path C at P
(tangent to C at P)
0,0,sincos 321
 baetbetaetar

Example: Circular Helix
0,0,cossin' 321
 baebetaeta
td
rd
r


  2/122
2/1
ba
td
rd
td
rd
td
rd








   321
2/122
cossin/: ebetaetaba
td
rd
td
rd
t 

Theory of Curves (continue – 1)
We also can define      sdtrdtrdsd 
2/1*
:

t
sd
rd
sd
rd 
*
Unit Tangent Vector of path C at a point P
Table of Content
35
SOLO
Differential Geometry in the 3D Euclidean Space
The earliest investigations by means of analysis were made
by René Descartes in 1637.
 tr

 ur

rd
P
O
a
b
C
René Descartes
1596 - 1650
Pierre Fermat
1601 - 1665
Christian Huyghens
1629 - 1695
Gottfried Leibniz
1646 - 1716
The general concept of tangent was introduced in
seventeenth century, in connexion with the basic concepts of
calculus. Fermat, Descartes and Huyghens made important
contributions to the tangent problem, and a complete
solution was given by Leibniz in 1677.
The first analytical representation of a tangent was given
by Monge in 1785.
Gaspard Monge
1746 - 1818
Theory of Curves (continue – 2)
36
SOLO
Differential Geometry in the 3D Euclidean Space
A curve C in a three dimensional space is defined by one parameter t,  tr

- arc length differential     td
td
rd
td
rd
trdtrdsd
2/1
2/1
: 








'/'/:: rr
td
rd
td
rd
r
sd
rd
t


- unit tangent vector of path C at P
(tangent to C at P)
Normal Plane to at P:t

  00
 trr

We also can define - arc length differential     sdtrdtrdsd 
2/1*
:

t
sd
rd
sd
rd 
*
O
a
C
t

P
r

b
0
r

NormalPlane   00
 trr

Theory of Curves (continue – 3)
Return to Table of Contents
37
SOLO
Differential Geometry in the 3D Euclidean Space
O
a
C
t

P
r

b
NormalPlane   00
 trr

0
r

Curvature of curve C at P: rt
sd
td
k 

:
Since 01  tkttt
sd
td
tt



Define nnkkkkkkn



1
/1:&/: 
ρ – radius of curvature of C at P
k – curvature of C at P
A point on C where k = 0 is called a point of inflection and the radius of curvature
ρ is infinite.
'' st
td
sd
sd
rd
td
rd
r




      "'"'"'
'
'''''
22
stskstststs
td
sd
sd
td
td
sd
ts
td
td
st
td
d
r
td
d
r






    32
'"''''' skntstskstrr


'' sr 

3
1
'''' skntrr


 3
'
'''
r
rr
k 



Let compute k as a function of and :'r

''r

Theory of Curves (continue – 4)
38
SOLO
Differential Geometry in the 3D Euclidean Space
1x
2x
3x
t

k

0,0,sincos 321
 baetbetaetar

Example 2: Circular Helix
0,0,cossin' 321
 baebetaeta
td
rd
r


    2/1222/122
2/1
bardsdba
td
rd
td
rd
td
rd









   321
2/122
cossin/: ebetaetaba
td
rd
td
rd
t 

 2122
sincos/ etet
ba
a
td
sd
td
rd
t
sd
td
k 





1
x
2x
3
x
t

k

0,sincos 21
 aetaetar

Example 1: Circular Curve
0,cossin' 21
 aetaeta
td
rd
r


    2/1222/122
2/1
bardsdba
td
rd
td
rd
td
rd









 21
cossin/: etaetaa
td
rd
td
rd
t 

 21 sincos
1
/ etet
atd
sd
td
rd
t
sd
td
k 



Theory of Curves (continue – 5)
Table of Content
39
SOLO
Differential Geometry in the 3D Euclidean Space
O
a
C
t

P
b
ntk


1

NormalPlane
Osculating
Plane
  00
 trr

0r

  00  ktrr
Osculating Plane of C at P is the plane that contains
and P:     00
 ktrr
kt

,
The name “osculating plane” was
introduced by D’Amondans
Charles de Tinseau (1748-1822) in
1780.
O
a
C
t

P
b
ntk


1

NormalPlane
Osculating
Plane
  00
 trr

0r

  00  ktrr

The osculating plane can be also defined as the limiting position of a plane passing
through three neighboring points on the curve as the points approach the given point.
If the curvature k is zero along a curve C then:
tarrconstartt

 0
0
The curve C is a straight line. Conversely if C is a straight line:
0//0
 tkaa
td
rd
td
rd
ttarr 
C a regular curve of class ≥2 (Cclass) is a straight line if and only if k = 0 on C
Theory of Curves (continue – 6)
Table of Content
40
SOLO
Differential Geometry in the 3D Euclidean Space
Osculating Circleof C at P is the plane that contains
and Pkt

,
Theory of Curves (continue – 6)
The osculating circle of a curve C at a given point P is the circle that has the same
tangent as C at point P as well as the same curvature.
Just as the tangent line is the line best approximating a curve at a point P,
the osculating circle is the best circle that approximates the curve at P.
http://mathworld.wolfram.com/OsculatingCircle.html
O
a
C
t

P
b
ntk


1

Normal Plane
Osculating
Plane
  00  trr

0r

  00  ktrr

Osculating
Circle
Osculating Circles on the Deltoid
The word "osculate" means "to kiss."
41
SOLO
Differential Geometry in the 3D Euclidean Space
Osculating Circleof C at P is the plane that contains
and P
kt

,
Theory of Curves (continue – 6a)
O
a
C
t

P
b
ntk


1

Normal Plane
Osculating
Plane
  00  trr

0r

  00  ktrr

Osculating
Circle
3
xy 
xy /1
xy cos xy sin http://curvebank.calstatela.edu/osculating/osculating.htm
xy tan
Table of Content
42
SOLO
Differential Geometry in the 3D Euclidean Space
O
a
C
t

P
b
ntk


1

NormalPlane
Osculating
Plane
  00
 trr

0r

  00  ktrr
b

Rectifying
Plane
  00  krr

Binormal ntb

:
Tangent Line:
Principal Normal Line:
Binormal Line:
Normal Plane:
Rectifying Plane:
Osculating Plane:
tmrr

 0
nmrr

 0
bmrr

 0
  00
 trr

  00  nrr

  00
 brr

The name binormal was introduced by
Saint-Venant
Jean Claude Saint-Venant
1797 - 1886
Fundamental Planes:Fundamental Lines:
Theory of Curves (continue – 7)
Table of Content
43
SOLO
Differential Geometry in the 3D Euclidean Space
Torsion
Suppose that is a regular curve of class ≥ 3 (Cclass) along which is of
class C1. then let differentiate to obtain:
 srr

  sn

     snstsb


                     snstsnstsnsnksnstsnstsb 

Since                 001  snsnsnsnsnsnsnsn 
Therefore is normal to , meaning that is in the rectifying plane,
or that is a linear combination of and .
n
n
t

b

         sbsstssn

 
                    snssbsstsstsnstsb

 
O
a
C
t

P
b
n

0r

b

The continuous function τ (s) is called the second curvature
or torsion of C at P.
     snsbs


Theory of Curves (continue – 8)
44
SOLO
Differential Geometry in the 3D Euclidean Space
Torsion (continue – 1)
Suppose that the torsion vanishes identically (τ ≡0) along a curve , then srr


        0
0 bsbsnssb

 
O
a
C
t

P
b
n

0r

0
b

Since and are orthogonal st

 sb

        constbsrbtbsr
sd
d
bsr
sd
d
 0000
0

Therefore is a planar curve confined to the plane srr

   constbsr  0

C a regular curve of class ≥3 (Cclass) is a planar curve if and only if τ = 0 on C
1x
2x
3x
t

k

0,0,sincos 321
 baetbetaetar

Example 2: Circular Helix
   321
2/122
cossin ebetaetabat 

 21
sincos etetn 

     
   321
2/122
21321
2/122
cossin
sincoscossin
eaetbetbba
etetebetaetabantb




     21
1222/122
sincos etbetbbaba
td
bd
sd
td
td
bd
sd
bd
b 



 122 
 babnb


Theory of Curves (continue – 9)
45
SOLO
Differential Geometry in the 3D Euclidean Space
Torsion (continue – 2)
Let compute τ as a function of and :'',' rr

'''r

ttr
sd
td
td
rd
sd
rd
r




 '      tbknkttrtrtr
sd
d
trtr
sd
d
r


 2
"''''
 
    tkbkbknkbktnkbktbktbkbk
trttrtrtrttrttrtrtrtr
sd
d
r





2
332
'''"3''''"2"'"'



     
        
       
             2
0
3
1
2
0
26
6
0
3
0
4
0
22
5232
32
,,,,,,'''",'
'''",'',",'''',','",','3
'''"'"''''"'3'
'''"3'"'',,
ktntkbntknntkktkbknknktrrrt
rrrtrrrttrrrttrrrtt
rrtrrttrrttrrtttr
trttrtrtrtrtrrrr



















'
1
/
1
rtdsdsd
td
t  
3
'
'''
r
rr
k 


We also found:
     6
2
2
6
'
'''
'
'''",'
,,
r
rr
k
r
rrr
rrr 



 



 
2
'''
'''",'
rr
rrr





Theory of Curves (continue – 10)
Table of Content
46
SOLO
Differential Geometry in the 3D Euclidean Space
Seret-Frenet Equations
Theory of Curves (continue – 11)
We found and      snssb

     snskst


Let differentiate      stsbsn


                             stsksbssnsbskstsnsstsbstsbsn


 
We obtain
         sbsnskstst

00 
           sbsbsnstsksn

 0
         sbsnsstsb

00  
or
 
 
 
 
   
 
 
 
 



































sb
sn
st
s
ssk
sk
sb
sn
st






00
0
00


Jean Frédéric Frenet
1816 - 1900
Those are the Serret – Frenet Equations of a curve.
Joseph Alfred Serret
1819 - 1885
47
SOLO
Let compute:
Differential Geometry in the 3D Euclidean Space
Seret-Frenet Equations (continue – 1)
Theory of Curves (continue – 12)
Let show that if two curves C and C* have the same curvature k (s) = k* (s) and
torsion τ (s) = τ*(s) for all s then C and C* are the same except for they position in
space. Assume that at some s0 the triads and
coincide.
     999
,, sbsnst

     999
*,*,* sbsnst

   ********
*
nttnknkttnktttttt
sd
d kk 


         ************
*
*
bnnbnttnkbtknnbtknnnnnn
sd
d kk 



 
   ********
*
nbbnnbbnbbbbbb
sd
d 




Adding the equations, we obtain:   0***
 bbnntt
sd
d 
Integrating we obtain:     30
******
 sbbnnttconstbbnntt

Since: and1,,1 ***
 bbnntt

  3***
 bbnntt

we obtain: 1***
 bbnntt

Finally since:         constsrsr
sd
rd
stst
sd
rd
 *
*
* 



48
SOLO
Existence Theorem for Curves
Differential Geometry in the 3D Euclidean Space
Seret-Frenet Equations (continue – 2)
Theory of Curves (continue – 13)
Let k (s) and τ (s) be continuous functions of a real variable s for s0 ≤ s ≤ sf.
Then there exists a curve , s0 ≤ s ≤ sf, of class C2 for which k is the curvature,
τ is the torsion and s is a natural parameter.
 srr


332211332211332211
,, ebebebbenenennetetett


       tnktttttt
sd
d 
 2          nbntknnnnnn
sd
d 
 22
   bnbbbbbb
sd
d 





 




  2
with:
Proof: Consider the system of nine scalar differential equations:
                      3,2,1,,,  isnssbsbsstsksnsnskst iiiiiii


and initial conditions:       302010
,, esbesnest


           btttktnkntntnt
sd
d 
           nnbbbtkbnbnbn
sd
d 






  
       ntbnkbtbtbt
sd
d 





  
and initial conditions:
            1,0,1,0,0,1 000000
 ssssss bbbnnnbtnttt

49
SOLO
Existence Theorem for Curves (continue – 1)
Differential Geometry in the 3D Euclidean Space
Seret-Frenet Equations (continue – 3)
Theory of Curves (continue – 14)
         
               
         bnbb
sd
d
ntbnkbt
sd
d
nnbbbtkbn
sd
d
btttktnknt
sd
d
nbntknn
sd
d
tnktt
sd
d









2
222
Proof (continue – 1):
and initial conditions:             1,0,1,0,0,1 000000
 ssssss bbbnnnbtnttt

We obtain:
The solution of this type of differential equations with given initial conditions has
a unique solution and since
is a solution, it is unique.
            1,0,1,0,0,1  bbbnnnbtnttt

The solution is an orthonormal triad.bnt

,,
We now define the curve:    
s
s
dtsrr
0
: 

We have: and , therefore k (s) is the curvature.1 tr

        1&  snsnskst

Finally since:       nbtttknnkntntbntb

 
Therefore τ (s) is the torsion of  srr

 q.e.d.
50
SOLO
From the previous development we can state the following theorems:
Differential Geometry in the 3D Euclidean Space
Seret-Frenet Equations (continue – 4)
Theory of Curves (continue – 15)
A curve is defined uniquely by the curvature and torsion
as functions of a natural parameter.
The equations k = k (s), τ = τ (s), which give the curvature
and torsion of a curve as functions of s are called the natural
or intrinsec equations of a curve, for they completely define
the curve. O
0s
C
t

P
n

0r

b

k
1
 f
s
Fundamental Existence and Uniqueness Theorem of Space
Curves
Let k (s) and τ (s) be arbitrary continuous functions on
s0≤s≤sf. Then there exists, for position in space, one and only
one space curve C for which k (s) is the curvature, τ (s) is the
torsion and s is a natural parameter along C. O
0s
C
t

P
n

b

f
s
*
C
0
r

*
0r

Table of Content
51
SOLO
Let consider a space curve C. We construct the tangent
lines to every point on C and define an involute Ci as any
curve which is normal to every tangent of C.
Differential Geometry in the 3D Euclidean Space
Involute
Theory of Curves (continue – 16)
From the Figure we can see that the equation of the
Involute is given by:
turr

1
Differentiating this equation we obtain:
11
1
1
1
sd
sd
t
sd
ud
nkut
sd
sd
t
sd
ud
sd
td
u
sd
rd
t
sd
rd

















Scalar multiply this equation by and use the fact that and from the
definition of involute :
t

0nt

01
tt

  
1101
10
sd
sd
tt
sd
ud
ntkutttt 







01 
sd
ud
scu 
       stscsrsr

1
C
i
C
O
r
 1r

t

1
t

s
c 
Involute
Curve
52
SOLO
Differential Geometry in the 3D Euclidean Space
Involute (continue – 1)
Theory of Curves (continue – 17)
C
i
C
O
r
 1r

t

1
t

s
c 
Involute
Curve
       stscsrsr

1

    n
sd
sd
ksc
sd
sd
t
sd
td
sc
sd
rd
sd
rd
t
t




111
1
1 











and are collinear unit vectors, therefore:1t

n

 
 kscsd
sd
sd
sd
ksc


1
1
11
The curvature of the involute, k1, is obtained from:
 
   ksc
btk
kscsd
nd
sd
sd
sd
td
nk
sd
td nt
kscsd
sd










 
11
1
1
1
1
11
1
1
Hence:
  22
22
2
1
ksc
k
k




For a planar curve (τ=0) we have:  
t
sc
nk




1
011 
53
SOLO
Differential Geometry in the 3D Euclidean Space
Involute (continue – 3)
Theory of Curves (continue – 18)
C
i
C
O
r
 1r

t

1
t

s
c 
Involute
Curve
http://mathworld.wolfram.com/Involute.html
Table of Content
54
SOLO
The curve Ce whose tangents are perpendicular to a
given curve C is called the evolute of the curve.
Differential Geometry in the 3D Euclidean Space
Evolute
Theory of Curves (continue – 19)
11
twrbvnurr


Differentiating this equation we obtain:
 
11
1
1
1
sd
sd
b
sd
vd
n
sd
ud
nvbtkut
sd
sd
b
sd
vd
n
sd
ud
sd
bd
v
sd
nd
u
sd
rd
t
sd
rd





















Scalar multiply this equation by and use the fact that and from the
definition of evolute :
t

0 btnt

01
tt

 
111
1
0
sd
sd
ttkutttt 







01  ku 
k
u
1
C
e
C
O
r

1r

t
1
t

Evolute
Curve
The tangent to Ce, , must lie in the plane of
and since it is perpendicular to . Therefore:
n

b

t
1t

1
1
sd
sd
n
sd
ud
vb
sd
vd
ut























55
SOLO
Differential Geometry in the 3D Euclidean Space
Evolute (continue – 1)
Theory of Curves (continue – 20)
   ccuv   tantan

k
u
1
C
e
C
O
r

1r

t
1
t

Evolute
Curve
We obtained:
1
1
sd
sd
n
sd
ud
vb
sd
vd
ut























    111
// wbvnuwrrt

But:
Therefore:
v
v
sd
ud
u
u
sd
vd
 


or:















 
u
v
sd
d
vu
sd
ud
v
sd
vd
u
1
22
tan
c
u
v
ds
s
s






 

1
tan
0

and:  bcnrr

  tan1
We have one parameter family that describes the evolutes to the curve C.
56
SOLO
Differential Geometry in the 3D Euclidean Space
Evolute (continue – 2)
Theory of Curves (continue – 21)
http://math.la.asu.edu/~rich/MAT272/evolute/ellipselute.html
Evolute of Ellipse
Evolute of Logarithmic Spiral
also a Logarithmic Spiral
Evolute of Parabola
Table of Content
C
e
C
O
r

1r

t
1
t

Evolute
Curve
57
SOLO
Differential Geometry in the 3D Euclidean Space
The vector defines a surface in E3
 vur ,

vu
vu
rr
rr
N 




 vur ,

 vdvudur  ,

rd 2
rd
r
udru

vdrv

d
Nd
P
O
 vudur ,

       
     22
2
22
22
2
2
,2
2
1
,
2
1
,,,
vdudOvdrvdudrudrvdrudr
vdudOrdrdvurvdvudurvur
vvvuuuvu




The vectors and define the
tangent plane to the surface at point P.
P
u
u
r
r





P
v
v
r
r





Define: Unit Normal Vector to the surface at P
vu
vu
rr
rr
N 



:
First Fundamental Form:
      2222
22: vdGvdudFudEvdrrvdudrrudrrrdrdI vvvuuu


    

0
2
0,0,00:

















GF
FEforConditionSylvester
FEGGE
vd
ud
GF
FE
vdudrdrdI
Surfaces in the Three Dimensional Spaces
Table of Contents
58
SOLO
Arc Length on a Path on the Surface:
      









b
a
b
a
vuvu
b
a
tdvdrudrvdrudrtd
td
rd
td
rd
td
td
rd
L
2/1
2/1










































































b
a
b
a
td
td
vd
td
ud
GF
FE
td
vd
td
ud
td
td
vd
G
td
vd
td
ud
F
td
ud
EL
2/1
2/1
22
2
Surface Area:
 vur ,

rd
udru

vdrv

d
P
O
 
  
vdudFGEvdud
GE
F
GE
vdud
rr
rr
rrvdudrrrr
vdudrrrrvdudrrvdrudrd
vu
vu
vuvuvu
vuvuvuvu
2
2/1
2
2/1
2
2/12
1
1,cos1
,sin






















 






  vdudFGEd 2
 vur ,

rd
udru

vdrv
P
O
a
b
Differential Geometry in the 3D Euclidean Space
Table of Contents
59
SOLO
Change of Coordinates
 vur ,

rd
udru

vdrv

d
P
O
vdrv

udru

vdrudrvdrudrd vuvu


vdudFGEvdud
vu
vu
JFGEvdudFGEd 222
,
,







   vurvurr ,,

Change of coordinates from u,v to θ,φ
 
 vuvv
vuuu
,
,

The coordinates are related by


















v
u
vv
uu
vd
ud
vu
vu
      I
vd
ud
GF
FE
vdud
vd
ud
vv
uu
GF
FE
vu
vu
vdud
vd
ud
GF
FE
vdudI
vu
vu
vv
uu





















































td
td
vd
td
ud
GF
FE
td
vd
td
ud
td
td
vd
td
ud
GF
FE
td
vd
td
ud
td
td
rd
td
rd
Ld
2/12/1
2/1
























































































































vu
vu
JFGE
vv
uu
FGE
vv
uu
GF
FE
vu
vu
GF
FE
FGE
vu
vu
vu
vu
vv
uu
,
,
detdetdetdetdet 22
**
**
2
Arc Length on a Path on the Surface and Surface Area are Invariant of the Coordinates:
First Fundamental Form is Invariant to Coordinate Transformation
Differential Geometry in the 3D Euclidean Space
Table of Contents
60
SOLO
vu
vu
rr
rr
N 




 vur ,

 vdvudur  ,

rd 2
rd
r
udru

vdrv

d
Nd
P
O
 vudur ,

Second Fundamental Form: NdrdII :
   
     
22
2
2
2
2
:
vdNvdudMudL
vdNrvdudNrNrudNr
vdNudNvdrudrNdrdII
N
vv
M
uvvu
L
uu
vuvu





  




vdNudNNdNNdNN vu

 01
 
 
 









NrNrNrNrNr
vd
d
NrNrNrNrNr
ud
d
Nr
vuvuvuvuu
uuuuuuuuu
u



0
0
0
 
 
 









NrNrNrNrNr
vd
d
NrNrNrNrNr
ud
d
Nr
vvvvvvvvv
vuuvuvvuv
v



0
0
0
Differential Geometry in the 3D Euclidean Space
61
SOLO
vu
vu
rr
rr
N 




 vur ,

 vdvudur  ,

rd 2
rd
r
udru

vdrv

d
Nd
P
O
 vudur ,

Second Fundamental Form: NdrdII :
      2
2
2
: vdNrvdudNrNrudNrNdrdII
N
vv
M
uvvu
L
uu


  




NrNr uuuu

 NrNr vuuv








NrNr
NrL
uuuu
uu











uvvu
vuuv
vuvu
NrNrM
NrNr
NrNr









NrNr
NrN
vvvv
vv


NrNr vuvu

 NrNr vvvv


22
2: vdNvdudMudLNdrdII 
NrL uu


NrM vu


NrN vv


Differential Geometry in the 3D Euclidean Space
62
SOLO
vu
vu
rr
rr
N 




 vur ,

O
 vdvudur  ,
udru

vdrv

rd
Second Fundamental Form: NdrdII :
       
   
   33
3
3223
22
33
3
32
,33
6
1
2
2
1
,
6
1
2
1
,,,
vdudOvdrvdudrvdudrudr
vdrvdudrudrvdrudr
vdudOrdrdrdvurvdvudurvur
vvvvuvvuuuuu
vvvuuuvu






 
   
    IINvdudOvdNvdudMudL
NvdudOvdNrvdudNrudNr
NvdudONrdNrdNrdNr
vvvuuu
2
1
,2
2
1
,2
2
1
,
6
1
2
1
22
2
22
22
2
22
33
3
32
0








Differential Geometry in the 3D Euclidean Space
63
SOLO
N

Second Fundamental Form: NdrdII :
N

N

(i) Elliptic Case (ii) Hyperbolic Case (iii) Parabolic Case
02
MNL 02
MNL
0
&0
222
2


MNL
MNL
Differential Geometry in the 3D Euclidean Space
64
SOLO
Differential Geometry in the 3D Euclidean Space (continue – 6a)
 vur ,

vdrv

P
O
N

1nr

2nr

udru

2
M
1
M
02
 MNL
Dupin’s Indicatrix
N

1n
r

2n
r

P
2
M
1
M
02
 MNL
N

1nr
2nr

P
1M
2M
0
0
222
2


MNL
MNL
http://www.mathcurve.com/surfaces/inicatrixdedupin/indicatrixdedupin.html
Pierre Charles François
Dupin
1784 - 1873
We want to investigate the curvature propertiesat a point P.
    IINvdudOvdNvdudMudLNr
2
1
,2
2
1 22
2
22


The expression
12
2
221
2
1
 xNxxMxL
was introduced by Charles Dupin in 1813 in “Développments
de géométrie”, to describe the local properties of a surface.
Second Fundamental Form: NdrdII :
http://www.groups.dcs.st-and.ac.uk/~history/Biographies/Dupin.html
Differential Geometry in the 3D Euclidean Space
65
SOLO
N

Second Fundamental Form: NdrdII :
N

(iv) Planar Case
0 MNL
   
 3223
33
3
3223
6
1
,33
6
1
vdDvdudCvdudBudA
vdudOvdrNvdudrNvdudrNudrNNr vvvvuvvuuuuu



DxCxBxA  23
has 3 real roots
Monkey Saddle
DxCxBxA  23
has one real root
Differential Geometry in the 3D Euclidean Space
66
SOLO
Second Fundamental Form: NdrdII :
   vurvurr ,,

Change of coordinates from u,v to θ,φ
 
 vuvv
vuuu
,
,

The coordinates are related by


















v
u
vv
uu
vd
ud
vu
vu
         2222
22 uuuuuvvuuvuuuuuu vNvuMuLNvrvururNrL 

    vuvuvuvuvuvvvuvuvuuvvuuuvu vvNvuuvMuuLNvvrvuruvruurNrM 

         2222
2 vvvvvvvvvuvvvvuvuuvv vNvuMuLNvruvrvururNrN 

Unit Normal Vector to the surface at P
vu
vu
vu
vu
rr
rr
rr
rr
N 








:
uvuuvuu
vrur
u
v
r
u
u
rr







 vvvuvuv
vrur
v
v
r
v
u
rr








      II
vd
ud
NM
ML
vdud
vd
ud
vv
uu
NM
ML
vu
vu
vdud
vd
ud
NM
ML
vdudII
vu
vu
vv
uu





















































Second Fundamental Form is Invariant (unless the sign) to Coordinate Transformation
Differential Geometry in the 3D Euclidean Space
Table of Contents
67
SOLO
N

Osculating
Plane of C
at P
Principal Normal
Line of C at P
Surface
t

P
k

n1
 vur ,

Normal Curvature
- Length differential  2/1
rdrdrdsd 
    tvturr ,

Given a path on a surface of class
Ck ( k ≥ 2) we define:
td
rd
td
rd
sd
rd
t /: 
 - unit vector of path C at P
(tangent to C at P)
td
rd
td
td
sd
td
k /: 

- curvature vector of path C at P



 

curvatureofradius
nn
nnk
sd
td
k

111
1
1
1

 NNkkn

: - normal curvature vector to C at P
 
   /coscos1
:


kNnk
Nkkn


- normal curvature to C at P
Differential Geometry in the 3D Euclidean Space
68
SOLO
N

Osculating
Plane of C
at P
Principal Normal
Line of C at P
Surface
t

P
k

n1
 vur ,

Normal Curvature (continue – 1)
N
Because C is on the surface, is on the tangent
plan normal to .
t

  td
Nd
tN
td
td
td
Nd
tN
td
td
Nt
td
d
Nt






 00
and
        vdrudrvdrudrvdNudNvdrudr
td
rd
td
rd
td
Nd
td
rd
td
rd
td
Nd
td
rd
td
rd
td
Nd
t
td
rd
N
td
td
N
sd
td
Nkk
vuvuvuvu
n


















/
/
///
2
G
vd
ud
F
vd
ud
E
N
vd
ud
M
vd
ud
L
I
II
vdGvdudFudE
vdNvdudMudL
td
vd
G
td
vd
td
ud
F
td
ud
E
td
vd
N
td
vd
td
ud
M
td
ud
L
kn













































































2
2
2
2
2
2
2
2
22
22
22
22
Differential Geometry in the 3D Euclidean Space
69
SOLO
Normal Curvature (continue – 2)
G
vd
ud
F
vd
ud
E
N
vd
ud
M
vd
ud
L
I
II
vdGvdudFudE
vdNvdudMudL
td
vd
G
td
vd
td
ud
F
td
ud
E
td
vd
N
td
vd
td
ud
M
td
ud
L
kn













































































2
2
2
2
2
2
2
2
22
22
22
22
- kn is independent on dt therefore on C.
- kn is a function of the surface parameters L, M, N, E, F, G
and of the direction .
vd
ud
- Because I = E du2 + 2 F du dv + G dv2 > 0 → sign kn=sign II
- kn is independent on coordinates since I and II are independent.
 vur ,

rd
udru

vdrv
P
O
N
1C
k
2C
k

1C
2C
Differential Geometry in the 3D Euclidean Space
Table of Contents
70
SOLO
Principal Curvatures and Directions
G
vd
ud
F
vd
ud
E
N
vd
ud
M
vd
ud
L
I
II
vdGvdudFudE
vdNvdudMudL
kn




























2
2
2
2
2
2
22
22
- kn is a function of the surface parameters L, M, N, E, F, G and of the direction .vd
ud
Let find the maximum and minimum of kn as functions of the directions d u/ d v.
 vur ,

rd
udru

vdrv
P
O
N
1C
k
2C
k

1C
2C
If this occurs for d u0/ d v0 we must have:
       
0&0
00
00
0000
00
00 ,
2
,,
2
,










vdud
vdvd
vdud
n
vdud
udud
vdud
n
I
IIIIII
v
k
I
IIIIII
u
k
   
  
   
  
0&0
00
00
00
00
00
00
00
00
00
00
,
,,
0
,
,,
0


















vdud
vdnvd
vdud
vdvd
vdud
n
vdud
udnud
vdud
udud
vdud
n
IkII
I
II
III
v
k
IkIII
I
II
II
u
k
Multiply by I and use
 00 ,
0
vdud
n
I
II
k 
Differential Geometry in the 3D Euclidean Space
71
SOLO
Principal Curvatures and Directions (continue – 1)
 vur ,

rd
udru

vdrv
P
O
N
1C
k
2C
k

1C
2C
 
  
 
  
0&0
00
00
00
00
00
00
,
,
0
,
,
0






vdud
vdnvd
vdud
n
vdud
udnud
vdud
n
IkII
v
k
IkII
u
k
22
2: vdNvdudMudLNdrdII 
22
2: vdGvdudFudErdrdI 
00
220
vdFudEI ud
 00
220
vdGudFI vd

00
220
vdMudLII ud
 00
220
vdNudMII vd

 
  
0
00
00
00
,
,
0



vdud
udnud
vdud
n
IkII
u
k
 
  
0
00
00
00
,
,
0



vdud
vdnvd
vdud
n
IkII
v
k
    00000 0
 vdFudEkvdMudL n
    00000 0
 vdGudFkvdNudM n
Differential Geometry in the 3D Euclidean Space
72
SOLO
We found:
Principal Curvatures and Directions (continue – 2)
 vur ,

rd
udru

vdrv
P
O
N
1C
k
2C
k

1C
2C
   
   





0
0
0000
0000
0
0
vdGudFkvdNudM
vdFudEkvdMudL
n
n
or:






















0
0
0
0
00
00
vd
ud
GkNFkM
FkMEkL
nn
nn
This equation has non-trivial solution if:
0det
00
00











GkNFkM
FkMEkL
nn
nn
or expending:       02 222
00
 MNLkMFLGNEkFGE nn
Differential Geometry in the 3D Euclidean Space
73
SOLO
Study of the quadratic equation:
Principal Curvatures and Directions (continue – 3)
 vur ,

rd
udru

vdrv
P
O
N
1C
k
2C
k

1C
2C
The discriminant of this equation is:
      02 222
00
 MNLkMFLGNEkFGE nn
    222
42 MNLFGEMFLGNE 
   
2
22
222
2
2
2222
2
2
22222424 










 





 

E
LF
LG
E
LF
MFLGNEENLLFMELF
E
FGE
LFMELFME
E
FGE
    NLFNLGE
E
MLF
LMGF
E
LF
E
LGF
LFME
E
F
LGNELFME
E
FGE 2
3
2
24222
2
2
2
44884424 










 

E
LGF
LG
E
LGF
LMGFLG
NLGE
E
LF
E
MLF
E
LGF
NLF
E
LF
22
22
22
22
2
24322
2
2
24
84884
488444


    
    024
42
2
2
2
0
2
222





















LFME
E
F
LGNELFME
E
FGE
MNLFGEMFLGNE

Differential Geometry in the 3D Euclidean Space
74
SOLO
Study of the quadratic equation (continue – 1):
Principal Curvatures and Directions (continue – 4)
 vur ,

rd
udru

vdrv
P
O
N
1C
k
2C
k

1C
2C
The discriminant of this equation is:
      02 222
00
 MNLkMFLGNEkFGE nn
    
    024
42
2
2
2
0
2
222





















LFME
E
F
LGNELFME
E
FGE
MNLFGEMFLGNE

The discriminant is greater or equal to zero, therefore we always obtain two real solutions
that give extremum for kn: 21
, nn
kk
Those two solutions are called Principal Curvatures and the corresponding two directions
are called Principal Directions    2211 ,,, vdudvdud
0&0  LGNELFME
G
N
F
M
E
L

The discriminant can be zero if:     02&0  LFME
E
F
LGNELFME
In this case:
G
N
F
M
E
L
vdGvdudFudE
vdNvdudMudL
kn



 22
22
2
2
This point in which kn is constant
in all directions is called an
Umbilical Point.
Differential Geometry in the 3D Euclidean Space
75
SOLO
Gaussian and Mean Curvatures
Principal Curvatures and Directions (continue – 5)
 vur ,

rd
udru

vdrv
P
O
N
1C
k
2C
k

1C
2C
Rewrite the equation:
      02 222
00
 MNLkMFLGNEkFGE nn
as:
 
 
 
 
0
2
2
2
2
2
00







FGE
MNL
k
FGE
MFLGNE
k nn
We define:
 
 2
2
: 21
FGE
MFLGNE
kkH nn



 
 2
2
21
:
FGE
MNL
kkK nn



Mean Curvature
Gaussian Curvature
Karl Friederich Gauss
1777-1855
Differential Geometry in the 3D Euclidean Space
76
SOLO
Gaussian and Mean Curvatures (continue – 1)
Principal Curvatures and Directions (continue – 6)
 vur ,

rd
udru

vdrv
P
O
N
1C
k
2C
k

1C
2C
 
 2
2
21
:
FGE
MNL
kkK nn


 Gaussian Curvature
   vurvurr ,,

Change of coordinates from u,v to θ,φ
 
 vuvv
vuuu
,
,

The coordinates are related by


















v
u
vv
uu
vd
ud
vu
vu
    II
vd
ud
NM
ML
vdud
vd
ud
vv
uu
NM
ML
vu
vu
vdudII
vu
vu
vv
uu







































We found:     I
vd
ud
GF
FE
vdud
vd
ud
vv
uu
GF
FE
vu
vu
vdudI
vu
vu
vv
uu

































































vu
vu
vv
uu
vv
uu
GF
FE
vu
vu
GF
FE


























vu
vu
vv
uu
vv
uu
NM
ML
vu
vu
NM
ML
 
2
2
2
2
detdetdetdet












































vu
vu
vu
vu
vv
uu
FGE
vv
uu
GF
FE
GF
FE
FGE
 
2
2
2
2
detdetdetdet












































vu
vu
vu
vu
vv
uu
MNL
vv
uu
NM
ML
NM
ML
MNL
Therefore: invariant to coordinate changes
 
 
 
 2
2
2
2
21
:
FGE
MNL
FGE
MNL
kkK nn






Differential Geometry in the 3D Euclidean Space
77
SOLO
Principal Curvatures and Directions (continue – 7)
 vur ,

rd
udru

vdrv
P
O
N
1C
k
2C
k

1C
2CStart with:    
   





0
0
0000
0000
0
0
vdGudFkvdNudM
vdFudEkvdMudL
n
n
rewritten as :






















0
01
00000
0000
n
kvdGudFvdNudM
vdFudEvdMudL
that has a nontrivial solution (1,-kn0) only if:
0det
0000
0000








vdGudFvdNudM
vdFudEvdMudL
or:       0
2
000
2
0
 vdNFMGvdudNEGLudMEFL
or:
      0
0
0
2
0
0
















 NFMG
vd
ud
NEGL
vd
ud
MEFL
Differential Geometry in the 3D Euclidean Space
78
SOLO
Principal Curvatures and Directions (continue – 8)
 vur ,

rd
udru

vdrv
P
O
N
1C
k
2C
k

1C
2C
We obtained:
This equation will define the two Principal Directions 2211 21
& vdrudrrvdrudrr vunvun


      
 
 
 
 
021
21
2
2
1
1
2
2
1
1
2112212121





























vdvdG
MEFL
NEGL
F
MEFL
NFMG
E
vdvdG
vd
ud
vd
ud
F
vd
ud
vd
ud
E
vdvdrrvdudvdudrrududrrrr vVvuuunn

      0
0
0
2
0
0
















 NFMG
vd
ud
NEGL
vd
ud
MEFL
From the equation above we have:
 
 
 
 MEFL
NFMG
vd
ud
vd
ud
MEFL
NEGL
vd
ud
vd
ud






2
2
1
1
2
2
1
1
Let compute the scalar product of the Principal Direction Vectors:
The Principal Direction Vectors
are perpendicular.
Differential Geometry in the 3D Euclidean Space
79
SOLO
Principal Curvatures and Directions (continue – 9)
 vur ,

rd
udru

vdrv
P
O
N
1C
k
2C
k

1C
2C
Since the two Principal Directions are orthogonal
21 21
& vdrrudrr vnun


they must satisfy the equation:
Let perform a coordinate transformation to the Principal
Direction:  vu,
      0
2
000
2
0
 vdNFMGvdudNEGLudMEFL
   21 ,0&0, vdud
or:
  0
2
1
 udMEFL
  0
2
2
 vdNFMG 0 NFMG
01
ud
0 MEFL
02
vd
0E
0G
0
0


NrM
rrF
vu
vu


at P
Definition:
A Line of Curvature is a curve whose tangent at any point has a direction
coinciding with a principal direction at that point. The lines of curvature
are obtained by solving the previous differential equation
Differential Geometry in the 3D Euclidean Space
80
SOLO
Principal Curvatures and Directions (continue – 10)
 vur ,

rd
udru

vdrv
P
O
N
1C
k
2C
k

1C
2C
Suppose (du0,dv0) is a Principal Direction, then they must satisfy the equations:
Rodriguez Formula
NrNrL uuuu


NrNrNrM vuuvvu


NrNrN vvvv


   
   





0
0
0000
0000
0
0
vdGudFkvdNudM
vdFudEkvdMudL
n
n
   
   





0
0
0000
0000
0
0
vdrrudrrkvdNrudNr
vdrrudrrkvdNrudNr
vvvunvvuv
vuuunvuuu


uu rrE


vu rrF


vv rrG


    
    





0
0
0000
0000
0
0
vvunvu
uvunvu
rvdrudrkvdNudN
rvdrudrkvdNudN


 
 





0
0
0
0
vn
un
rrdkNd
rrdkNd


But are in the tangent plane at P since and are, and the vectors
and are independent, therefore:
rdkNd n

0
 Nd

rd

vr
 ur

00

 rdkNd n
The direction (du0,dv0) is a Principal Direction on a point on a surface if and only if
from some scalar k, and satisfy:00
vdNudNNd vu

 00 vdrudrrd vu


rdkNd

 Rodriguez Formula
We found:
Differential Geometry in the 3D Euclidean Space
Table of Contents
81
SOLO
Conjugate Directions
 vur ,

rd
udru

vdrv
P
O
N

Q
NdN


l
Let P (u,v) and Q (u+du,v+dv) neighboring points on a
surface. The tangent planes to the surface at p and Q
intersect along a straight line L. Now let Q approach P
along a given direction (du/ dv=const= PQ), then the line l
will approach a limit LC. The directions PQ and LC are
called Conjugate Directions.
Let be the normal at P and the normal at Q.N

NdN


Let the direction of LC be given by: vrurr vu 


Since LC is in both tangential planes at P and at Q we have:
  0&0  NdNrNr

     0 vdNudNvrurNdr vuvu


        0 vdvNrvduNrudvNruduNr vvvuuvuu


We found vvuvvuuu NrNNrNrMNrL

 &&
The previous relation becomes:   0 vdvNvduudvMuduL 
Given (du,dv) there is only one conjugate direction (δu,δv) given by the previous
equation.
Differential Geometry in the 3D Euclidean Space
Table of Contents
82
SOLO
Asymptotic Lines
The directions which are self-conjugate are called asymptotic directions.
becomes:
  0 vdvNvduudvMuduL 
We see that the asymptotic directions are those for which the second fundamental
form vanishes. Moreover, the normal curvature kn vanishes for this direction.
Those curves whose tangents are asymptotic directions are called asymptotic lines.
v
u
vd
ud


If a direction (du,dv) is self-conjugate than and the equation of
conjugate lines
02 22
 vdNvdudMudL
The conjugat and asymptotic lines were introduced by Charles
Dupin in 1813 in “Dévelopments de Géométrie”.
Pierre Charles François
Dupin
1784 - 1873
http://www.groups.dcs.st-and.ac.uk/~history/Biographies/Dupin.html
Differential Geometry in the 3D Euclidean Space
Table of Contents
83
SOLO Vectors & Tensors in a 3D Space
Scalar and Vector Fields
Let express the cartesian coordinates (x, y, z) of any point, in a three dimensional space as
a function of three curvilinear coordinates (u1, u2, u3), where:

dr
constu 3
i

j

k

1
1
ud
u
r



2
2
ud
u
r



3
3
ud
u
r



constu 1
constu 2
curveu1
curveu2
curveu3
     
     




zyxuuzyxuuzyxuu
uuuzuuuyuuuxx
,,,,,,,,
,,,,,,,,
332211
321321321
Those functions are single valued with continuous
derivatives and the correspondence between (x,y,z)
and (u1,u2,u3) is unique (isomorphism).
kzjyixr


or
3
3
2
2
1
1
ud
u
r
ud
u
r
ud
u
r
rd











   321 ,,,, uuuzyx     321
,,,, uuuAzyxAA


Assume now that the scalars Φ and vectors are functions of local
coordinates, cartesian (x,y,z) or general, curvilinear (u1,u2,u3)
A

In general ( we can not assume that Φ and are functions
of position).
A

   rAAr

 ,
Table of Contents
84
SOLO Vectors & Tensors in a 3D Space
Vector Differentiation
 tAA

Let a vector function of a single parameter tA

Ordinary Derivative of Scalars and Vectors
The Ordinary Derivative of the Vector is defined as
     
t
tAttA
td
tAd
t


 

0
lim
 tA


t
t
A

   tAttAA


If the limit exists we say that is continuous and differentiable in t. tA

Differentiation Formulas
If are differentiable vector functions of a scalar t and φ is a differentiable
scalar of t, then
CBA

,,
  td
Bd
td
Ad
BA
td
d



  td
Bd
AB
td
Ad
BA
td
d





  td
Ad
A
td
d
A
td
d




 
  td
Cd
BAC
td
Bd
ACB
td
Ad
CBA
td
d







  td
Bd
AB
td
Ad
BA
td
d




      
















td
Cd
BAC
td
Bd
ACB
td
Ad
CBA
td
d






Table of Contents
85
SOLO Vectors & Tensors in a 3D Space
Vector Differentiation
Partial Derivatives of Scalar and Vectors
   321 ,,,, uuuzyx     321
,,,, uuuAzyxAA


Assume now that the scalars Φ and vectors are functions of local
coordinates, cartesian (x,y,z) or general, curvilinear (u1,u2,u3)
A

The partial derivatives are defined as follows
     
1
3213211
0
1
321
,,,,
lim
,,
1
u
uuuuuuu
u
uuu
u







     
2
3213221
0
2
321
,,,,
lim
,,
2
u
uuuuuuu
u
uuu
u







     
3
3213321
0
3
321
,,,,
lim
,,
3
u
uuuuuuu
u
uuu
u







     
1
3213211
0
1
321 ,,,,
lim
,,
1
u
uuuAuuuuA
u
uuuA
u







     
2
3213221
0
2
321 ,,,,
lim
,,
2
u
uuuAuuuuA
u
uuuA
u







     
3
3213321
0
3
321 ,,,,
lim
,,
3
u
uuuAuuuuA
u
uuuA
u







Higher derivatives are also defined


























































































2
3
2
1
2
31
3
1212
2
2121
2
33
2
3
2
22
2
2
2
11
2
1
2
&&
&&
u
A
uuu
A
u
A
uuu
A
u
A
uuu
A
u
A
uu
A
u
A
uu
A
u
A
uu
A


Table of Contents
86
SOLO Vectors & Tensors in a 3D Space
Vector Differentiation
Differentials of Vectors
3
3
2
2
1
1
ud
u
A
ud
u
A
ud
u
A
zd
z
A
yd
y
A
xd
x
A
Ad




















If     321321 111111,,,, 321
uAuAuAzAyAxAuuuAzyxAA uuuzyx 

     321321 111111111 321321
udAudAudAuAduAduAdzAdyAdxAdAd uuuuuuzyx 

  BdABAdBAd


  BdABAdBAd


  CdBACBdACBAdCBAd


        CdBACBdACBAdCBAd


then
If are differentiable vector functions of a scalar t.CBA

,,
Table of Contents
87
SOLO Vectors & Tensors in a 3D Space
The Vector Differential Operator Del (, Nabla)
We define the Vector Differential Operator Del (, Nabla) in Cartesian Coordinates as:
z
z
y
y
x
x
111:









This operator has double properties: (a) of a vector, (b) of a differential
Gradient: Nabla operates on a Scalar or Vector Field
z
z
y
y
x
x
z
z
y
y
x
x
111111:























 
zz
z
A
yz
z
A
xz
z
A
zy
y
A
yy
y
A
xy
y
A
zx
x
A
yx
x
A
xx
x
A
zAyAxAz
z
y
y
x
x
A
zyx
zyx
zyx
zyx
111111
111111
111111
111111:











































a scalar
a dyadic
88
SOLO Vectors & Tensors in a 3D Space
The Vector Differential Operator Del (, Nabla) (continue)
We define the Vector Differential Operator in Cartesian Coordinates as:
z
z
y
y
x
x
111:









This operator has double properties: (a) of a vector, (b) of a differential
Divergence: Nabla performs a Scalar Product on a Vector Field
  z
A
y
A
x
A
zAyAxAz
z
y
y
x
x
A zyx
zyx






















 111111:

Curl (Rotor): Nabla performs a Vector Product on a Vector Field
 
z
y
A
x
A
y
x
A
z
A
x
z
A
y
A
AAA
zyx
zyx
zAyAxAz
z
y
y
x
x
A
xyzxyz
zyx
zyx
111
111
111111:

























































Table of Contents
89
SOLO Vectors & Tensors in a 3D Space
Scalar Differential
Let find the differentials of:    321 ,,,, uuuzyx 
3
3
2
2
1
1
ud
u
ud
u
ud
u
zd
z
yd
y
xd
x
d


















  rdzzdyydxxdz
z
y
y
x
x
d















 111111
Since      zyxuuzyxuuzyxuu ,,,,,,,, 332211 
We obtain rduudrduudrduud

 332211 ,,
rdu
u
u
u
u
u
ud
u
ud
u
ud
u
d



























 3
3
2
2
1
1
3
3
2
2
1
1
Comparing with we obtainrdd




























3
3
2
2
1
13
3
2
2
1
1 u
u
u
u
u
uu
u
u
u
u
u
Using the Gradient definition: z
z
y
y
x
x
111:









or
3
3
2
2
1
1
:
u
u
u
u
u
u








 in general curvilinear coordinates
Table of Contents
90
SOLO Vectors & Tensors in a 3D Space
Vector Differential
Let find the differentials of:    321
,,,, uuuAzyxAA


3
3
2
2
1
1
ud
u
A
ud
u
A
ud
u
A
zd
z
A
yd
y
A
xd
x
A
Ad




















    ArdzAyAxA
z
zd
y
yd
x
xd
zdz
z
A
y
z
A
x
z
A
ydz
y
A
y
y
A
x
y
A
xdz
x
A
y
x
A
x
x
A
Ad
zyx
zyxzyx
zyx





























































111
111111
111
  ArdA
u
u
u
u
u
urdrdu
u
A
u
u
A
u
u
A
Ad





































3
3
2
2
1
13
3
2
2
1
1
rduudrduudrduud

 332211 ,,
and
3
3
2
2
1
1
:
u
u
u
u
u
u









  ArdAd

Therefore
In Cartesian Coordinates:
In General Curvilinear Coordinates using
Table of Contents
91
Vector AnalysisSOLO
    Linearity of operator
         Differentiability of operator
  BABA

 Linearity of operator
  BABA

 Linearity of operator
  AAA

  Differentiability of operator
  AAA

  Differentiability of operator
Differential Identities
92
Vector AnalysisSOLO
Differential Identities
     
   
   BAAB
BAAB
BABABA
BA
BA






 
     
  AAA
cbacabcba  
2


0
0 


aa

   
0
0
baabaa
A






93
Vector AnalysisSOLO
Differential Identities
         ABBAABBABA


     BABABA B


     ABBAAB A


       
 
   ABBABABABAAB
BA
BA

  




         BAABABBABA


     BABABA BA


     ABABBA AAA


     BABABA BBB


94
Vector AnalysisSOLO
   
   
Differential Identities Summary
  BABA


  BABA


  AAA

 
  AAA

 
         ABBAABBABA


         BAABABBABA


     BAABBA


    AAA
 2

0

 
0 A

   AAAAA






 2/
2
Table of Contents
95
SOLO Vectors & Tensors in a 3D Space
Curvilinear Coordinates in a Three Dimensional Space
Let express the cartesiuan coordinates (x, y, z) of any point, in a three dimensional space
as a function of three curvilinear coordinates (u1, u2, u3), where:

dr
constu 3
i

j

k

1
1
ud
u
r



2
2
ud
u
r



3
3
ud
u
r



constu 1
constu 2
curveu1
curveu2
curveu3
     
     




zyxuuzyxuuzyxuu
uuuzuuuyuuuxx
,,,,,,,,
,,,,,,,,
332211
321321321
Those functions are single valued with continuous
derivatives and the correspondence between (x,y,z)
and (u1,u2,u3) is unique (isomorphism).
kzjyixr


3
3
2
2
1
1
3
333
2
222
1
111
3
3
12
2
1
1
3
3
12
2
1
1
3
3
12
2
1
1
ud
u
r
ud
u
r
ud
u
r
udk
u
z
j
u
y
i
u
x
udk
u
z
j
u
y
i
u
x
udk
u
z
j
u
y
i
u
x
kud
u
z
d
u
z
ud
u
z
jud
u
y
d
u
y
ud
u
y
iud
u
x
d
u
x
ud
u
x
kzdjydixdrd












































































































or
3
3
2
2
1
1
ud
u
r
ud
u
r
ud
u
r
rd











96
SOLO Vectors & Tensors in a 3D Space
Curvilinear Coordinates in a Three Dimensional Space (continue – 1)
3
3
2
2
1
1
ud
u
r
ud
u
r
ud
u
r
rd











Let define: 3,2,1:
1



 i
u
r
r iu


If and are linear independent (i.e. if and only if
αi = 0 i=1,2,3) then they form a base of the space E3.
21
, uu
rr

3u
r

0
3
1

i
ui i
r
We have also:   3,2,1,,1
 irdzyxuud i 
We can write:         3
1
2
1
1
11
1 321
,, udurudurudurrdzyxuud uuu 

Because du1, du2, du3 are independent increments the precedent equation requires:
001 111
321
 ururur uuu

Similarly by multiplying by and we obtain:rd
 2
u 3
u








ji
ji
uru
u
r j
i
j
u
j
i
0
1
1



Therefore and are reciprocal systems of vectors.321
,, uuu
rrr
 321
,, uuu 

dr
constu 3
i

j

k

1
1
ud
u
r



2
2
ud
u
r



3
3
ud
u
r



constu 1
constu 2
curveu1
curveu2
curveu3
97
SOLO Vectors & Tensors in a 3D Space
Curvilinear Coordinates in a Three Dimensional Space (continue – 2)
We proved that reciprocal systems of vectors are related by:
and are reciprocal systems of vectors.321
,, uuu
rrr
 321
,, uuu 
     321
21
321
13
321
32
,,
,
,,
,
,,
321
uuu
uu
uuu
uu
uuu
uu
rrr
rr
u
rrr
rr
u
rrr
rr
u 











     321
21
321
13
321
32
,,
,
,,
,
,, 321
uuu
uu
r
uuu
uu
r
uuu
uu
r uuu










and    1,,,, 321
321
 uuurrr uuu

or
1
,,
,,
,,
,, 321
321
333
222
111
333
222
111



















































zyx
uuu
J
uuu
zyx
J
z
u
y
u
x
u
z
u
y
u
x
u
z
u
y
u
x
u
u
z
u
y
u
x
u
z
u
y
u
x
u
z
u
y
u
x
where is the Jacobian of x,y,z with respect to u1, u2, u3.








321 ,,
,,
uuu
zyx
J Carl Gustav Jacob Jacobi
1804 - 1851

dr
constu 3
i

j

k

1
1
ud
u
r



2
2
ud
u
r



3
3
ud
u
r



constu 1
constu 2
curveu1
curveu2
curveu3
98
SOLO Vectors & Tensors in a 3D Space
Curvilinear Coordinates in a Three Dimensional Space (continue – 3)
  grrr
u
z
u
y
u
x
u
z
u
y
u
x
u
z
u
y
u
x
uuu
zyx
J uuu



























321
,,det:
,,
,,
333
222
111
321

If is nonsingular the transformation from x,y,z to u1, u2, u3 is unique.







321 ,,
,,
uuu
zyx
J

dr
constu 3
i

j

k

1
1
ud
u
r



2
2
ud
u
r



3
3
ud
u
r



constu 1
constu 2
curveu1
curveu2
curveu3
g
rr
u
g
rr
u
g
rr
u
uuuuuu 211332 321
,,







     211332
321
,, uugruugruugr uuu


Table of Contents
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis
Vector analysis

More Related Content

What's hot

Lecture 2 transfer-function
Lecture 2 transfer-functionLecture 2 transfer-function
Lecture 2 transfer-function
Saifullah Memon
 

What's hot (20)

spherical coordinates system
spherical coordinates systemspherical coordinates system
spherical coordinates system
 
Tensor 1
Tensor  1Tensor  1
Tensor 1
 
Maxwells equation and Electromagnetic Waves
Maxwells equation and Electromagnetic WavesMaxwells equation and Electromagnetic Waves
Maxwells equation and Electromagnetic Waves
 
Chapter2 - Linear Time-Invariant System
Chapter2 - Linear Time-Invariant SystemChapter2 - Linear Time-Invariant System
Chapter2 - Linear Time-Invariant System
 
Tensor analysis
Tensor analysisTensor analysis
Tensor analysis
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equations
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace
 
Partial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examplesPartial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examples
 
The wave equation
The wave equationThe wave equation
The wave equation
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradient
 
Lecture 2 transfer-function
Lecture 2 transfer-functionLecture 2 transfer-function
Lecture 2 transfer-function
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
 
Differential geometry three dimensional space
Differential geometry   three dimensional spaceDifferential geometry   three dimensional space
Differential geometry three dimensional space
 
Coordinate systems
Coordinate systemsCoordinate systems
Coordinate systems
 
Dyadics
DyadicsDyadics
Dyadics
 
presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve
 
Application of vector integration
Application of vector integration Application of vector integration
Application of vector integration
 
Poisson’s and Laplace’s Equation
Poisson’s and Laplace’s EquationPoisson’s and Laplace’s Equation
Poisson’s and Laplace’s Equation
 

Viewers also liked

MATRICS – Sequestration and Trust Deeds
MATRICS – Sequestration and Trust DeedsMATRICS – Sequestration and Trust Deeds
MATRICS – Sequestration and Trust Deeds
shelterscotland
 
Lecture notes for s4 b tech Mathematics
Lecture notes for s4 b tech Mathematics  Lecture notes for s4 b tech Mathematics
Lecture notes for s4 b tech Mathematics
Anoop T Vilakkuvettom
 
Bessel’s equation
Bessel’s equationBessel’s equation
Bessel’s equation
kishor pokar
 
Practical Applications of Bessel's function
Practical Applications of Bessel's functionPractical Applications of Bessel's function
Practical Applications of Bessel's function
OneirosErebus
 

Viewers also liked (20)

Shadechapter12.ppt [read only]
Shadechapter12.ppt [read only]Shadechapter12.ppt [read only]
Shadechapter12.ppt [read only]
 
Matrices i
Matrices iMatrices i
Matrices i
 
Complex analysis book by iit
Complex analysis book by iitComplex analysis book by iit
Complex analysis book by iit
 
15 bcm0081 assign 2
15 bcm0081 assign 215 bcm0081 assign 2
15 bcm0081 assign 2
 
Web analytics and matrics basics
Web analytics and matrics basicsWeb analytics and matrics basics
Web analytics and matrics basics
 
AP Calculus Slides March 22, 2007
AP Calculus Slides March 22, 2007AP Calculus Slides March 22, 2007
AP Calculus Slides March 22, 2007
 
MATRICS – Sequestration and Trust Deeds
MATRICS – Sequestration and Trust DeedsMATRICS – Sequestration and Trust Deeds
MATRICS – Sequestration and Trust Deeds
 
Shadechapter13.ppt [read only]
Shadechapter13.ppt [read only]Shadechapter13.ppt [read only]
Shadechapter13.ppt [read only]
 
Introduction to Mathematical Probability
Introduction to Mathematical ProbabilityIntroduction to Mathematical Probability
Introduction to Mathematical Probability
 
Golden words of swami vivekananda
Golden words of swami vivekanandaGolden words of swami vivekananda
Golden words of swami vivekananda
 
Basic Integral
Basic IntegralBasic Integral
Basic Integral
 
Legendre's eqaution
Legendre's eqautionLegendre's eqaution
Legendre's eqaution
 
Complex Analysis - Differentiability and Analyticity (Team 2) - University of...
Complex Analysis - Differentiability and Analyticity (Team 2) - University of...Complex Analysis - Differentiability and Analyticity (Team 2) - University of...
Complex Analysis - Differentiability and Analyticity (Team 2) - University of...
 
Swami Vivekananda Quotes
Swami Vivekananda QuotesSwami Vivekananda Quotes
Swami Vivekananda Quotes
 
Lecture notes for s4 b tech Mathematics
Lecture notes for s4 b tech Mathematics  Lecture notes for s4 b tech Mathematics
Lecture notes for s4 b tech Mathematics
 
Prime numbers
Prime numbersPrime numbers
Prime numbers
 
Bessel’s equation
Bessel’s equationBessel’s equation
Bessel’s equation
 
Swami vivekananda’s 150 quotes
Swami vivekananda’s 150  quotesSwami vivekananda’s 150  quotes
Swami vivekananda’s 150 quotes
 
Inverse matrix
Inverse matrixInverse matrix
Inverse matrix
 
Practical Applications of Bessel's function
Practical Applications of Bessel's functionPractical Applications of Bessel's function
Practical Applications of Bessel's function
 

Similar to Vector analysis

Euler lagrange equations of motion mit-holonomic constraints_lecture7
Euler lagrange equations of motion  mit-holonomic  constraints_lecture7Euler lagrange equations of motion  mit-holonomic  constraints_lecture7
Euler lagrange equations of motion mit-holonomic constraints_lecture7
JOHN OBIDI
 

Similar to Vector analysis (20)

TENSORS AND GENERALIZED HOOKS LAW and HOW TO REDUCE 81 CONSTANTS TO 1
TENSORS AND GENERALIZED HOOKS LAW and HOW TO REDUCE 81 CONSTANTS TO 1TENSORS AND GENERALIZED HOOKS LAW and HOW TO REDUCE 81 CONSTANTS TO 1
TENSORS AND GENERALIZED HOOKS LAW and HOW TO REDUCE 81 CONSTANTS TO 1
 
Lecture2 (vectors and tensors).pdf
Lecture2 (vectors and tensors).pdfLecture2 (vectors and tensors).pdf
Lecture2 (vectors and tensors).pdf
 
EMT_2A_cylindrical coordinates.pptx
EMT_2A_cylindrical coordinates.pptxEMT_2A_cylindrical coordinates.pptx
EMT_2A_cylindrical coordinates.pptx
 
DATA ANALYSIS IN PHYSICS.pdf
DATA  ANALYSIS IN PHYSICS.pdfDATA  ANALYSIS IN PHYSICS.pdf
DATA ANALYSIS IN PHYSICS.pdf
 
Wang1998
Wang1998Wang1998
Wang1998
 
4 ESO Academics - UNIT 08 - VECTORS AND LINES.
4 ESO Academics - UNIT 08 - VECTORS AND LINES.4 ESO Academics - UNIT 08 - VECTORS AND LINES.
4 ESO Academics - UNIT 08 - VECTORS AND LINES.
 
(Ebook pdf) - physics - introduction to tensor calculus and continuum mechanics
(Ebook pdf) - physics - introduction to tensor calculus and continuum mechanics(Ebook pdf) - physics - introduction to tensor calculus and continuum mechanics
(Ebook pdf) - physics - introduction to tensor calculus and continuum mechanics
 
VIBRATION ANALYSIS OF AIRFOIL MODEL WITH NONLINEAR HEREDITARY DEFORMABLE SUSP...
VIBRATION ANALYSIS OF AIRFOIL MODEL WITH NONLINEAR HEREDITARY DEFORMABLE SUSP...VIBRATION ANALYSIS OF AIRFOIL MODEL WITH NONLINEAR HEREDITARY DEFORMABLE SUSP...
VIBRATION ANALYSIS OF AIRFOIL MODEL WITH NONLINEAR HEREDITARY DEFORMABLE SUSP...
 
Introduction fea
Introduction feaIntroduction fea
Introduction fea
 
The theory of continuum and elasto plastic materials
The theory of continuum and elasto plastic materialsThe theory of continuum and elasto plastic materials
The theory of continuum and elasto plastic materials
 
Euler lagrange equations of motion mit-holonomic constraints_lecture7
Euler lagrange equations of motion  mit-holonomic  constraints_lecture7Euler lagrange equations of motion  mit-holonomic  constraints_lecture7
Euler lagrange equations of motion mit-holonomic constraints_lecture7
 
Kinematic relationship of a object in space
Kinematic relationship of a object in spaceKinematic relationship of a object in space
Kinematic relationship of a object in space
 
Bazzucchi-Campolmi-Zatti
Bazzucchi-Campolmi-ZattiBazzucchi-Campolmi-Zatti
Bazzucchi-Campolmi-Zatti
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
Spherical harmonics
Spherical harmonicsSpherical harmonics
Spherical harmonics
 
M01L01 Advance Engineering Mathematics.pptx
M01L01 Advance Engineering Mathematics.pptxM01L01 Advance Engineering Mathematics.pptx
M01L01 Advance Engineering Mathematics.pptx
 
Lecture 1.ppt
Lecture 1.pptLecture 1.ppt
Lecture 1.ppt
 
9780521866323 excerpt
9780521866323 excerpt9780521866323 excerpt
9780521866323 excerpt
 
1. introduction to complex numbers
1. introduction to complex numbers1. introduction to complex numbers
1. introduction to complex numbers
 

More from Solo Hermelin

More from Solo Hermelin (20)

5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
 

Recently uploaded

The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...
Sérgio Sacani
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
AADYARAJPANDEY1
 
Penicillin...........................pptx
Penicillin...........................pptxPenicillin...........................pptx
Penicillin...........................pptx
Cherry
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Sérgio Sacani
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
muralinath2
 
Anemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditionsAnemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditions
muralinath2
 
THYROID-PARATHYROID medical surgical nursing
THYROID-PARATHYROID medical surgical nursingTHYROID-PARATHYROID medical surgical nursing
THYROID-PARATHYROID medical surgical nursing
Jocelyn Atis
 
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdfPests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
PirithiRaju
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
DiyaBiswas10
 

Recently uploaded (20)

GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
 
A Giant Impact Origin for the First Subduction on Earth
A Giant Impact Origin for the First Subduction on EarthA Giant Impact Origin for the First Subduction on Earth
A Giant Impact Origin for the First Subduction on Earth
 
The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
 
INSIGHT Partner Profile: Tampere University
INSIGHT Partner Profile: Tampere UniversityINSIGHT Partner Profile: Tampere University
INSIGHT Partner Profile: Tampere University
 
Penicillin...........................pptx
Penicillin...........................pptxPenicillin...........................pptx
Penicillin...........................pptx
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
 
FAIRSpectra - Towards a common data file format for SIMS images
FAIRSpectra - Towards a common data file format for SIMS imagesFAIRSpectra - Towards a common data file format for SIMS images
FAIRSpectra - Towards a common data file format for SIMS images
 
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
 
Musical Meetups Knowledge Graph (MMKG): a collection of evidence for historic...
Musical Meetups Knowledge Graph (MMKG): a collection of evidence for historic...Musical Meetups Knowledge Graph (MMKG): a collection of evidence for historic...
Musical Meetups Knowledge Graph (MMKG): a collection of evidence for historic...
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
 
Anemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditionsAnemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditions
 
Topography and sediments of the floor of the Bay of Bengal
Topography and sediments of the floor of the Bay of BengalTopography and sediments of the floor of the Bay of Bengal
Topography and sediments of the floor of the Bay of Bengal
 
THYROID-PARATHYROID medical surgical nursing
THYROID-PARATHYROID medical surgical nursingTHYROID-PARATHYROID medical surgical nursing
THYROID-PARATHYROID medical surgical nursing
 
GEOLOGICAL FIELD REPORT On Kaptai Rangamati Road-Cut Section.pdf
GEOLOGICAL FIELD REPORT  On  Kaptai Rangamati Road-Cut Section.pdfGEOLOGICAL FIELD REPORT  On  Kaptai Rangamati Road-Cut Section.pdf
GEOLOGICAL FIELD REPORT On Kaptai Rangamati Road-Cut Section.pdf
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
 
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdfPests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
 

Vector analysis

  • 2. 2 Vector AnalysisSOLO TABLE OF CONTENT Algebras History Vector Analysis History Vector Algebra Reciprocal Sets of Vectors Vector Decomposition The Summation Convention The Metric Tensor or Fundamental Tensor Specified by .3321 ,, Eeee   Change of Vector Base, Coordinate Transformation Vector Space Differential Geometry Osculating Circle of C at P Theory of Curves Unit Tangent Vector of path C at a point P Curvature of curve C at P Osculating Plane of C at P Binormal Torsion Seret-Frenet Equations Involute Evolute Vector Identities Summary Cartesian Coordinates
  • 3. 3 Vector AnalysisSOLO TABLE OF CONTENT (continue – 1) Differential Geometry Conjugate Directions Surfaces in the Three Dimensional Spaces First Fundamental Form: Arc Length on a Path on the Surface Surface Area Change of Coordinates Second Fundamental Form Principal Curvatures and Directions Asymptotic Lines Scalar and Vector Fields Vector Differentiation Ordinary Derivative of Scalars and Vectors Partial Derivatives of Scalar and Vectors Differentials of Vectors The Vector Differential Operator Del (, Nabla) Scalar Differential Vector Differential Differential Identities
  • 4. 4 Vector AnalysisSOLO TABLE OF CONTENT (continue – 2) Scalar and Vector Fields Curvilinear Coordinates in a Three Dimensional Space Covariant and Contravariant Components of a Vector in Base .321 ,, uuu rrr  Coordinate Transformation in Curvilinear Coordinates Covariant Derivative Covariant Derivative of a Vector .A  Vector Integration Ordinary Integration of Vectors Line Integrals Surface Integrals Volume Integrals Simply and Multiply Connected Regions Green’s Theorem in the Plane Stoke’s Theorem Divergence Theorem Gauss’ Theorem Variations Stokes’ Theorem Variations Green’s Identities Derivation of Nabla (  ) from Gauss’ Theorem The Operator .
  • 5. 5 Vector AnalysisSOLO TABLE OF CONTENT (continue – 3) Scalar and Vector Fields Fundamental Theorem of Vector Analysis for a Bounded Region V (Helmholtz’s Theorem) Reynolds’ Transport Theorem Poisson’s Non-homogeneous Differential Equation Kirchhoff’s Solution of the Scalar Helmholtz Non-homogeneous Differential Equation Derivation of Nabla (  ) from Gauss’ Theorem The Operator . Orthogonal Curvilinear Coordinates in a Three Dimensional Space Vector Operations in Various Coordinate Systems Applications Laplace Fields Harmonic Functions Rotations
  • 6. 6 Synthetic Geometry Euclid 300BC Algebras HistorySOLO Extensive Algebra Grassmann 1844 Binary Algebra Boole 1854 Complex Algebra Wessel, Gauss 1798 Spin Algebra Pauli, Dirac 1928 Syncopated Algebra Diophantes 250AD Quaternions Hamilton 1843 Tensor Calculus Ricci 1890 Vector Calculus Gibbs 1881 Clifford Algebra Clifford 1878 Differential Forms E. Cartan 1908 First Printing 1482 http://modelingnts.la.asu.edu/html/evolution.html Geometric Algebra and Calculus Hestenes 1966 Matrix Algebra Cayley 1854 Determinants Sylvester 1878 Analytic Geometry Descartes 1637 Table of Content
  • 7. 7 Vector Analysis HistorySOLO John Wallis 1616-1703 1673 Caspar Wessel 1745-1818 “On the Analytic Representation of Direction; an Attempt”, 1799 bia  Jean Robert Argand 1768-1822 1806 1i Quaternions 1843 William Rowan Hamilton 1805-1865 3210 qkqjqiq  Extensive Algebra 1844 Herman Günter Grassmann 1809-1877 “Elements of Vector Analysis” 1881 Josiah Willard Gibbs 1839-1903 Oliver Heaviside 1850-1925 “Electromagnetic Theory” 1893 3. R.S. Elliott, “Electromagnetics”,pp.564-568 http://www-groups.dcs.st-and.ac.uk/~history/index.html Table of Content Edwin Bidwell Wilson 1879-1964 “Vector Analysis” 1901
  • 8. 8 Vector AnalysisSOLO ba   Vector Algebra b  a  a  Addition of Vectors Parallelogram Law of addition Subtraction of Vectors  baba  1 Parallelogram Law of subtraction b  a  b   b  a  ba   Multiplication of Vector by a Scalar am  a  a  am  b  a  ba   ba   b   Geometric Definition of a Vector A Vector is defined by it’s Magnitude and Directiona  a  a 
  • 9. 9 Vector AnalysisSOLO         bababa  ,sin b  a  ba  ,  b  a  ba  ,  ba   abba   Scalar product of two vectors ba  , Vector product of two vectors ba  ,   2/1 2/1 ,cos                   aaaaaaa Magnitude of Vector a  Unit Vector (Vector of Unit Magnitude)aa 1ˆ  a a aa   1 :1:ˆ  Zero Vector (Vector of Zero Magnitude)0  aa  0 0:0   00 a     ababbababa ba   ,cos, ,         Vector Algebra (continue – 1)
  • 10. 10 Vector AnalysisSOLO     n|| ˆˆˆˆ aanannana n    nˆ a   n a n a ˆ ˆ n||      n a n a n ˆ ˆ      Vector decomposition in two orthogonal directions nn ,|| Vector decomposition in two given directions (geometric solution) 1 ˆn a  2 ˆn A B C Given two directions and , and the vector a  1 ˆn 2 ˆn anBCnCA   21 ˆˆ 1 ˆn a  2 ˆn A B Draw lines parallel to those directions passing through both ends A and B of the vector . The vectors obtained are in the desired directions and by rule of vector addition satisfy a  Vector Algebra (continue – 2) Table of Content
  • 11. 11 SOLO Triple Scalar Product Vectors & Tensors in a 3D Space 3321 ,, Eeee   are three non-coplanar vectors, i.e. 1e  2e  3e      0:,, 321321  eeeeee                0,, ,,,, 123123213 132132132321   eeeeeeeee eeeeeeeeeeee   Reciprocal Sets of Vectors The sets of vectors and are called Reciprocal Sets or Systems of Vectors if: 321 ,, eee  321 ,, eee  DeltaKroneckertheis ji ji ee j i j i j i        1 0 Because is orthogonal to and then2e  3e 1 e         321 321321 1 132 1 ,, 1 ,,1 eee keeekeeekeeeeke    and in the same way and are given by:2 e  3 e 1 e             321 213 321 132 321 321 ,,,,,, eee ee e eee ee e eee ee e               
  • 12. 12 SOLO Vectors & Tensors in a 3D Space Reciprocal Sets of Vectors (continue) By using the previous equations we get:                321 3 2 321 13323132 2 321 133221 ,,,,,, eee e eee eeeeeeee eee eeee ee                        321 213 321 132 321 321 ,,,,,, eee ee e eee ee e eee ee e                        0 ,, 1 ,, ,, 321321 3 3321321    eeeeee ee eeeeee    Multiplying (scalar product) this equation by we get:3 e  In the same way we can show that: Therefore are also non-coplanar, and:321 ,, eee     1,,,, 321 321 eeeeee             321 21 3321 13 2321 32 1 ,,,,,, eee ee e eee ee e eee ee e                1e  2e  3e  1 e  2 e  3 e  Table of Content 1e  2e  3e 
  • 13. 13 SOLO Vectors & Tensors in a 3D Space Vector Decomposition Given we want to find the coefficients and such that:3 EA  321 ,, AAA 321 ,, AAA       3 1 3 3 2 2 1 1 3 1 3 3 2 2 1 1 j j j i i i eAeAeAeA eAeAeAeAA   3,2,1, iee i i  are two reciprocal vector bases Let multiply the first row of the decomposition by :j e  Let multiply the second row of the decomposition by :ie  j i j i i i j i ij AAeeAeA    3 1 3 1   i j i j j j i j ji AAeeAeA    3 1 3 1   Therefore: ii jj eAAeAA   & Then:                      3 1 3 3 2 2 1 1 3 1 3 3 2 2 1 1 j j j i i i eeAeeAeeAeeA eeAeeAeeAeeAA   Table of Content 1e  2e  3e 
  • 14. 14 SOLO Vectors & Tensors in a 3D Space The Summation Convention j j j j j eAeAeAeAeA    3 1 3 3 2 2 1 1 The last notation is called the summation convention, j is called the dummy index or the umbral index.             i i i i j j j j j j j j j i i i i i eAeeAeeAeeA eAeeAeeAeeAA         3 1 3 1 Instead of summation notation we shall use the shorter notation first adopted by Einstein  3 1j j j eA  j j eA  Table of Content
  • 15. 15 SOLO Vectors & Tensors in a 3D Space Let define: The Metric Tensor or Fundamental Tensor Specified by .3321 ,, Eeee   jiijjiij geeeeg   3321 ,, Eeee   the metric covariant tensors of By choosing we get:         j ijiii j jiiiii egegegeg eeeeeeeeeeeee     3 3 2 2 1 1 3 3 2 2 1 1 i eA   or: j iji ege   For i = 1, 2, 3 we have:                                                        3 2 1 332313 322212 312111 3 2 1 333231 232221 131211 3 2 1 e e e eeeeee eeeeee eeeeee e e e ggg ggg ggg e e e             1e  2e  3e 
  • 16. 16 SOLO Vectors & Tensors in a 3D Space We want to prove that the following determinant (g) is nonzero: The Metric Tensor or Fundamental Tensor Specified by .3321 ,, Eeee                            332313 322212 312111 333231 232221 131211 detdet: eeeeee eeeeee eeeeee ggg ggg ggg g    g is the Gram determinant of the vectors 321 ,, eee  Jorgen Gram 1850 - 1916 Proof: Because the vectors are non-coplanars the following equations:321 ,, eee  03 3 2 2 1 1  eee   is true if and only if 0321   Let multiply (scalar product) this equation, consecutively, by :321 ,, eee                                             0 0 0 0 0 0 3 2 1 332313 322212 312111 33 3 23 2 13 1 32 3 22 2 12 1 31 3 21 2 11 1       eeeeee eeeeee eeeeee eeeeee eeeeee eeeeee       Therefore α1= α2= α3=0 if and only if g:=det {gij}≠0 q.e.d.
  • 17. 17 SOLO Vectors & Tensors in a 3D Space Because g ≠ 0 we can take the inverse of gij and obtain: The Metric Tensor or Fundamental Tensor Specified by .3321 ,, Eeee   where Gij = minor gij having the following property: j i kj ik ggG                                                      3 2 1 333231 232221 131211 3 2 1 333231 232221 131211 3 2 1 1 e e e ggg ggg ggg e e e GGG GGG GGG g e e e          and: g G g gminor g ij ijij  Therefore: g g g g G gg j i kj ik kj ik   j i kj ik gg  Let multiply the equation by gij and perform the summation on ij iji ege   jj ij ij i ij eeggeg   Therefore: i ijj ege   Let multiply the equation byk kjj ege   i e  iji k kjijji geegeeee   jiijjiij geeeeg   i jkj ik ggG  The Operator .
  • 18. 18 SOLO Vectors & Tensors in a 3D Space The Metric Tensor or Fundamental Tensor Specified by .3321 ,, Eeee   Let find the relation between g and    321321 :,, eeeeee   We shall write the decomposition of in the vector base32 ee   321 ,, eee  3 3 2 2 1 1 32 eeeee    Let find λ1, λ2, λ3. Multiply the previous equation (scalar product) by .1e      i i ggggeeeeee 113 3 12 2 11 1 321321 ,,    Multiply this equation by g1i:   ii i ii ggeeeg     1 1 1321 1 ,, Therefore:  321 1 ,, eeeg ii   Let compute now:            321 1 0 323 3 0 322 2 321 1 3232 eeeeeeeeeeeeeeee                                321 11 321 11 321 2 233322 321 3322332 321 3232 321 32321 ,,,,,,,, ,,,, eee gg eee G eee ggg eee eeeeeee eee eeee eee eeee                From those equations we obtain:  321 11 1 ,, eee gg  Finally:     geeeeee  321 2 321 1 ,,,,   We can see that if are collinear than and g are zero.321 ,, eee  321 ,, eee  Table of Content
  • 19. 19 SOLO Vectors & Tensors in a 3D Space Change of Vector Base, Coordinate Transformation Let choose another base and its reciprocal 321 ,, fff   321 ,, fff                                                 3 2 1 3 2 1 3 3 2 3 1 3 3 2 2 2 1 2 3 1 2 1 1 1 3 2 1 e e e L e e e f f f ef j j ii               where j i j i ef   By tacking the inverse of those equations we obtain:                                                   3 2 1 1 3 2 1 3 3 2 3 1 3 3 2 2 2 1 2 3 1 2 1 1 1 3 2 1 f f f L f f f e e e fe i j ij               where j ij i ef   Because are the coefficients of the inverse matrix with coefficients :j i  j i i j i k k j  
  • 20. 20 SOLO Vectors & Tensors in a 3D Space Change of Vector Base, Coordinate Transformation (continue – 1) Let write any vector in those two bases:A                                                       3 2 1 3 2 1 3 3 2 3 1 3 3 2 2 2 1 2 3 1 2 1 1 1 3 2 1 e e e L e e e f f f ef ef ji j i j j ii                 then:                                                     3 2 1 1 3 2 1 3 3 3 2 3 1 2 3 2 2 2 1 1 3 1 2 1 1 3 2 1 E E E L E E E F F F ef EF T j ii j i j ji       i i j j fFeEA   iijj fAFeAE   & i j ji i i j j j j i i EFfEeEfF    or: But we remember that: We can see that the relation between the components F1, F2, F3 to E1, E2, E3 is not similar, contravariant, to the relation between the two bases of vectors to . Therefore we define F1, F2, F3 and E1, E2, E3 as the contravariant components of the bases and .  321 ,, fff   321 ,, eee   321 ,, fff   321 ,, eee  where
  • 21. 21 SOLO Vectors & Tensors in a 3D Space Change of Vector Base, Coordinate Transformation (continue – 2)                                              3 2 1 3 2 1 3 3 2 3 1 3 3 2 2 2 1 2 3 1 2 1 1 1 3 2 1 E E E L E E E F F F EF j iji     i i j j fFeEA   iijj fAFeAE   & then: Let write now the vector in the two bases andA   321 ,, fff   321 ,, eee  where and j ij ef ijjjjii EfeEeEAfAF j iji      We can see that the relation between the components F1, F2, F3 to E1, E2, E3 is similar, covariant, to the relation between the two bases of vectors to . Therefore wew define F1, F2, F3 and E1, E2, E3 as the covariant components of the bases and .  321 ,, fff   321 ,, eee   321 ,, fff   321 ,, eee 
  • 22. 22 SOLO Vectors & Tensors in a 3D Space We have: Change of Vector Base, Coordinate Transformation (continue – 3)     j j j j i i i i eeAeA eeAeAA     Ai contravariant component Aj covariant component Let find the relation between covariant and the contravariant components: j j j ij i ege i i eAegAeAA j iji     i i i ij j ege j j eAegAeAA i ijj     Therefore: ij j i ij i j gAAgAA  & Let find the relation between gij and gij defined in the bases and to and defined in the bases and . ie  i e  i f  i f  ij g ij g m m kkj j ii efef    & jm m k j imj m k j ikiik geeffg    Hence: jm m k j iik gg  This is a covariant relation of rank two, (similar, two times, to relation between to .i f  j e 
  • 23. 23 SOLO Vectors & Tensors in a 3D Space Change of Vector Base, Coordinate Transformation (continue – 4)                                                      3 2 1 3 2 1 3 3 2 3 1 3 3 2 2 2 1 2 3 1 2 1 1 1 3 2 1 e e e L e e e f f f ef ef ji j i j j ii                 Since we have:k iki fgf     m jm j i ege j j i ef k iki egefgf m jmjj j ii       and:     m jm j i km kjm j i gg k ik egfgfg mjm m k j iik     Therefore, by equalizing the terms that multiply we obtain:                                                  3 2 1 3 2 1 3 3 3 2 3 1 2 3 2 2 2 1 1 3 1 2 1 1 3 2 1 f f f L f f f e e e fe Tkm k m                jm j i g We found the relation:
  • 24. 24 SOLO Vectors & Tensors in a 3D Space Change of Vector Base, Coordinate Transformation (continue – 5) Therefore:                                                 3 2 1 1 3 2 1 3 3 3 2 3 1 2 3 2 2 2 1 1 3 1 2 1 1 3 2 1 e e e L e e e f f f ef Tmj m j               Let take the inverse of the relation by multiplying by and summarize on m:j m km k m fe   jkj k km k j m mj m fffe    From the relation: mk m kjj i i efef    & we have: jmk m j i mjk m j i kiik geeffg    or: jmk m j i ik gg  This is a contravariant relation of rank two. From the relation: m m kk jj i i efef    & we have: m j m k i jm jm k i j i kk i eeff    or: This is a relation once covariant and once contravariant of rank two. m j m k i j i k   Table of Content
  • 25. 25 SOLO Vectors & Tensors in a 3D Space Cartesian Coordinates Three dimensional cartesian coordinates are define as coordinates in a orthonormal basis such that:     zyxorkjieee 1,1,1ˆ,ˆ,ˆ,, 321   ix ˆ1  jy ˆ1  O kz ˆ1  x1 y1z1 0111111 1111111   zyzxyx zzyyxx yzxxyzzxy yxzxzyzyx 111111111 111111111       11111,1,12  zyxzyxg The reciprocal set is identical to the original set       ji ji ggg ij ijj iij 0 1  Given              z y x zyx A A A zyxzAyAxAA 111111               z y x A A A AMatrix notation of a vector
  • 26. 26 SOLO Vectors & Tensors in a 3D Space Cartesian Coordinates (continue – 1) ix ˆ1  jy ˆ1  O kz ˆ1  Given              z y x zyx A A A zyxzAyAxAA 111111               z y x A A A AMatrix notation of a vector              z y x zyx B B B zyxzByBxBB 111111                ABABBABABABA B B B AAAzByBxBzAyAxABA T zzyyxx T z y x zyxzyxzyx               111111              z y x B B B B
  • 27. 27 SOLO Vectors & Tensors in a 3D Space Cartesian Coordinates (continue – 2)           zyx zyxxyyxzxxzyzzy zyxzyx BBB AAA zyx zBABAyBABAxBABA zByBxBzAyAxABA 111 det111 111111             ABAB A A A BB BB BB BA B B B AA AA AA BA z y x xy xz yz z y x xy xz yz                                                   0 0 0 0 0 0 ix ˆ1  jy ˆ1  O kz ˆ1  Given              z y x zyx A A A zyxzAyAxAA 111111               z y x A A A AMatrix notation of a vector              z y x zyx B B B zyxzByBxBB 111111               z y x B B B B
  • 28. 28 SOLO Vectors & Tensors in a 3D Space Cartesian Coordinates (continue – 2) Table of Content                           ACBACBCBACBCBACBCB BACBACACBACACBACAC CBABACBABACBABA CCC BBB AAA BBB AAA CCC zCyCxC BBB AAA zyx CBA zxyyxyzxxzxyzzy zxyyxyzxxzxyzzy zxyyxyzxxzxyzzy zyx zyx zyx zyx zyx zyx zyx zyx zyx        detdet111 111 det                  ABCABCBAC B B B AA AA AA CCCBAC TT z y x xy xz yz zyx                           0 0 0 Given              z y x zyx A A A zyxzAyAxAA 111111               z y x A A A A Matrix notation of a vector              z y x zyx B B B zyxzByBxBB 111111               z y x B B B B              z y x zyx C C C zyxzCyCxCC 111111               z y x C C C C
  • 29. 29 Vector AnalysisSOLO            bacbacacbacbcbacba  ,,,,:,,        cbabcacba                    cbdadbca dcbcdba dcbadcba                  adcbbdca dcbacdbadcba   ,,,, ,,,,          2 ,, cbaaccbba                          feabdcfebadc dcefbadcfeba fedcbafecdbafedcba    ,,,,,,,, ,,,,,,,, ,,,,,,,,    Vector Identities Summary       0 bacacbcba  Table of Content
  • 30. 30 SOLO VECTOR SPACE Given the complex numbers .C ,, A Vector Space V (Linear Affine Space) with elements over C if its elements satisfy the following conditions: Vzyx   ,, I. Exists a operation of Addition with the following properties: xyyx   Commutative (Abelian) Law for Addition1    zyxzyx   Associative Law for Addition2 xx   0 Exists a unique vector0  3 II. Exists a operation of Multiplication by a Scalar with the following properties: 0..   yxtsVyVx4 Inverse xx  15    xx    Associative Law for Multiplication6   xxx    Distributive Law for Multiplication7   yxyx    Commutative Law for Multiplication8           00101010 3 575   xxxxxxxxWe can write: Vector Analysis
  • 31. 31 SOLO Scalar Product in a Vector Space The Scalar Product of two vectors is the operation with the symbol with the following properties: Vyx   ,   Cyx   ,    xyyx  ,,     yxyx  ,,        zyzxzyx  ,,,      00,&0,   xxxxx Distance Between Two Vectors The Distance between two Vectors is defined by the following properties: Vyx   ,   yxyxd  ,     00,&0,   xxxdxxd    xydyxd  ,,       yzdzxdyxd  ,,,  Vector Analysis Table of Content
  • 32. 32 SOLO Differential Geometry is the study of geometric figures using the methods of Calculus. Here we present the curves and surfaces embedded in a three dimensional space. Properties of curves and surfaces which depend only upon points close to a particular point of the figure are called local properties.. The study of local properties is called differential geometry in the small. Those properties which involve the entire geometric figure are called global properties. The study of global properties is called differential geometry in the large. Hyperboloid of RotationToroyd Mobius Movement Differential Geometry Differential Geometry in the 3D Euclidean Space Table of Content
  • 33. 33 SOLO Differential Geometry in the 3D Euclidean Space A curve C in a three dimensional space is defined by one parameter t,  tr   ur  rd P O a b C Theory of Curves Regular Parametric Representation of a Vector Function: parameter t, defined in the interval I and:   Ittrr  ,   tr  (i) is of class C1 (continuous and 1st order differentiable) in I Arc length differential:      td td rd td td rd td rd trdtrdsd          2/1 2/1 : We also can define      sdtrdtrdsd  2/1* :  (ii)   It td trd  0    Iinconstantnottr   Arc length as a parameter:  t t td td rd s 0  Regular Curves: A real valued function t = t (θ), on an interval Iθ, is an allowable change of parameter if: (i) t (θ) is of class C1 in Iθ (ii) d t/ d θ ≠ 0 for all θ in Iθ A representation on Is is a representation in terms of arc length or a natural representation  srr   Table of Content
  • 34. 34 SOLO Differential Geometry in the 3D Euclidean Space A curve C in a three dimensional space is defined by one parameter t,  tr   ur  rd P O a b C - arc length differential     td td rd td rd trdtrdsd 2/1 2/1 :          td rd td rd r sd rd t /::   - unit tangent vector of path C at P (tangent to C at P) 1x 2x 3x td rd r '  - tangent vector of path C at P (tangent to C at P) 0,0,sincos 321  baetbetaetar  Example: Circular Helix 0,0,cossin' 321  baebetaeta td rd r     2/122 2/1 ba td rd td rd td rd            321 2/122 cossin/: ebetaetaba td rd td rd t   Theory of Curves (continue – 1) We also can define      sdtrdtrdsd  2/1* :  t sd rd sd rd  * Unit Tangent Vector of path C at a point P Table of Content
  • 35. 35 SOLO Differential Geometry in the 3D Euclidean Space The earliest investigations by means of analysis were made by René Descartes in 1637.  tr   ur  rd P O a b C René Descartes 1596 - 1650 Pierre Fermat 1601 - 1665 Christian Huyghens 1629 - 1695 Gottfried Leibniz 1646 - 1716 The general concept of tangent was introduced in seventeenth century, in connexion with the basic concepts of calculus. Fermat, Descartes and Huyghens made important contributions to the tangent problem, and a complete solution was given by Leibniz in 1677. The first analytical representation of a tangent was given by Monge in 1785. Gaspard Monge 1746 - 1818 Theory of Curves (continue – 2)
  • 36. 36 SOLO Differential Geometry in the 3D Euclidean Space A curve C in a three dimensional space is defined by one parameter t,  tr  - arc length differential     td td rd td rd trdtrdsd 2/1 2/1 :          '/'/:: rr td rd td rd r sd rd t   - unit tangent vector of path C at P (tangent to C at P) Normal Plane to at P:t    00  trr  We also can define - arc length differential     sdtrdtrdsd  2/1* :  t sd rd sd rd  * O a C t  P r  b 0 r  NormalPlane   00  trr  Theory of Curves (continue – 3) Return to Table of Contents
  • 37. 37 SOLO Differential Geometry in the 3D Euclidean Space O a C t  P r  b NormalPlane   00  trr  0 r  Curvature of curve C at P: rt sd td k   : Since 01  tkttt sd td tt    Define nnkkkkkkn    1 /1:&/:  ρ – radius of curvature of C at P k – curvature of C at P A point on C where k = 0 is called a point of inflection and the radius of curvature ρ is infinite. '' st td sd sd rd td rd r           "'"'"' ' ''''' 22 stskstststs td sd sd td td sd ts td td st td d r td d r           32 '"''''' skntstskstrr   '' sr   3 1 '''' skntrr    3 ' ''' r rr k     Let compute k as a function of and :'r  ''r  Theory of Curves (continue – 4)
  • 38. 38 SOLO Differential Geometry in the 3D Euclidean Space 1x 2x 3x t  k  0,0,sincos 321  baetbetaetar  Example 2: Circular Helix 0,0,cossin' 321  baebetaeta td rd r       2/1222/122 2/1 bardsdba td rd td rd td rd             321 2/122 cossin/: ebetaetaba td rd td rd t    2122 sincos/ etet ba a td sd td rd t sd td k       1 x 2x 3 x t  k  0,sincos 21  aetaetar  Example 1: Circular Curve 0,cossin' 21  aetaeta td rd r       2/1222/122 2/1 bardsdba td rd td rd td rd           21 cossin/: etaetaa td rd td rd t    21 sincos 1 / etet atd sd td rd t sd td k     Theory of Curves (continue – 5) Table of Content
  • 39. 39 SOLO Differential Geometry in the 3D Euclidean Space O a C t  P b ntk   1  NormalPlane Osculating Plane   00  trr  0r    00  ktrr Osculating Plane of C at P is the plane that contains and P:     00  ktrr kt  , The name “osculating plane” was introduced by D’Amondans Charles de Tinseau (1748-1822) in 1780. O a C t  P b ntk   1  NormalPlane Osculating Plane   00  trr  0r    00  ktrr  The osculating plane can be also defined as the limiting position of a plane passing through three neighboring points on the curve as the points approach the given point. If the curvature k is zero along a curve C then: tarrconstartt   0 0 The curve C is a straight line. Conversely if C is a straight line: 0//0  tkaa td rd td rd ttarr  C a regular curve of class ≥2 (Cclass) is a straight line if and only if k = 0 on C Theory of Curves (continue – 6) Table of Content
  • 40. 40 SOLO Differential Geometry in the 3D Euclidean Space Osculating Circleof C at P is the plane that contains and Pkt  , Theory of Curves (continue – 6) The osculating circle of a curve C at a given point P is the circle that has the same tangent as C at point P as well as the same curvature. Just as the tangent line is the line best approximating a curve at a point P, the osculating circle is the best circle that approximates the curve at P. http://mathworld.wolfram.com/OsculatingCircle.html O a C t  P b ntk   1  Normal Plane Osculating Plane   00  trr  0r    00  ktrr  Osculating Circle Osculating Circles on the Deltoid The word "osculate" means "to kiss."
  • 41. 41 SOLO Differential Geometry in the 3D Euclidean Space Osculating Circleof C at P is the plane that contains and P kt  , Theory of Curves (continue – 6a) O a C t  P b ntk   1  Normal Plane Osculating Plane   00  trr  0r    00  ktrr  Osculating Circle 3 xy  xy /1 xy cos xy sin http://curvebank.calstatela.edu/osculating/osculating.htm xy tan Table of Content
  • 42. 42 SOLO Differential Geometry in the 3D Euclidean Space O a C t  P b ntk   1  NormalPlane Osculating Plane   00  trr  0r    00  ktrr b  Rectifying Plane   00  krr  Binormal ntb  : Tangent Line: Principal Normal Line: Binormal Line: Normal Plane: Rectifying Plane: Osculating Plane: tmrr   0 nmrr   0 bmrr   0   00  trr    00  nrr    00  brr  The name binormal was introduced by Saint-Venant Jean Claude Saint-Venant 1797 - 1886 Fundamental Planes:Fundamental Lines: Theory of Curves (continue – 7) Table of Content
  • 43. 43 SOLO Differential Geometry in the 3D Euclidean Space Torsion Suppose that is a regular curve of class ≥ 3 (Cclass) along which is of class C1. then let differentiate to obtain:  srr    sn       snstsb                        snstsnstsnsnksnstsnstsb   Since                 001  snsnsnsnsnsnsnsn  Therefore is normal to , meaning that is in the rectifying plane, or that is a linear combination of and . n n t  b           sbsstssn                        snssbsstsstsnstsb    O a C t  P b n  0r  b  The continuous function τ (s) is called the second curvature or torsion of C at P.      snsbs   Theory of Curves (continue – 8)
  • 44. 44 SOLO Differential Geometry in the 3D Euclidean Space Torsion (continue – 1) Suppose that the torsion vanishes identically (τ ≡0) along a curve , then srr           0 0 bsbsnssb    O a C t  P b n  0r  0 b  Since and are orthogonal st   sb          constbsrbtbsr sd d bsr sd d  0000 0  Therefore is a planar curve confined to the plane srr     constbsr  0  C a regular curve of class ≥3 (Cclass) is a planar curve if and only if τ = 0 on C 1x 2x 3x t  k  0,0,sincos 321  baetbetaetar  Example 2: Circular Helix    321 2/122 cossin ebetaetabat    21 sincos etetn            321 2/122 21321 2/122 cossin sincoscossin eaetbetbba etetebetaetabantb          21 1222/122 sincos etbetbbaba td bd sd td td bd sd bd b      122   babnb   Theory of Curves (continue – 9)
  • 45. 45 SOLO Differential Geometry in the 3D Euclidean Space Torsion (continue – 2) Let compute τ as a function of and :'',' rr  '''r  ttr sd td td rd sd rd r      '      tbknkttrtrtr sd d trtr sd d r    2 "''''       tkbkbknkbktnkbktbktbkbk trttrtrtrttrttrtrtrtr sd d r      2 332 '''"3''''"2"'"'                                        2 0 3 1 2 0 26 6 0 3 0 4 0 22 5232 32 ,,,,,,'''",' '''",'',",'''',','",','3 '''"'"''''"'3' '''"3'"'',, ktntkbntknntkktkbknknktrrrt rrrtrrrttrrrttrrrtt rrtrrttrrttrrtttr trttrtrtrtrtrrrr                    ' 1 / 1 rtdsdsd td t   3 ' ''' r rr k    We also found:      6 2 2 6 ' ''' ' '''",' ,, r rr k r rrr rrr            2 ''' '''",' rr rrr      Theory of Curves (continue – 10) Table of Content
  • 46. 46 SOLO Differential Geometry in the 3D Euclidean Space Seret-Frenet Equations Theory of Curves (continue – 11) We found and      snssb       snskst   Let differentiate      stsbsn                                stsksbssnsbskstsnsstsbstsbsn     We obtain          sbsnskstst  00             sbsbsnstsksn   0          sbsnsstsb  00   or                                                        sb sn st s ssk sk sb sn st       00 0 00   Jean Frédéric Frenet 1816 - 1900 Those are the Serret – Frenet Equations of a curve. Joseph Alfred Serret 1819 - 1885
  • 47. 47 SOLO Let compute: Differential Geometry in the 3D Euclidean Space Seret-Frenet Equations (continue – 1) Theory of Curves (continue – 12) Let show that if two curves C and C* have the same curvature k (s) = k* (s) and torsion τ (s) = τ*(s) for all s then C and C* are the same except for they position in space. Assume that at some s0 the triads and coincide.      999 ,, sbsnst       999 *,*,* sbsnst     ******** * nttnknkttnktttttt sd d kk             ************ * * bnnbnttnkbtknnbtknnnnnn sd d kk          ******** * nbbnnbbnbbbbbb sd d      Adding the equations, we obtain:   0***  bbnntt sd d  Integrating we obtain:     30 ******  sbbnnttconstbbnntt  Since: and1,,1 ***  bbnntt    3***  bbnntt  we obtain: 1***  bbnntt  Finally since:         constsrsr sd rd stst sd rd  * * *    
  • 48. 48 SOLO Existence Theorem for Curves Differential Geometry in the 3D Euclidean Space Seret-Frenet Equations (continue – 2) Theory of Curves (continue – 13) Let k (s) and τ (s) be continuous functions of a real variable s for s0 ≤ s ≤ sf. Then there exists a curve , s0 ≤ s ≤ sf, of class C2 for which k is the curvature, τ is the torsion and s is a natural parameter.  srr   332211332211332211 ,, ebebebbenenennetetett          tnktttttt sd d   2          nbntknnnnnn sd d   22    bnbbbbbb sd d               2 with: Proof: Consider the system of nine scalar differential equations:                       3,2,1,,,  isnssbsbsstsksnsnskst iiiiiii   and initial conditions:       302010 ,, esbesnest              btttktnkntntnt sd d             nnbbbtkbnbnbn sd d                  ntbnkbtbtbt sd d          and initial conditions:             1,0,1,0,0,1 000000  ssssss bbbnnnbtnttt 
  • 49. 49 SOLO Existence Theorem for Curves (continue – 1) Differential Geometry in the 3D Euclidean Space Seret-Frenet Equations (continue – 3) Theory of Curves (continue – 14)                                    bnbb sd d ntbnkbt sd d nnbbbtkbn sd d btttktnknt sd d nbntknn sd d tnktt sd d          2 222 Proof (continue – 1): and initial conditions:             1,0,1,0,0,1 000000  ssssss bbbnnnbtnttt  We obtain: The solution of this type of differential equations with given initial conditions has a unique solution and since is a solution, it is unique.             1,0,1,0,0,1  bbbnnnbtnttt  The solution is an orthonormal triad.bnt  ,, We now define the curve:     s s dtsrr 0 :   We have: and , therefore k (s) is the curvature.1 tr          1&  snsnskst  Finally since:       nbtttknnkntntbntb    Therefore τ (s) is the torsion of  srr   q.e.d.
  • 50. 50 SOLO From the previous development we can state the following theorems: Differential Geometry in the 3D Euclidean Space Seret-Frenet Equations (continue – 4) Theory of Curves (continue – 15) A curve is defined uniquely by the curvature and torsion as functions of a natural parameter. The equations k = k (s), τ = τ (s), which give the curvature and torsion of a curve as functions of s are called the natural or intrinsec equations of a curve, for they completely define the curve. O 0s C t  P n  0r  b  k 1  f s Fundamental Existence and Uniqueness Theorem of Space Curves Let k (s) and τ (s) be arbitrary continuous functions on s0≤s≤sf. Then there exists, for position in space, one and only one space curve C for which k (s) is the curvature, τ (s) is the torsion and s is a natural parameter along C. O 0s C t  P n  b  f s * C 0 r  * 0r  Table of Content
  • 51. 51 SOLO Let consider a space curve C. We construct the tangent lines to every point on C and define an involute Ci as any curve which is normal to every tangent of C. Differential Geometry in the 3D Euclidean Space Involute Theory of Curves (continue – 16) From the Figure we can see that the equation of the Involute is given by: turr  1 Differentiating this equation we obtain: 11 1 1 1 sd sd t sd ud nkut sd sd t sd ud sd td u sd rd t sd rd                  Scalar multiply this equation by and use the fact that and from the definition of involute : t  0nt  01 tt     1101 10 sd sd tt sd ud ntkutttt         01  sd ud scu         stscsrsr  1 C i C O r  1r  t  1 t  s c  Involute Curve
  • 52. 52 SOLO Differential Geometry in the 3D Euclidean Space Involute (continue – 1) Theory of Curves (continue – 17) C i C O r  1r  t  1 t  s c  Involute Curve        stscsrsr  1      n sd sd ksc sd sd t sd td sc sd rd sd rd t t     111 1 1             and are collinear unit vectors, therefore:1t  n     kscsd sd sd sd ksc   1 1 11 The curvature of the involute, k1, is obtained from:      ksc btk kscsd nd sd sd sd td nk sd td nt kscsd sd             11 1 1 1 1 11 1 1 Hence:   22 22 2 1 ksc k k     For a planar curve (τ=0) we have:   t sc nk     1 011 
  • 53. 53 SOLO Differential Geometry in the 3D Euclidean Space Involute (continue – 3) Theory of Curves (continue – 18) C i C O r  1r  t  1 t  s c  Involute Curve http://mathworld.wolfram.com/Involute.html Table of Content
  • 54. 54 SOLO The curve Ce whose tangents are perpendicular to a given curve C is called the evolute of the curve. Differential Geometry in the 3D Euclidean Space Evolute Theory of Curves (continue – 19) 11 twrbvnurr   Differentiating this equation we obtain:   11 1 1 1 sd sd b sd vd n sd ud nvbtkut sd sd b sd vd n sd ud sd bd v sd nd u sd rd t sd rd                      Scalar multiply this equation by and use the fact that and from the definition of evolute : t  0 btnt  01 tt    111 1 0 sd sd ttkutttt         01  ku  k u 1 C e C O r  1r  t 1 t  Evolute Curve The tangent to Ce, , must lie in the plane of and since it is perpendicular to . Therefore: n  b  t 1t  1 1 sd sd n sd ud vb sd vd ut                       
  • 55. 55 SOLO Differential Geometry in the 3D Euclidean Space Evolute (continue – 1) Theory of Curves (continue – 20)    ccuv   tantan  k u 1 C e C O r  1r  t 1 t  Evolute Curve We obtained: 1 1 sd sd n sd ud vb sd vd ut                            111 // wbvnuwrrt  But: Therefore: v v sd ud u u sd vd     or:                  u v sd d vu sd ud v sd vd u 1 22 tan c u v ds s s          1 tan 0  and:  bcnrr    tan1 We have one parameter family that describes the evolutes to the curve C.
  • 56. 56 SOLO Differential Geometry in the 3D Euclidean Space Evolute (continue – 2) Theory of Curves (continue – 21) http://math.la.asu.edu/~rich/MAT272/evolute/ellipselute.html Evolute of Ellipse Evolute of Logarithmic Spiral also a Logarithmic Spiral Evolute of Parabola Table of Content C e C O r  1r  t 1 t  Evolute Curve
  • 57. 57 SOLO Differential Geometry in the 3D Euclidean Space The vector defines a surface in E3  vur ,  vu vu rr rr N       vur ,   vdvudur  ,  rd 2 rd r udru  vdrv  d Nd P O  vudur ,               22 2 22 22 2 2 ,2 2 1 , 2 1 ,,, vdudOvdrvdudrudrvdrudr vdudOrdrdvurvdvudurvur vvvuuuvu     The vectors and define the tangent plane to the surface at point P. P u u r r      P v v r r      Define: Unit Normal Vector to the surface at P vu vu rr rr N     : First Fundamental Form:       2222 22: vdGvdudFudEvdrrvdudrrudrrrdrdI vvvuuu         0 2 0,0,00:                  GF FEforConditionSylvester FEGGE vd ud GF FE vdudrdrdI Surfaces in the Three Dimensional Spaces Table of Contents
  • 58. 58 SOLO Arc Length on a Path on the Surface:                 b a b a vuvu b a tdvdrudrvdrudrtd td rd td rd td td rd L 2/1 2/1                                                                           b a b a td td vd td ud GF FE td vd td ud td td vd G td vd td ud F td ud EL 2/1 2/1 22 2 Surface Area:  vur ,  rd udru  vdrv  d P O      vdudFGEvdud GE F GE vdud rr rr rrvdudrrrr vdudrrrrvdudrrvdrudrd vu vu vuvuvu vuvuvuvu 2 2/1 2 2/1 2 2/12 1 1,cos1 ,sin                                 vdudFGEd 2  vur ,  rd udru  vdrv P O a b Differential Geometry in the 3D Euclidean Space Table of Contents
  • 59. 59 SOLO Change of Coordinates  vur ,  rd udru  vdrv  d P O vdrv  udru  vdrudrvdrudrd vuvu   vdudFGEvdud vu vu JFGEvdudFGEd 222 , ,           vurvurr ,,  Change of coordinates from u,v to θ,φ    vuvv vuuu , ,  The coordinates are related by                   v u vv uu vd ud vu vu       I vd ud GF FE vdud vd ud vv uu GF FE vu vu vdud vd ud GF FE vdudI vu vu vv uu                                                      td td vd td ud GF FE td vd td ud td td vd td ud GF FE td vd td ud td td rd td rd Ld 2/12/1 2/1                                                                                                                         vu vu JFGE vv uu FGE vv uu GF FE vu vu GF FE FGE vu vu vu vu vv uu , , detdetdetdetdet 22 ** ** 2 Arc Length on a Path on the Surface and Surface Area are Invariant of the Coordinates: First Fundamental Form is Invariant to Coordinate Transformation Differential Geometry in the 3D Euclidean Space Table of Contents
  • 60. 60 SOLO vu vu rr rr N       vur ,   vdvudur  ,  rd 2 rd r udru  vdrv  d Nd P O  vudur ,  Second Fundamental Form: NdrdII :           22 2 2 2 2 : vdNvdudMudL vdNrvdudNrNrudNr vdNudNvdrudrNdrdII N vv M uvvu L uu vuvu             vdNudNNdNNdNN vu   01                NrNrNrNrNr vd d NrNrNrNrNr ud d Nr vuvuvuvuu uuuuuuuuu u    0 0 0                NrNrNrNrNr vd d NrNrNrNrNr ud d Nr vvvvvvvvv vuuvuvvuv v    0 0 0 Differential Geometry in the 3D Euclidean Space
  • 61. 61 SOLO vu vu rr rr N       vur ,   vdvudur  ,  rd 2 rd r udru  vdrv  d Nd P O  vudur ,  Second Fundamental Form: NdrdII :       2 2 2 : vdNrvdudNrNrudNrNdrdII N vv M uvvu L uu          NrNr uuuu   NrNr vuuv         NrNr NrL uuuu uu            uvvu vuuv vuvu NrNrM NrNr NrNr          NrNr NrN vvvv vv   NrNr vuvu   NrNr vvvv   22 2: vdNvdudMudLNdrdII  NrL uu   NrM vu   NrN vv   Differential Geometry in the 3D Euclidean Space
  • 62. 62 SOLO vu vu rr rr N       vur ,  O  vdvudur  , udru  vdrv  rd Second Fundamental Form: NdrdII :                33 3 3223 22 33 3 32 ,33 6 1 2 2 1 , 6 1 2 1 ,,, vdudOvdrvdudrvdudrudr vdrvdudrudrvdrudr vdudOrdrdrdvurvdvudurvur vvvvuvvuuuuu vvvuuuvu                 IINvdudOvdNvdudMudL NvdudOvdNrvdudNrudNr NvdudONrdNrdNrdNr vvvuuu 2 1 ,2 2 1 ,2 2 1 , 6 1 2 1 22 2 22 22 2 22 33 3 32 0         Differential Geometry in the 3D Euclidean Space
  • 63. 63 SOLO N  Second Fundamental Form: NdrdII : N  N  (i) Elliptic Case (ii) Hyperbolic Case (iii) Parabolic Case 02 MNL 02 MNL 0 &0 222 2   MNL MNL Differential Geometry in the 3D Euclidean Space
  • 64. 64 SOLO Differential Geometry in the 3D Euclidean Space (continue – 6a)  vur ,  vdrv  P O N  1nr  2nr  udru  2 M 1 M 02  MNL Dupin’s Indicatrix N  1n r  2n r  P 2 M 1 M 02  MNL N  1nr 2nr  P 1M 2M 0 0 222 2   MNL MNL http://www.mathcurve.com/surfaces/inicatrixdedupin/indicatrixdedupin.html Pierre Charles François Dupin 1784 - 1873 We want to investigate the curvature propertiesat a point P.     IINvdudOvdNvdudMudLNr 2 1 ,2 2 1 22 2 22   The expression 12 2 221 2 1  xNxxMxL was introduced by Charles Dupin in 1813 in “Développments de géométrie”, to describe the local properties of a surface. Second Fundamental Form: NdrdII : http://www.groups.dcs.st-and.ac.uk/~history/Biographies/Dupin.html Differential Geometry in the 3D Euclidean Space
  • 65. 65 SOLO N  Second Fundamental Form: NdrdII : N  (iv) Planar Case 0 MNL      3223 33 3 3223 6 1 ,33 6 1 vdDvdudCvdudBudA vdudOvdrNvdudrNvdudrNudrNNr vvvvuvvuuuuu    DxCxBxA  23 has 3 real roots Monkey Saddle DxCxBxA  23 has one real root Differential Geometry in the 3D Euclidean Space
  • 66. 66 SOLO Second Fundamental Form: NdrdII :    vurvurr ,,  Change of coordinates from u,v to θ,φ    vuvv vuuu , ,  The coordinates are related by                   v u vv uu vd ud vu vu          2222 22 uuuuuvvuuvuuuuuu vNvuMuLNvrvururNrL       vuvuvuvuvuvvvuvuvuuvvuuuvu vvNvuuvMuuLNvvrvuruvruurNrM            2222 2 vvvvvvvvvuvvvvuvuuvv vNvuMuLNvruvrvururNrN   Unit Normal Vector to the surface at P vu vu vu vu rr rr rr rr N          : uvuuvuu vrur u v r u u rr         vvvuvuv vrur v v r v u rr               II vd ud NM ML vdud vd ud vv uu NM ML vu vu vdud vd ud NM ML vdudII vu vu vv uu                                                      Second Fundamental Form is Invariant (unless the sign) to Coordinate Transformation Differential Geometry in the 3D Euclidean Space Table of Contents
  • 67. 67 SOLO N  Osculating Plane of C at P Principal Normal Line of C at P Surface t  P k  n1  vur ,  Normal Curvature - Length differential  2/1 rdrdrdsd      tvturr ,  Given a path on a surface of class Ck ( k ≥ 2) we define: td rd td rd sd rd t /:   - unit vector of path C at P (tangent to C at P) td rd td td sd td k /:   - curvature vector of path C at P       curvatureofradius nn nnk sd td k  111 1 1 1   NNkkn  : - normal curvature vector to C at P      /coscos1 :   kNnk Nkkn   - normal curvature to C at P Differential Geometry in the 3D Euclidean Space
  • 68. 68 SOLO N  Osculating Plane of C at P Principal Normal Line of C at P Surface t  P k  n1  vur ,  Normal Curvature (continue – 1) N Because C is on the surface, is on the tangent plan normal to . t    td Nd tN td td td Nd tN td td Nt td d Nt        00 and         vdrudrvdrudrvdNudNvdrudr td rd td rd td Nd td rd td rd td Nd td rd td rd td Nd t td rd N td td N sd td Nkk vuvuvuvu n                   / / /// 2 G vd ud F vd ud E N vd ud M vd ud L I II vdGvdudFudE vdNvdudMudL td vd G td vd td ud F td ud E td vd N td vd td ud M td ud L kn                                                                              2 2 2 2 2 2 2 2 22 22 22 22 Differential Geometry in the 3D Euclidean Space
  • 69. 69 SOLO Normal Curvature (continue – 2) G vd ud F vd ud E N vd ud M vd ud L I II vdGvdudFudE vdNvdudMudL td vd G td vd td ud F td ud E td vd N td vd td ud M td ud L kn                                                                              2 2 2 2 2 2 2 2 22 22 22 22 - kn is independent on dt therefore on C. - kn is a function of the surface parameters L, M, N, E, F, G and of the direction . vd ud - Because I = E du2 + 2 F du dv + G dv2 > 0 → sign kn=sign II - kn is independent on coordinates since I and II are independent.  vur ,  rd udru  vdrv P O N 1C k 2C k  1C 2C Differential Geometry in the 3D Euclidean Space Table of Contents
  • 70. 70 SOLO Principal Curvatures and Directions G vd ud F vd ud E N vd ud M vd ud L I II vdGvdudFudE vdNvdudMudL kn                             2 2 2 2 2 2 22 22 - kn is a function of the surface parameters L, M, N, E, F, G and of the direction .vd ud Let find the maximum and minimum of kn as functions of the directions d u/ d v.  vur ,  rd udru  vdrv P O N 1C k 2C k  1C 2C If this occurs for d u0/ d v0 we must have:         0&0 00 00 0000 00 00 , 2 ,, 2 ,           vdud vdvd vdud n vdud udud vdud n I IIIIII v k I IIIIII u k               0&0 00 00 00 00 00 00 00 00 00 00 , ,, 0 , ,, 0                   vdud vdnvd vdud vdvd vdud n vdud udnud vdud udud vdud n IkII I II III v k IkIII I II II u k Multiply by I and use  00 , 0 vdud n I II k  Differential Geometry in the 3D Euclidean Space
  • 71. 71 SOLO Principal Curvatures and Directions (continue – 1)  vur ,  rd udru  vdrv P O N 1C k 2C k  1C 2C           0&0 00 00 00 00 00 00 , , 0 , , 0       vdud vdnvd vdud n vdud udnud vdud n IkII v k IkII u k 22 2: vdNvdudMudLNdrdII  22 2: vdGvdudFudErdrdI  00 220 vdFudEI ud  00 220 vdGudFI vd  00 220 vdMudLII ud  00 220 vdNudMII vd       0 00 00 00 , , 0    vdud udnud vdud n IkII u k      0 00 00 00 , , 0    vdud vdnvd vdud n IkII v k     00000 0  vdFudEkvdMudL n     00000 0  vdGudFkvdNudM n Differential Geometry in the 3D Euclidean Space
  • 72. 72 SOLO We found: Principal Curvatures and Directions (continue – 2)  vur ,  rd udru  vdrv P O N 1C k 2C k  1C 2C              0 0 0000 0000 0 0 vdGudFkvdNudM vdFudEkvdMudL n n or:                       0 0 0 0 00 00 vd ud GkNFkM FkMEkL nn nn This equation has non-trivial solution if: 0det 00 00            GkNFkM FkMEkL nn nn or expending:       02 222 00  MNLkMFLGNEkFGE nn Differential Geometry in the 3D Euclidean Space
  • 73. 73 SOLO Study of the quadratic equation: Principal Curvatures and Directions (continue – 3)  vur ,  rd udru  vdrv P O N 1C k 2C k  1C 2C The discriminant of this equation is:       02 222 00  MNLkMFLGNEkFGE nn     222 42 MNLFGEMFLGNE      2 22 222 2 2 2222 2 2 22222424                      E LF LG E LF MFLGNEENLLFMELF E FGE LFMELFME E FGE     NLFNLGE E MLF LMGF E LF E LGF LFME E F LGNELFME E FGE 2 3 2 24222 2 2 2 44884424               E LGF LG E LGF LMGFLG NLGE E LF E MLF E LGF NLF E LF 22 22 22 22 2 24322 2 2 24 84884 488444            024 42 2 2 2 0 2 222                      LFME E F LGNELFME E FGE MNLFGEMFLGNE  Differential Geometry in the 3D Euclidean Space
  • 74. 74 SOLO Study of the quadratic equation (continue – 1): Principal Curvatures and Directions (continue – 4)  vur ,  rd udru  vdrv P O N 1C k 2C k  1C 2C The discriminant of this equation is:       02 222 00  MNLkMFLGNEkFGE nn          024 42 2 2 2 0 2 222                      LFME E F LGNELFME E FGE MNLFGEMFLGNE  The discriminant is greater or equal to zero, therefore we always obtain two real solutions that give extremum for kn: 21 , nn kk Those two solutions are called Principal Curvatures and the corresponding two directions are called Principal Directions    2211 ,,, vdudvdud 0&0  LGNELFME G N F M E L  The discriminant can be zero if:     02&0  LFME E F LGNELFME In this case: G N F M E L vdGvdudFudE vdNvdudMudL kn     22 22 2 2 This point in which kn is constant in all directions is called an Umbilical Point. Differential Geometry in the 3D Euclidean Space
  • 75. 75 SOLO Gaussian and Mean Curvatures Principal Curvatures and Directions (continue – 5)  vur ,  rd udru  vdrv P O N 1C k 2C k  1C 2C Rewrite the equation:       02 222 00  MNLkMFLGNEkFGE nn as:         0 2 2 2 2 2 00        FGE MNL k FGE MFLGNE k nn We define:    2 2 : 21 FGE MFLGNE kkH nn       2 2 21 : FGE MNL kkK nn    Mean Curvature Gaussian Curvature Karl Friederich Gauss 1777-1855 Differential Geometry in the 3D Euclidean Space
  • 76. 76 SOLO Gaussian and Mean Curvatures (continue – 1) Principal Curvatures and Directions (continue – 6)  vur ,  rd udru  vdrv P O N 1C k 2C k  1C 2C    2 2 21 : FGE MNL kkK nn    Gaussian Curvature    vurvurr ,,  Change of coordinates from u,v to θ,φ    vuvv vuuu , ,  The coordinates are related by                   v u vv uu vd ud vu vu     II vd ud NM ML vdud vd ud vv uu NM ML vu vu vdudII vu vu vv uu                                        We found:     I vd ud GF FE vdud vd ud vv uu GF FE vu vu vdudI vu vu vv uu                                                                  vu vu vv uu vv uu GF FE vu vu GF FE                           vu vu vv uu vv uu NM ML vu vu NM ML   2 2 2 2 detdetdetdet                                             vu vu vu vu vv uu FGE vv uu GF FE GF FE FGE   2 2 2 2 detdetdetdet                                             vu vu vu vu vv uu MNL vv uu NM ML NM ML MNL Therefore: invariant to coordinate changes        2 2 2 2 21 : FGE MNL FGE MNL kkK nn       Differential Geometry in the 3D Euclidean Space
  • 77. 77 SOLO Principal Curvatures and Directions (continue – 7)  vur ,  rd udru  vdrv P O N 1C k 2C k  1C 2CStart with:              0 0 0000 0000 0 0 vdGudFkvdNudM vdFudEkvdMudL n n rewritten as :                       0 01 00000 0000 n kvdGudFvdNudM vdFudEvdMudL that has a nontrivial solution (1,-kn0) only if: 0det 0000 0000         vdGudFvdNudM vdFudEvdMudL or:       0 2 000 2 0  vdNFMGvdudNEGLudMEFL or:       0 0 0 2 0 0                  NFMG vd ud NEGL vd ud MEFL Differential Geometry in the 3D Euclidean Space
  • 78. 78 SOLO Principal Curvatures and Directions (continue – 8)  vur ,  rd udru  vdrv P O N 1C k 2C k  1C 2C We obtained: This equation will define the two Principal Directions 2211 21 & vdrudrrvdrudrr vunvun                  021 21 2 2 1 1 2 2 1 1 2112212121                              vdvdG MEFL NEGL F MEFL NFMG E vdvdG vd ud vd ud F vd ud vd ud E vdvdrrvdudvdudrrududrrrr vVvuuunn        0 0 0 2 0 0                  NFMG vd ud NEGL vd ud MEFL From the equation above we have:        MEFL NFMG vd ud vd ud MEFL NEGL vd ud vd ud       2 2 1 1 2 2 1 1 Let compute the scalar product of the Principal Direction Vectors: The Principal Direction Vectors are perpendicular. Differential Geometry in the 3D Euclidean Space
  • 79. 79 SOLO Principal Curvatures and Directions (continue – 9)  vur ,  rd udru  vdrv P O N 1C k 2C k  1C 2C Since the two Principal Directions are orthogonal 21 21 & vdrrudrr vnun   they must satisfy the equation: Let perform a coordinate transformation to the Principal Direction:  vu,       0 2 000 2 0  vdNFMGvdudNEGLudMEFL    21 ,0&0, vdud or:   0 2 1  udMEFL   0 2 2  vdNFMG 0 NFMG 01 ud 0 MEFL 02 vd 0E 0G 0 0   NrM rrF vu vu   at P Definition: A Line of Curvature is a curve whose tangent at any point has a direction coinciding with a principal direction at that point. The lines of curvature are obtained by solving the previous differential equation Differential Geometry in the 3D Euclidean Space
  • 80. 80 SOLO Principal Curvatures and Directions (continue – 10)  vur ,  rd udru  vdrv P O N 1C k 2C k  1C 2C Suppose (du0,dv0) is a Principal Direction, then they must satisfy the equations: Rodriguez Formula NrNrL uuuu   NrNrNrM vuuvvu   NrNrN vvvv                0 0 0000 0000 0 0 vdGudFkvdNudM vdFudEkvdMudL n n              0 0 0000 0000 0 0 vdrrudrrkvdNrudNr vdrrudrrkvdNrudNr vvvunvvuv vuuunvuuu   uu rrE   vu rrF   vv rrG                  0 0 0000 0000 0 0 vvunvu uvunvu rvdrudrkvdNudN rvdrudrkvdNudN            0 0 0 0 vn un rrdkNd rrdkNd   But are in the tangent plane at P since and are, and the vectors and are independent, therefore: rdkNd n  0  Nd  rd  vr  ur  00   rdkNd n The direction (du0,dv0) is a Principal Direction on a point on a surface if and only if from some scalar k, and satisfy:00 vdNudNNd vu   00 vdrudrrd vu   rdkNd   Rodriguez Formula We found: Differential Geometry in the 3D Euclidean Space Table of Contents
  • 81. 81 SOLO Conjugate Directions  vur ,  rd udru  vdrv P O N  Q NdN   l Let P (u,v) and Q (u+du,v+dv) neighboring points on a surface. The tangent planes to the surface at p and Q intersect along a straight line L. Now let Q approach P along a given direction (du/ dv=const= PQ), then the line l will approach a limit LC. The directions PQ and LC are called Conjugate Directions. Let be the normal at P and the normal at Q.N  NdN   Let the direction of LC be given by: vrurr vu    Since LC is in both tangential planes at P and at Q we have:   0&0  NdNrNr       0 vdNudNvrurNdr vuvu           0 vdvNrvduNrudvNruduNr vvvuuvuu   We found vvuvvuuu NrNNrNrMNrL   && The previous relation becomes:   0 vdvNvduudvMuduL  Given (du,dv) there is only one conjugate direction (δu,δv) given by the previous equation. Differential Geometry in the 3D Euclidean Space Table of Contents
  • 82. 82 SOLO Asymptotic Lines The directions which are self-conjugate are called asymptotic directions. becomes:   0 vdvNvduudvMuduL  We see that the asymptotic directions are those for which the second fundamental form vanishes. Moreover, the normal curvature kn vanishes for this direction. Those curves whose tangents are asymptotic directions are called asymptotic lines. v u vd ud   If a direction (du,dv) is self-conjugate than and the equation of conjugate lines 02 22  vdNvdudMudL The conjugat and asymptotic lines were introduced by Charles Dupin in 1813 in “Dévelopments de Géométrie”. Pierre Charles François Dupin 1784 - 1873 http://www.groups.dcs.st-and.ac.uk/~history/Biographies/Dupin.html Differential Geometry in the 3D Euclidean Space Table of Contents
  • 83. 83 SOLO Vectors & Tensors in a 3D Space Scalar and Vector Fields Let express the cartesian coordinates (x, y, z) of any point, in a three dimensional space as a function of three curvilinear coordinates (u1, u2, u3), where:  dr constu 3 i  j  k  1 1 ud u r    2 2 ud u r    3 3 ud u r    constu 1 constu 2 curveu1 curveu2 curveu3                 zyxuuzyxuuzyxuu uuuzuuuyuuuxx ,,,,,,,, ,,,,,,,, 332211 321321321 Those functions are single valued with continuous derivatives and the correspondence between (x,y,z) and (u1,u2,u3) is unique (isomorphism). kzjyixr   or 3 3 2 2 1 1 ud u r ud u r ud u r rd               321 ,,,, uuuzyx     321 ,,,, uuuAzyxAA   Assume now that the scalars Φ and vectors are functions of local coordinates, cartesian (x,y,z) or general, curvilinear (u1,u2,u3) A  In general ( we can not assume that Φ and are functions of position). A     rAAr   , Table of Contents
  • 84. 84 SOLO Vectors & Tensors in a 3D Space Vector Differentiation  tAA  Let a vector function of a single parameter tA  Ordinary Derivative of Scalars and Vectors The Ordinary Derivative of the Vector is defined as       t tAttA td tAd t      0 lim  tA   t t A     tAttAA   If the limit exists we say that is continuous and differentiable in t. tA  Differentiation Formulas If are differentiable vector functions of a scalar t and φ is a differentiable scalar of t, then CBA  ,,   td Bd td Ad BA td d      td Bd AB td Ad BA td d        td Ad A td d A td d         td Cd BAC td Bd ACB td Ad CBA td d          td Bd AB td Ad BA td d                            td Cd BAC td Bd ACB td Ad CBA td d       Table of Contents
  • 85. 85 SOLO Vectors & Tensors in a 3D Space Vector Differentiation Partial Derivatives of Scalar and Vectors    321 ,,,, uuuzyx     321 ,,,, uuuAzyxAA   Assume now that the scalars Φ and vectors are functions of local coordinates, cartesian (x,y,z) or general, curvilinear (u1,u2,u3) A  The partial derivatives are defined as follows       1 3213211 0 1 321 ,,,, lim ,, 1 u uuuuuuu u uuu u              2 3213221 0 2 321 ,,,, lim ,, 2 u uuuuuuu u uuu u              3 3213321 0 3 321 ,,,, lim ,, 3 u uuuuuuu u uuu u              1 3213211 0 1 321 ,,,, lim ,, 1 u uuuAuuuuA u uuuA u              2 3213221 0 2 321 ,,,, lim ,, 2 u uuuAuuuuA u uuuA u              3 3213321 0 3 321 ,,,, lim ,, 3 u uuuAuuuuA u uuuA u        Higher derivatives are also defined                                                                                           2 3 2 1 2 31 3 1212 2 2121 2 33 2 3 2 22 2 2 2 11 2 1 2 && && u A uuu A u A uuu A u A uuu A u A uu A u A uu A u A uu A   Table of Contents
  • 86. 86 SOLO Vectors & Tensors in a 3D Space Vector Differentiation Differentials of Vectors 3 3 2 2 1 1 ud u A ud u A ud u A zd z A yd y A xd x A Ad                     If     321321 111111,,,, 321 uAuAuAzAyAxAuuuAzyxAA uuuzyx        321321 111111111 321321 udAudAudAuAduAduAdzAdyAdxAdAd uuuuuuzyx     BdABAdBAd     BdABAdBAd     CdBACBdACBAdCBAd           CdBACBdACBAdCBAd   then If are differentiable vector functions of a scalar t.CBA  ,, Table of Contents
  • 87. 87 SOLO Vectors & Tensors in a 3D Space The Vector Differential Operator Del (, Nabla) We define the Vector Differential Operator Del (, Nabla) in Cartesian Coordinates as: z z y y x x 111:          This operator has double properties: (a) of a vector, (b) of a differential Gradient: Nabla operates on a Scalar or Vector Field z z y y x x z z y y x x 111111:                          zz z A yz z A xz z A zy y A yy y A xy y A zx x A yx x A xx x A zAyAxAz z y y x x A zyx zyx zyx zyx 111111 111111 111111 111111:                                            a scalar a dyadic
  • 88. 88 SOLO Vectors & Tensors in a 3D Space The Vector Differential Operator Del (, Nabla) (continue) We define the Vector Differential Operator in Cartesian Coordinates as: z z y y x x 111:          This operator has double properties: (a) of a vector, (b) of a differential Divergence: Nabla performs a Scalar Product on a Vector Field   z A y A x A zAyAxAz z y y x x A zyx zyx                        111111:  Curl (Rotor): Nabla performs a Vector Product on a Vector Field   z y A x A y x A z A x z A y A AAA zyx zyx zAyAxAz z y y x x A xyzxyz zyx zyx 111 111 111111:                                                          Table of Contents
  • 89. 89 SOLO Vectors & Tensors in a 3D Space Scalar Differential Let find the differentials of:    321 ,,,, uuuzyx  3 3 2 2 1 1 ud u ud u ud u zd z yd y xd x d                     rdzzdyydxxdz z y y x x d                 111111 Since      zyxuuzyxuuzyxuu ,,,,,,,, 332211  We obtain rduudrduudrduud   332211 ,, rdu u u u u u ud u ud u ud u d                             3 3 2 2 1 1 3 3 2 2 1 1 Comparing with we obtainrdd                             3 3 2 2 1 13 3 2 2 1 1 u u u u u uu u u u u u Using the Gradient definition: z z y y x x 111:          or 3 3 2 2 1 1 : u u u u u u          in general curvilinear coordinates Table of Contents
  • 90. 90 SOLO Vectors & Tensors in a 3D Space Vector Differential Let find the differentials of:    321 ,,,, uuuAzyxAA   3 3 2 2 1 1 ud u A ud u A ud u A zd z A yd y A xd x A Ad                         ArdzAyAxA z zd y yd x xd zdz z A y z A x z A ydz y A y y A x y A xdz x A y x A x x A Ad zyx zyxzyx zyx                                                              111 111111 111   ArdA u u u u u urdrdu u A u u A u u A Ad                                      3 3 2 2 1 13 3 2 2 1 1 rduudrduudrduud   332211 ,, and 3 3 2 2 1 1 : u u u u u u            ArdAd  Therefore In Cartesian Coordinates: In General Curvilinear Coordinates using Table of Contents
  • 91. 91 Vector AnalysisSOLO     Linearity of operator          Differentiability of operator   BABA   Linearity of operator   BABA   Linearity of operator   AAA    Differentiability of operator   AAA    Differentiability of operator Differential Identities
  • 92. 92 Vector AnalysisSOLO Differential Identities              BAAB BAAB BABABA BA BA                 AAA cbacabcba   2   0 0    aa      0 0 baabaa A      
  • 93. 93 Vector AnalysisSOLO Differential Identities          ABBAABBABA        BABABA B        ABBAAB A                ABBABABABAAB BA BA                  BAABABBABA        BABABA BA        ABABBA AAA        BABABA BBB  
  • 94. 94 Vector AnalysisSOLO         Differential Identities Summary   BABA     BABA     AAA      AAA             ABBAABBABA            BAABABBABA        BAABBA       AAA  2  0    0 A     AAAAA        2/ 2 Table of Contents
  • 95. 95 SOLO Vectors & Tensors in a 3D Space Curvilinear Coordinates in a Three Dimensional Space Let express the cartesiuan coordinates (x, y, z) of any point, in a three dimensional space as a function of three curvilinear coordinates (u1, u2, u3), where:  dr constu 3 i  j  k  1 1 ud u r    2 2 ud u r    3 3 ud u r    constu 1 constu 2 curveu1 curveu2 curveu3                 zyxuuzyxuuzyxuu uuuzuuuyuuuxx ,,,,,,,, ,,,,,,,, 332211 321321321 Those functions are single valued with continuous derivatives and the correspondence between (x,y,z) and (u1,u2,u3) is unique (isomorphism). kzjyixr   3 3 2 2 1 1 3 333 2 222 1 111 3 3 12 2 1 1 3 3 12 2 1 1 3 3 12 2 1 1 ud u r ud u r ud u r udk u z j u y i u x udk u z j u y i u x udk u z j u y i u x kud u z d u z ud u z jud u y d u y ud u y iud u x d u x ud u x kzdjydixdrd                                                                                                             or 3 3 2 2 1 1 ud u r ud u r ud u r rd           
  • 96. 96 SOLO Vectors & Tensors in a 3D Space Curvilinear Coordinates in a Three Dimensional Space (continue – 1) 3 3 2 2 1 1 ud u r ud u r ud u r rd            Let define: 3,2,1: 1     i u r r iu   If and are linear independent (i.e. if and only if αi = 0 i=1,2,3) then they form a base of the space E3. 21 , uu rr  3u r  0 3 1  i ui i r We have also:   3,2,1,,1  irdzyxuud i  We can write:         3 1 2 1 1 11 1 321 ,, udurudurudurrdzyxuud uuu   Because du1, du2, du3 are independent increments the precedent equation requires: 001 111 321  ururur uuu  Similarly by multiplying by and we obtain:rd  2 u 3 u         ji ji uru u r j i j u j i 0 1 1    Therefore and are reciprocal systems of vectors.321 ,, uuu rrr  321 ,, uuu   dr constu 3 i  j  k  1 1 ud u r    2 2 ud u r    3 3 ud u r    constu 1 constu 2 curveu1 curveu2 curveu3
  • 97. 97 SOLO Vectors & Tensors in a 3D Space Curvilinear Coordinates in a Three Dimensional Space (continue – 2) We proved that reciprocal systems of vectors are related by: and are reciprocal systems of vectors.321 ,, uuu rrr  321 ,, uuu       321 21 321 13 321 32 ,, , ,, , ,, 321 uuu uu uuu uu uuu uu rrr rr u rrr rr u rrr rr u                  321 21 321 13 321 32 ,, , ,, , ,, 321 uuu uu r uuu uu r uuu uu r uuu           and    1,,,, 321 321  uuurrr uuu  or 1 ,, ,, ,, ,, 321 321 333 222 111 333 222 111                                                    zyx uuu J uuu zyx J z u y u x u z u y u x u z u y u x u u z u y u x u z u y u x u z u y u x where is the Jacobian of x,y,z with respect to u1, u2, u3.         321 ,, ,, uuu zyx J Carl Gustav Jacob Jacobi 1804 - 1851  dr constu 3 i  j  k  1 1 ud u r    2 2 ud u r    3 3 ud u r    constu 1 constu 2 curveu1 curveu2 curveu3
  • 98. 98 SOLO Vectors & Tensors in a 3D Space Curvilinear Coordinates in a Three Dimensional Space (continue – 3)   grrr u z u y u x u z u y u x u z u y u x uuu zyx J uuu                            321 ,,det: ,, ,, 333 222 111 321  If is nonsingular the transformation from x,y,z to u1, u2, u3 is unique.        321 ,, ,, uuu zyx J  dr constu 3 i  j  k  1 1 ud u r    2 2 ud u r    3 3 ud u r    constu 1 constu 2 curveu1 curveu2 curveu3 g rr u g rr u g rr u uuuuuu 211332 321 ,,             211332 321 ,, uugruugruugr uuu   Table of Contents