SlideShare a Scribd company logo
Inner-Outer and Spectral Factorizations
SOLO HERMELIN
Updated: 27.05.11
1
Table of Content
SOLO
Inner-Outer and Spectral Factorizations
2
Linear Quadratic Regulator (LQR) Problem
SOLO
Inner-Outer and Spectral Factorizations
3
Given the Linear Time-Invariant System
( ) 00 xxuBxAx =+=
and the Quadratic Cost Function:
[ ] TT
T
TT
c PPRRdt
u
x
RS
SP
uxJ =>=











= ∫
∞
&0
2
1
0
The Optimal Regulator that Minimizes the Cost Function Jc is given by the following
procedure:
Define the Hamiltonian of the Optimization Problem:
( ) [ ] ( )uBxA
u
x
RS
SP
uxuxH T
T
TT
++











= λλ
2
1
,,
The Euler-Lagrange Equations are:
( )λλ
λ
λ
λ
TTTT
T
T
T
BxSRuBxSuR
u
H
uSxPA
x
H
td
d
uBxA
H
td
xd
+−=⇒++=
∂
∂
=
−−−=





∂
∂
−=
+=





∂
∂
=
−1
0
Linear Quadratic Regulator (LQR) Problem
SOLO
Inner-Outer and Spectral Factorizations
4
( )λλ
λ
λ
λ
TTTT
T
T
T
BxSRuBxSuR
u
H
uSxPA
x
H
td
d
uBxA
H
td
xd
+−=⇒++=
∂
∂
=
−−−=





∂
∂
−=
+=





∂
∂
=
−1
0
or: ( )
( ) ( ) 





=













−−−−
−−
=








−−
−−
λλλ
x
A
x
SRBASRSP
BRBSRBAx
HTTT
TT
11
11


( )
( ) ( ) 







−−−−
−−
=
−−
−−
TTT
TT
H
SRBASRSP
BRBSRBA
A
11
11
:
We want to find X (t) such that: , then( ) ( ) ( )txtXt =λ
( ) ( )XBSRKxKxXBSRu TT
cc
TT
+=⇒−=+−= −− 11
:
Linear Quadratic Regulator (LQR) Problem
SOLO
Inner-Outer and Spectral Factorizations
5
( )
( ) ( ) 





=













−−−−
−−
=








−−
−−
λλλ
x
A
x
SRBASRSP
BRBSRBAx
HTTT
TT
11
11


We want to find X (t) such that: , then( ) ( ) ( )txtXt =λ
( ) ( ) ( ) ( ) ( )txtXtxtXt  +=λ
( ) ( ) ( )[ ]xXBRBxSRBAXxXxXSRBAxSRSP TTTTT 1111 −−−−
−−+=−−−− 
( ) ( ) ( )[ ] ( )txxSRSPXBRBXSRBAXXSRBAX TTTTT
∀=−+−−+−+ −−−−
01111
( ) ( ) ( )TTTTT
SRSPXBRBXSRBAXXSRBAX 1111 −−−−
−−+−−−−=
We obtain the following Differential Riccati Equation for :X
( ) ( ) ( )
[ ]
( )
( ) ( )
[ ]
( ) ( ) 0
0
1
11
11
1111
=+++−+=






−=













−−−−
−−
−=
−−+−−−−=
−
−−
−−
−−−−
PXBSRXBSAXXA
X
I
AIX
X
I
SRBASRSP
BRBSRBA
IX
SRSPXBRBXSRBAXXSRBA
TTTTTT
HTTT
TT
TTTTT
If a Steady-state Solution exists for t→∞ then and:0→X
Continuous
Algebraic
Riccati
Equation
(CARE)
Linear Quadratic Regulator (LQR) Problem
SOLO
Inner-Outer and Spectral Factorizations
Theorem 1 A Unique Stabilizing
( A+BKc=[A-BR-1
(ST
+BT
X)] is Stable)
Solution of CARE, X=XT
, is obtained iff:
a.(A,B) is Stabilizable
b.Re[λi(AH)]≠0 for all i=1,2,…,2n
The Unique Stabilizing Solution is denoted X=Ric [AH]
Proof
a. It is clear that the condition that (A,B) is Stabilizable is a necessary condition to
stabilize A+BKc.
b. Rewrite
( )
( ) ( )
( )
( )[ ] 





−







+−−
−+−






=








−−−−
−−
=
−
−−
−−
−−
IX
I
XBSRBA
BRBXBSRBA
IX
I
SRBASRSP
BRBSRBA
A TTT
TTT
TTT
TT
H
0
0
0
:
1
11
11
11
If λi is an eigenvalue of AH, - λi is also; hence AH has n eigenvalues λi s.t. Re[λi] ≤ 0
and n eigenvalues λj s.t. Re[λj] ≥ 0. If AH has no eigenvalue of jω axis, then we can
find a solution X s.t. all the eigenvalues of A-BR-1
(ST
+BT
X)=A+BKc are the stable
eigenvalues of AH.
( ) ( ) 01
1
1 =+++−+ −
PXBSRXBSAXXA TTTTTT
Linear Quadratic Regulator (LQR) Problem
SOLO
Inner-Outer and Spectral Factorizations
Theorem 1 A Unique Stabilizing
( A+BKc=[A-BR-1
(ST
+BT
X)] is Stable)
Solution of CARE is obtained iff:
a.(A,B) is Stabilizable
b.Re[λi(AH)]≠0 for all i=1,2,…,2n
The Unique Stabilizing Solution is denoted X=Ric [AH]
Proof (continue -1)
c. Assume that there are two Stabilizing Solutions X1=X1
T
and X2 =X2
T
that satisfy the
CARE ( ) ( )
( ) ( ) 0
0
2
1
222
1
1
111
=+++−+
=+++−+
−
−
PXBSRXBSAXXA
PXBSRXBSAXXA
TTTTTT
TTTTTT
Subtracting those two equations we obtain:
( ) ( ) ( ) ( )
0
0
1
1
21
1
2
2
1
21
1
1
1
2121
1
2121
=−+
−−−−−−−+−
−−
−−−−
  
XBRBXXBRBX
XBRBXXBRBXSRBXXXXBRSAXXXXA
TT
TTTTT
or: ( )[ ] ( ) ( ) ( )[ ] 01
1
21212
1
=+−−+−+− −−
XBSRBAXXXXXBSRBA TTTTT
Linear Quadratic Regulator (LQR) Problem
SOLO
Inner-Outer and Spectral Factorizations
Theorem 1 A Unique Stabilizing
( A+BKc=[A-BR-1
(ST
+BT
X)] is Stable)
Solution of CARE is obtained iff:
a.(A,B) is Stabilizable
b.Re[λi(AH)]≠0 for all i=1,2,…,2n
The Unique Stabilizing Solution is denoted X=Ric [AH]
Proof (continue -2)
c. Assume that there are two Stabilizing Solutions X1=X1
T
and X2 =X2
T
that satisfy the
CARE
This is a Sylvester Matrix Equation and since both X1 and X2 are Stabilizing
Solutions we must have:
( )[ ] ( ) ( ) ( )[ ] 01
1
21212
1
=+−−+−+− −−
XBSRBAXXXXXBSRBA TTTTT
( )[ ]{ }
( )[ ]{ }
( )[ ]{ } ( )[ ]{ } jiXBSRBAXBSRBA
njXBSRBA
niXBSRBA TT
j
TT
iTT
j
TT
i
,0ReRe
,,10Re
,,10Re
2
1
1
1
2
1
1
1
∀≠+−++−⇒




=∀<+−
=∀<+− −−
−
−
λλ
λ
λ


Therefore the solution of the Sylvester Matrix Equation is Unique, and by
substitution we can see that X1 = X2 is the Unique Solution.
q.e.d.
Linear Quadratic Regulator (LQR) Problem
SOLO
Inner-Outer and Spectral Factorizations
Proof (1)
(1) The Matrix YT
Z is Symmetric.
(2) If Y-1
exists, the X=ZY-1
is the Solution of CARE such that the Matrix
((A-BR-1
ST
)-BR-1
BT
X) has the Eigenvalues λ1,λ2,…,λn. X is Symmetric.
(3) If (A,B) Stabilizable and Re[λi(AH)]≠0 for all i=1,2,…,2n (Theorem 1) Y-1
exists.
Theorem 2 Let the columns of the Matrix be the Eigenvectors
of AH corresponding to the Stable Eigenvalues λ1,λ2,…,λn, and J the corresponding
Jordan Matrix. Then
( )nxnnxn
RZYR
Z
Y
∈∈





,2
Define TTT
SRSPQBRBWSRBAE 111
:,:,: −−−
−==−=
( )
( ) ( ) 





−−
−
=








−−−−
−−
=
−−
−−
TTTT
TT
H
EQ
WE
SRBASRSP
BRBSRBA
A
11
11
:



=−−
=−
⇒





=











−−
−
⇒





=





JZZEQY
JYZWYE
J
Z
Y
Z
Y
EQ
WE
J
Z
Y
Z
Y
A TTHWe have
( ) ZYJZWZZEYZYJWZEYJYZWYE TTTTTTTTTTT
=−⇒=−⇒=−
JZYQYYZEYJZYZEYQYYJZZEQYY TTTTTTTTTT
−−=⇒=−−⇒=−−
Linear Quadratic Regulator (LQR) Problem
SOLO
Inner-Outer and Spectral Factorizations
Proof (1) (continue – 1)
Since –YT
QT
Y-ZT
WZ is symmetric so is (YT
Z)J+JT
(YT
Z) or
( ) ( )ZYJJZYZWZQYYZWZZYJJZYQYY
JZYQYYZEY
ZYJZWZZEY TTTTTTTTTT
TTTT
TTTTT
+=−−⇒+=−−⇒




−−=
=−
( ) ( ) ( ) ( )[ ] ( ) ( )TTTTTTTTTTT
ZYJJZYZYJJZYZYJJZY +=+=+
Because J represents the stable Eigenvalues Re[λi(J)+λj(J)]≠0 for all I,j=1,…,n, the
Unique Solution of the Sylvester Matrix Equation is
( ) ( )[ ] ( ) ( )[ ] [ ]0=−+−
TTTTTTT
ZYZYJJZYZY Sylvester Matrix Equation
( ) ( ) [ ] ( ) ( ) SymmetricisZYZYZYZYZY TTTTTTT
=⇒=− 0
(1) The Matrix YT
Z is Symmetric.
(2) If Y-1
exists, the X=ZY-1
is the Solution of CARE such that the Matrix
((A-BR-1
ST
)-BR-1
BT
X) has the Eigenvalues λ1,λ2,…,λn. X is Symmetric.
(3) If (A,B) Stabilizable and Re[λi(AH)]≠0 for all i=1,2,…,2n (Theorem 1) Y-1
exists.
Theorem 2 Let the columns of the Matrix be the Eigenvectors
of AH corresponding to the Stable Eigenvalues λ1,λ2,…,λn, and J the corresponding
Jordan Matrix. Then
( )nxnnxn
RZYR
Z
Y
∈∈





,2
Linear Quadratic Regulator (LQR) Problem
SOLO
Inner-Outer and Spectral Factorizations
Proof (2)



=−−
=−
JZZEQY
JYZWYE
T
111 −−−
=−⇒=− YJYYZWEYJYZWYE
1111111 −−−−−−−
=−⇒=− YJZYZWYZEYZYJYYZWEYZ
111 −−−
=−−⇒=−− YJZYZEQYJZZEQY TT
( ) ( ) ( ) ( ) [ ]01111
=+−+ −−−−
QYZWYZEYZYZET
Define TTT
SRSPQBRBWSRBAE 111
:,:,: −−−
−==−=
Therefore X=ZY-1
is the Unique Stabilizing Solution of the CARE
( ) ( ) ( ) [ ]01111
=−+−−+− −−−− TTTTT
SRSPXBRBXSRBAXXSRBA q.e.d.
(1) The Matrix YT
Z is Symmetric.
(2) If Y-1
exists, the X=ZY-1
is the Solution of CARE such that the Matrix
((A-BR-1
ST
)-BR-1
BT
X) has the Eigenvalues λ1,λ2,…,λn. X is Symmetric.
(3) If (A,B) Stabilizable and Re[λi(AH)]≠0 for all i=1,2,…,2n (Theorem 1) Y-1
exists.
Theorem 2 Let the columns of the Matrix be the Eigenvectors
of AH corresponding to the Stable Eigenvalues λ1,λ2,…,λn, and J the corresponding
Jordan Matrix. Then
( )nxnnxn
RZYR
Z
Y
∈∈





,2
Assume Y-1
exists:
Linear Quadratic Regulator (LQR) Problem
SOLO
Inner-Outer and Spectral Factorizations
Proof (2) (continue – 1)
q.e.d.
From (1) YT
Z is Symmetric, so
( ) YZZYZY TTTT
==
TTTTTTTT
ZYXZXYZYZYYYZZY −−−
=⇒=⇒=⇒= 11
1−
= YZX
( ) TTTT
XYZZYX === −− 1
X is Symmetric
(1) The Matrix YT
Z is Symmetric.
(2) If Y-1
exists, the X=ZY-1
is the Solution of CARE such that the Matrix
((A-BR-1
ST
)-BR-1
BT
X) has the Eigenvalues λ1,λ2,…,λn. X is Symmetric.
(3) If (A,B) Stabilizable and Re[λi(AH)]≠0 for all i=1,2,…,2n (Theorem 1) Y-1
exists.
Theorem 2 Let the columns of the Matrix be the Eigenvectors
of AH corresponding to the Stable Eigenvalues λ1,λ2,…,λn, and J the corresponding
Jordan Matrix. Then
( )nxnnxn
RZYR
Z
Y
∈∈





,2
References
SOLO
13
S. Hermelin, “Robustness and Sensitivity Design of Linear Time-Invariant Systems”,
PhD Thesis, Stanford University, 1986
G.Stein, J.Doyle, B.Francis, “Advances in Multivariable Control”, ONR/Honeywell
Workshop, 1984
Inner-Outer and Spectral Factorizations
T. Kailath, A.H. Sayed, B. Hassibi, “Linear Estimation”. Prentice Hall, 2000
14
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 – 2013
Stanford University
1983 – 1986 PhD AA
Sylvester Matrix Equation : Anxn Xnxm+Xnxm Bmxm=Cnxm
SOLO
15
Consider the Sylvester Matrix Equation
where Anxn, Bmxm, Cnxm are given matrices. Then there
exists a Unique Solution Xnxm if and only if
Matrices
James Joseph Sylvester
(1814 – 1887)
nxmmxmnxmnxmnxn CBXXA =+
( )[ ] ( )[ ] njiAA nxnjnxni ,,1,0ReRe =∀≠+ λλ
∫
∞
=
0
dteCeX tB
nxm
tA
nxm
mxmnxn
Note : If B=AT
: Lyapunov Equation
The Necessary and Sufficient Condition for the existence of a
Unique Solution is
nxn
T
nxnnxnnxnnxn CAXXA =+
In particular if λi(A)=- λj(A) = j ω a Unique Solution
does not exist.
Aleksandr Mikhailovich
Lyapunov
1857 - 1918
( ) ( ) mjniBA mxmjnxni ,,1,,,10  ==∀≠+ λλ
the Unique Solution is given by
If ( )[ ] ( )[ ] mjniBA mxmjnxni ,,1,,,10ReRe  ==∀<+ λλ
Sylvester Matrix Equation : Anxn Xnxm+Xnxm Bmxm=Cnxm
SOLO
Matrices
Proof
Let rewrite
[ ]0
21
22221
11211
21
22221
11211
21
22221
11211
21
22221
11211
21
22221
11211
=












−
























+
























=
−+
nmnn
m
m
mmmm
m
m
nmnn
m
m
nmnn
m
m
nnnn
n
n
nxmmxmnxmnxmnxn
ccc
ccc
ccc
bbb
bbb
bbb
xxx
xxx
xxx
xxx
xxx
xxx
aaa
aaa
aaa
CBXXA












































=
nmnn
m
m
nnnn
n
n
nxmnxn
xxx
xxx
xxx
aaa
aaa
aaa
XA








21
22221
11211
21
22221
11211
( ) ( )
( )
[ ]nxmnxnc
mnxn
nxn
nxn
Xvec
m
nm
m
n
n
nxn
nxn
nxn
nxmcnxnm XAvec
cA
cA
cA
c
x
x
c
x
x
c
x
x
A
A
A
XvecAI
nxmc
=












=



























































=⊗










2
1
1
2
2
12
1
1
11
00
00
00
( ) [ ]
( )
( )
  





nxmc Xvec
xmn
m
nm
m
n
n
mcnxmc
c
x
x
c
x
x
c
x
x
cccvecXvec
1
1
2
2
12
1
1
11
21 :
⋅















































==
Define the
Vectorization
Operator vec:
Sylvester Matrix Equation : Anxn Xnxm+Xnxm Bmxm=Cnxm
SOLO
Matrices
Proof (continue – 1)
Let rewrite
[ ]0
21
22221
11211
21
22221
11211
21
22221
11211
21
22221
11211
21
22221
11211
=












−
























+
























=
−+
nmnn
m
m
mmmm
m
m
nmnn
m
m
nmnn
m
m
nnnn
n
n
nxmmxmnxmnxmnxn
ccc
ccc
ccc
bbb
bbb
bbb
xxx
xxx
xxx
xxx
xxx
xxx
aaa
aaa
aaa
CBXXA




















( ) ( )
( )
[ ]mxmnxmc
mmmmm
mm
mm
Xvec
m
nm
m
n
n
nmmnmnm
nmnm
nmnn
nxmcn
T
mxm BXvec
cbcbcb
cbcbcb
cbcbcb
c
x
x
c
x
x
c
x
x
IbIbIb
IbIbIb
IbIbIb
XvecIB
nxmc
=












+++
+++
+++
=



























































=⊗













2211
2222112
1221111
1
2
2
12
1
1
11
21
22212
12111
























=
mmmm
m
m
nmnn
m
m
mxmnxm
bbb
bbb
bbb
xxx
xxx
xxx
BX








21
22221
11211
21
22221
11211
Sylvester Matrix Equation : Anxn Xnxm+Xnxm Bmxm=Cnxm
SOLO
Matrices
Proof (continue – 2)
We have
[ ] [ ] [ ] [ ] [ ]0=−+=−+ nxmcmxmnxmcnxmnxncnxmmxmnxmnxmnxnc CvecBXvecXAvecCBXXAvec
( ) ( ) [ ]nxmcnxmcn
T
mxmnxnm CvecXvecIBAI =⊗+⊗or
Let use the Jordan decomposition for Anxn and Bmxm
11
&
−−
== TTT
BBB
T
mxmAAAnxn SJSBSJSA
( ) ( )
( ) ( ) ( ) ( )
n
TTT
m
TT
TTT
I
AABBBAAA
I
BB
nBBBAAAmn
T
mxmnxnm
SSSJSSJSSS
ISJSSJSIIBAI
1111
11
−−−−
−−
⊗+⊗=
⊗+⊗=⊗+⊗
( )
( )( ) ( ) ( )
( ) ( )( )
( ) ( )
( )( )
( )( )
( )
( )
    
111
111
1111
−−−
−−−
⊗
−−
⊗⊗⊗⊗
−−
⋅⊗⋅=⊗⊗
⊗=⊗
⊗⊗+⊗⊗=
ATB
T
nTBATB
TT
ATBAm
TT
SS
AB
IJSS
ABB
SSJI
AABAB
DBCADCBA
BABA
SSSJSSJSSS
( )( )( ) 1−
⊗⊗+⊗⊗=⊗+⊗ ABnBAmABn
T
mxmnxnm SSIJJISSIBAI T
T
T
This equation has a Unique Solution iff is Nonsingular.( )n
T
mxmnxnm IBAI ⊗+⊗
Sylvester Matrix Equation : Anxn Xnxm+Xnxm Bmxm=Cnxm
SOLO
Matrices
Proof (continue – 3)
where
( )( )( ) 1−
⊗⊗+⊗⊗=⊗+⊗ ABnBAmABn
T
mxmnxnm SSIJJISSIBAI T
T
T
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]











=
lJ
J
J
J




00
00
00
2
1
[ ]




















=
i
i
i
i
i
xkki ii
J
λ
λ
λ
λ
λ
0000
1000
0000
0010
0001






Ji are Upper-Triangular Matrices
( )nBAm IJJI T ⊗+⊗Therefore is also Upper Triangular with diagonal elements λi[A] + λj[B]
(i=1,…,n, j=1,…,m), that are the Eigenvalues of and therefore to the
Similar Matrix . This Matrix is Nonsingular iff
( )nBAm IJJI T ⊗+⊗
( )n
T
mxmnxnm IBAI ⊗+⊗
( ) ( ) mjniBA mxmjnxni ,,1,,,10  ==∀≠+ λλ
Sylvester Matrix Equation : Anxn Xnxm+Xnxm Bmxm=Cnxm
SOLO
Matrices
Since ( )[ ] ( )[ ] [ ] [ ]0lim,0lim,,1,,,10ReRe ====∀<+
∞→∞→
tB
t
tA
t
mxmjnxni eemjniBA λλ
Proof (continue – 4)
Let rewrite
[ ] [ ] 





=











−
=−+=
nxm
m
Snnxm
nxm
m
nxnnxm
mxm
nnxmnxmmxmnxmnxmnxn
X
I
AIX
X
I
AC
B
IXCBXXA
0
0
( ) ( ) nxmnxm
tB
nxm
tA
nxm CPeCetP mxmnxn
−=⇒−= 0:Define
By differentiation
( )
mxmnxmnxmnxnmxm
tB
nxm
tAtB
nxm
tA
nxn
nxm
BPPABeCeeCeA
td
tPd mxmnxnmxmnxn
−−=−−=
Let Integrate the Differential Equation
( ) ( ) ( )
mxmnxmnxmnxn
nxm
nxmnxm BdtPdtPAdt
td
tPd
PP 







−+







−==−∞ ∫∫∫
∞∞∞
000
0
We have
and
where
∫
∞
=
0
dteCeX tB
nxm
tA
nxm
mxmnxn
( ) [ ]0=∞nxmP
mxmnxmnxmnxnmxmnxmnxmnxnnxm BXXABdtPdtPAC +=







−+







−= ∫∫
∞∞
00
Matrix Differential Riccati Equation
SOLO
Inner-Outer and Spectral Factorizations
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tDtXtCtXtBtXtXtAtX +++=
where all matrices are nxn and A (t),B (t), C(t), D(t) are integrable over an
interval t0 ≤ t ≤ tf.
This Matrix Differential Equation can be decompose in the following 2 Linear
Differential Equations:
The Nonlinear Matrix Differential Riccati Equation is given by
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )tZtAtYtDtZ
tZtCtYtBtY
+=
−−=


If in the interval t0 ≤ t ≤ tf the Matrix Y(t) is nonsingular, then the solution of the
Riccati Differential Equation is ( ) ( ) ( ) 10
1
ttttYtZtX ≤≤= −
To verify we have ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tY
td
tYd
tYtY
td
d
tY
td
d
tZtY
td
tZd
tX
td
d 11111
& −−−−−
−=+=
( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tXtCtXtBtXtXtAtD
tYtZtCtYtBtYtZtYtZtAtYtDtX
td
d
+++=
−−−+= −−− 111
Matrix Differential Riccati Equation
SOLO
Inner-Outer and Spectral Factorizations
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tDtXtCtXtBtXtXtAtX +++=
If yhe matrices are nxn and A ,B , C, D are constant, then
This Matrix Differential Equation can be decompose in the following 2 Linear
Differential Equations:
The Nonlinear Matrix Differential Riccati Equation is given by
( ) ( ) ( )
( ) ( ) ( )tZAtYDtZ
tZCtYBtY
+=
−−=


If in the interval t0 ≤ t ≤ tf the Matrix Y(t) is nonsingular, then the solution of the
Riccati Differential Equation is ( ) ( ) ( ) 10
1
ttttYtZtX ≤≤= −
Define ( )
( )
( ) 




 −−
=





=
AD
CB
G
tZ
tY
tW :&:
to obtain which have the solution( ) ( )tGWtW = ( ) ( )
( )0
0
tWetW ttG −
=

More Related Content

What's hot

Equation of motion of a variable mass system3
Equation of motion of a variable mass system3Equation of motion of a variable mass system3
Equation of motion of a variable mass system3
Solo Hermelin
 
4 stochastic processes
4 stochastic processes4 stochastic processes
4 stochastic processes
Solo Hermelin
 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulation
Solo Hermelin
 
5 cramer-rao lower bound
5 cramer-rao lower bound5 cramer-rao lower bound
5 cramer-rao lower bound
Solo Hermelin
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
Solo Hermelin
 
Introduction to Calculus of Variations
Introduction to Calculus of VariationsIntroduction to Calculus of Variations
Introduction to Calculus of Variations
Delta Pi Systems
 
Calculus of variations & solution manual russak
Calculus of variations & solution manual   russakCalculus of variations & solution manual   russak
Calculus of variations & solution manual russak
José Pallo
 
Dyadics
DyadicsDyadics
Dyadics
Solo Hermelin
 
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Solo Hermelin
 
4 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-24 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-2
Solo Hermelin
 
Prime numbers
Prime numbersPrime numbers
Prime numbers
Solo Hermelin
 
Chapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic SignalsChapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic Signals
Attaporn Ninsuwan
 
Seminar: Calculus of Variation
Seminar: Calculus of VariationSeminar: Calculus of Variation
Seminar: Calculus of Variation
Subhajit Pramanick
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
alexkhan129
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
Solo Hermelin
 
Equation of motion of a variable mass system1
Equation of motion of a variable mass system1Equation of motion of a variable mass system1
Equation of motion of a variable mass system1
Solo Hermelin
 
Unit v rpq1
Unit v rpq1Unit v rpq1
Unit v rpq1Babu Rao
 
Ppt of aem some special function
Ppt of aem some special functionPpt of aem some special function
Ppt of aem some special function
Nirali Akabari
 

What's hot (20)

Equation of motion of a variable mass system3
Equation of motion of a variable mass system3Equation of motion of a variable mass system3
Equation of motion of a variable mass system3
 
4 stochastic processes
4 stochastic processes4 stochastic processes
4 stochastic processes
 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulation
 
5 cramer-rao lower bound
5 cramer-rao lower bound5 cramer-rao lower bound
5 cramer-rao lower bound
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
 
Introduction to Calculus of Variations
Introduction to Calculus of VariationsIntroduction to Calculus of Variations
Introduction to Calculus of Variations
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Calculus of variations & solution manual russak
Calculus of variations & solution manual   russakCalculus of variations & solution manual   russak
Calculus of variations & solution manual russak
 
Dyadics
DyadicsDyadics
Dyadics
 
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
 
residue
residueresidue
residue
 
4 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-24 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-2
 
Prime numbers
Prime numbersPrime numbers
Prime numbers
 
Chapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic SignalsChapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic Signals
 
Seminar: Calculus of Variation
Seminar: Calculus of VariationSeminar: Calculus of Variation
Seminar: Calculus of Variation
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Equation of motion of a variable mass system1
Equation of motion of a variable mass system1Equation of motion of a variable mass system1
Equation of motion of a variable mass system1
 
Unit v rpq1
Unit v rpq1Unit v rpq1
Unit v rpq1
 
Ppt of aem some special function
Ppt of aem some special functionPpt of aem some special function
Ppt of aem some special function
 

Viewers also liked

11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
Solo Hermelin
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
Solo Hermelin
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
Solo Hermelin
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
Solo Hermelin
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
Solo Hermelin
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
Solo Hermelin
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
Solo Hermelin
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
Solo Hermelin
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
Solo Hermelin
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
Solo Hermelin
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
Solo Hermelin
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
Solo Hermelin
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
Solo Hermelin
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
Solo Hermelin
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
Solo Hermelin
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
Solo Hermelin
 

Viewers also liked (16)

11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
 
Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 

Similar to Inner outer and spectral factorizations

Comparison Theorems for SDEs
Comparison Theorems for SDEs Comparison Theorems for SDEs
Comparison Theorems for SDEs
Ilya Gikhman
 
eigenvalue
eigenvalueeigenvalue
eigenvalue
Asyraf Ghani
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
VjekoslavKovac1
 
Sawinder Pal Kaur PhD Thesis
Sawinder Pal Kaur PhD ThesisSawinder Pal Kaur PhD Thesis
Sawinder Pal Kaur PhD Thesis
Sawinder Pal Kaur
 
Levitan Centenary Conference Talk, June 27 2014
Levitan Centenary Conference Talk, June 27 2014Levitan Centenary Conference Talk, June 27 2014
Levitan Centenary Conference Talk, June 27 2014
Nikita V. Artamonov
 
OrthogonalFunctionsPaper
OrthogonalFunctionsPaperOrthogonalFunctionsPaper
OrthogonalFunctionsPaperTyler Otto
 
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
IOSR Journals
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
Purnima Pandit
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
Wireilla
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
ijfls
 
Active Controller Design for Regulating the Output of the Sprott-P System
Active Controller Design for Regulating the Output of the Sprott-P SystemActive Controller Design for Regulating the Output of the Sprott-P System
Active Controller Design for Regulating the Output of the Sprott-P System
ijccmsjournal
 
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docxMATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
andreecapon
 
Ols
OlsOls
1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf
d00a7ece
 
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
inventionjournals
 
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric SpacesSome Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
IJMER
 

Similar to Inner outer and spectral factorizations (20)

Ch07 7
Ch07 7Ch07 7
Ch07 7
 
Ch07 8
Ch07 8Ch07 8
Ch07 8
 
Comparison Theorems for SDEs
Comparison Theorems for SDEs Comparison Theorems for SDEs
Comparison Theorems for SDEs
 
eigenvalue
eigenvalueeigenvalue
eigenvalue
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
Ch07 6
Ch07 6Ch07 6
Ch07 6
 
Sawinder Pal Kaur PhD Thesis
Sawinder Pal Kaur PhD ThesisSawinder Pal Kaur PhD Thesis
Sawinder Pal Kaur PhD Thesis
 
Levitan Centenary Conference Talk, June 27 2014
Levitan Centenary Conference Talk, June 27 2014Levitan Centenary Conference Talk, June 27 2014
Levitan Centenary Conference Talk, June 27 2014
 
OrthogonalFunctionsPaper
OrthogonalFunctionsPaperOrthogonalFunctionsPaper
OrthogonalFunctionsPaper
 
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
Existence Theory for Second Order Nonlinear Functional Random Differential Eq...
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
 
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
APPROXIMATE CONTROLLABILITY RESULTS FOR IMPULSIVE LINEAR FUZZY STOCHASTIC DIF...
 
Active Controller Design for Regulating the Output of the Sprott-P System
Active Controller Design for Regulating the Output of the Sprott-P SystemActive Controller Design for Regulating the Output of the Sprott-P System
Active Controller Design for Regulating the Output of the Sprott-P System
 
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docxMATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
 
Ch05 2
Ch05 2Ch05 2
Ch05 2
 
Ols
OlsOls
Ols
 
1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf1- Matrices and their Applications.pdf
1- Matrices and their Applications.pdf
 
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
 
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric SpacesSome Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
Some Common Fixed Point Theorems for Multivalued Mappings in Two Metric Spaces
 

More from Solo Hermelin

2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft Warhead
Solo Hermelin
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerability
Solo Hermelin
 
15 sky cars
15 sky cars15 sky cars
15 sky cars
Solo Hermelin
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii
Solo Hermelin
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i
Solo Hermelin
 
7 air-to-air combat
7 air-to-air combat7 air-to-air combat
7 air-to-air combat
Solo Hermelin
 
Aerodynamics part iii
Aerodynamics   part iiiAerodynamics   part iii
Aerodynamics part iii
Solo Hermelin
 
Aerodynamics part ii
Aerodynamics   part iiAerodynamics   part ii
Aerodynamics part ii
Solo Hermelin
 
Aerodynamics part i
Aerodynamics   part iAerodynamics   part i
Aerodynamics part i
Solo Hermelin
 

More from Solo Hermelin (9)

2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft Warhead
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerability
 
15 sky cars
15 sky cars15 sky cars
15 sky cars
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i
 
7 air-to-air combat
7 air-to-air combat7 air-to-air combat
7 air-to-air combat
 
Aerodynamics part iii
Aerodynamics   part iiiAerodynamics   part iii
Aerodynamics part iii
 
Aerodynamics part ii
Aerodynamics   part iiAerodynamics   part ii
Aerodynamics part ii
 
Aerodynamics part i
Aerodynamics   part iAerodynamics   part i
Aerodynamics part i
 

Recently uploaded

Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
University of Rennes, INSA Rennes, Inria/IRISA, CNRS
 
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptxANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
RASHMI M G
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
Lokesh Patil
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
tonzsalvador2222
 
NuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyerNuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyer
pablovgd
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
University of Maribor
 
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdfTopic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
TinyAnderson
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
RenuJangid3
 
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
Wasswaderrick3
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
Columbia Weather Systems
 
Oedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptxOedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptx
muralinath2
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
yqqaatn0
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
silvermistyshot
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
muralinath2
 
Anemia_ types_clinical significance.pptx
Anemia_ types_clinical significance.pptxAnemia_ types_clinical significance.pptx
Anemia_ types_clinical significance.pptx
muralinath2
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Sérgio Sacani
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptxThe use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
MAGOTI ERNEST
 
Introduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptxIntroduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptx
zeex60
 

Recently uploaded (20)

Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
 
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptxANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
ANAMOLOUS SECONDARY GROWTH IN DICOT ROOTS.pptx
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
 
NuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyerNuGOweek 2024 Ghent programme overview flyer
NuGOweek 2024 Ghent programme overview flyer
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
 
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdfTopic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
Topic: SICKLE CELL DISEASE IN CHILDREN-3.pdf
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
 
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
 
Oedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptxOedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptx
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
 
Anemia_ types_clinical significance.pptx
Anemia_ types_clinical significance.pptxAnemia_ types_clinical significance.pptx
Anemia_ types_clinical significance.pptx
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptxThe use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
The use of Nauplii and metanauplii artemia in aquaculture (brine shrimp).pptx
 
Introduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptxIntroduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptx
 

Inner outer and spectral factorizations

  • 1. Inner-Outer and Spectral Factorizations SOLO HERMELIN Updated: 27.05.11 1
  • 2. Table of Content SOLO Inner-Outer and Spectral Factorizations 2
  • 3. Linear Quadratic Regulator (LQR) Problem SOLO Inner-Outer and Spectral Factorizations 3 Given the Linear Time-Invariant System ( ) 00 xxuBxAx =+= and the Quadratic Cost Function: [ ] TT T TT c PPRRdt u x RS SP uxJ =>=            = ∫ ∞ &0 2 1 0 The Optimal Regulator that Minimizes the Cost Function Jc is given by the following procedure: Define the Hamiltonian of the Optimization Problem: ( ) [ ] ( )uBxA u x RS SP uxuxH T T TT ++            = λλ 2 1 ,, The Euler-Lagrange Equations are: ( )λλ λ λ λ TTTT T T T BxSRuBxSuR u H uSxPA x H td d uBxA H td xd +−=⇒++= ∂ ∂ = −−−=      ∂ ∂ −= +=      ∂ ∂ = −1 0
  • 4. Linear Quadratic Regulator (LQR) Problem SOLO Inner-Outer and Spectral Factorizations 4 ( )λλ λ λ λ TTTT T T T BxSRuBxSuR u H uSxPA x H td d uBxA H td xd +−=⇒++= ∂ ∂ = −−−=      ∂ ∂ −= +=      ∂ ∂ = −1 0 or: ( ) ( ) ( )       =              −−−− −− =         −− −− λλλ x A x SRBASRSP BRBSRBAx HTTT TT 11 11   ( ) ( ) ( )         −−−− −− = −− −− TTT TT H SRBASRSP BRBSRBA A 11 11 : We want to find X (t) such that: , then( ) ( ) ( )txtXt =λ ( ) ( )XBSRKxKxXBSRu TT cc TT +=⇒−=+−= −− 11 :
  • 5. Linear Quadratic Regulator (LQR) Problem SOLO Inner-Outer and Spectral Factorizations 5 ( ) ( ) ( )       =              −−−− −− =         −− −− λλλ x A x SRBASRSP BRBSRBAx HTTT TT 11 11   We want to find X (t) such that: , then( ) ( ) ( )txtXt =λ ( ) ( ) ( ) ( ) ( )txtXtxtXt  +=λ ( ) ( ) ( )[ ]xXBRBxSRBAXxXxXSRBAxSRSP TTTTT 1111 −−−− −−+=−−−−  ( ) ( ) ( )[ ] ( )txxSRSPXBRBXSRBAXXSRBAX TTTTT ∀=−+−−+−+ −−−− 01111 ( ) ( ) ( )TTTTT SRSPXBRBXSRBAXXSRBAX 1111 −−−− −−+−−−−= We obtain the following Differential Riccati Equation for :X ( ) ( ) ( ) [ ] ( ) ( ) ( ) [ ] ( ) ( ) 0 0 1 11 11 1111 =+++−+=       −=              −−−− −− −= −−+−−−−= − −− −− −−−− PXBSRXBSAXXA X I AIX X I SRBASRSP BRBSRBA IX SRSPXBRBXSRBAXXSRBA TTTTTT HTTT TT TTTTT If a Steady-state Solution exists for t→∞ then and:0→X Continuous Algebraic Riccati Equation (CARE)
  • 6. Linear Quadratic Regulator (LQR) Problem SOLO Inner-Outer and Spectral Factorizations Theorem 1 A Unique Stabilizing ( A+BKc=[A-BR-1 (ST +BT X)] is Stable) Solution of CARE, X=XT , is obtained iff: a.(A,B) is Stabilizable b.Re[λi(AH)]≠0 for all i=1,2,…,2n The Unique Stabilizing Solution is denoted X=Ric [AH] Proof a. It is clear that the condition that (A,B) is Stabilizable is a necessary condition to stabilize A+BKc. b. Rewrite ( ) ( ) ( ) ( ) ( )[ ]       −        +−− −+−       =         −−−− −− = − −− −− −− IX I XBSRBA BRBXBSRBA IX I SRBASRSP BRBSRBA A TTT TTT TTT TT H 0 0 0 : 1 11 11 11 If λi is an eigenvalue of AH, - λi is also; hence AH has n eigenvalues λi s.t. Re[λi] ≤ 0 and n eigenvalues λj s.t. Re[λj] ≥ 0. If AH has no eigenvalue of jω axis, then we can find a solution X s.t. all the eigenvalues of A-BR-1 (ST +BT X)=A+BKc are the stable eigenvalues of AH. ( ) ( ) 01 1 1 =+++−+ − PXBSRXBSAXXA TTTTTT
  • 7. Linear Quadratic Regulator (LQR) Problem SOLO Inner-Outer and Spectral Factorizations Theorem 1 A Unique Stabilizing ( A+BKc=[A-BR-1 (ST +BT X)] is Stable) Solution of CARE is obtained iff: a.(A,B) is Stabilizable b.Re[λi(AH)]≠0 for all i=1,2,…,2n The Unique Stabilizing Solution is denoted X=Ric [AH] Proof (continue -1) c. Assume that there are two Stabilizing Solutions X1=X1 T and X2 =X2 T that satisfy the CARE ( ) ( ) ( ) ( ) 0 0 2 1 222 1 1 111 =+++−+ =+++−+ − − PXBSRXBSAXXA PXBSRXBSAXXA TTTTTT TTTTTT Subtracting those two equations we obtain: ( ) ( ) ( ) ( ) 0 0 1 1 21 1 2 2 1 21 1 1 1 2121 1 2121 =−+ −−−−−−−+− −− −−−−    XBRBXXBRBX XBRBXXBRBXSRBXXXXBRSAXXXXA TT TTTTT or: ( )[ ] ( ) ( ) ( )[ ] 01 1 21212 1 =+−−+−+− −− XBSRBAXXXXXBSRBA TTTTT
  • 8. Linear Quadratic Regulator (LQR) Problem SOLO Inner-Outer and Spectral Factorizations Theorem 1 A Unique Stabilizing ( A+BKc=[A-BR-1 (ST +BT X)] is Stable) Solution of CARE is obtained iff: a.(A,B) is Stabilizable b.Re[λi(AH)]≠0 for all i=1,2,…,2n The Unique Stabilizing Solution is denoted X=Ric [AH] Proof (continue -2) c. Assume that there are two Stabilizing Solutions X1=X1 T and X2 =X2 T that satisfy the CARE This is a Sylvester Matrix Equation and since both X1 and X2 are Stabilizing Solutions we must have: ( )[ ] ( ) ( ) ( )[ ] 01 1 21212 1 =+−−+−+− −− XBSRBAXXXXXBSRBA TTTTT ( )[ ]{ } ( )[ ]{ } ( )[ ]{ } ( )[ ]{ } jiXBSRBAXBSRBA njXBSRBA niXBSRBA TT j TT iTT j TT i ,0ReRe ,,10Re ,,10Re 2 1 1 1 2 1 1 1 ∀≠+−++−⇒     =∀<+− =∀<+− −− − − λλ λ λ   Therefore the solution of the Sylvester Matrix Equation is Unique, and by substitution we can see that X1 = X2 is the Unique Solution. q.e.d.
  • 9. Linear Quadratic Regulator (LQR) Problem SOLO Inner-Outer and Spectral Factorizations Proof (1) (1) The Matrix YT Z is Symmetric. (2) If Y-1 exists, the X=ZY-1 is the Solution of CARE such that the Matrix ((A-BR-1 ST )-BR-1 BT X) has the Eigenvalues λ1,λ2,…,λn. X is Symmetric. (3) If (A,B) Stabilizable and Re[λi(AH)]≠0 for all i=1,2,…,2n (Theorem 1) Y-1 exists. Theorem 2 Let the columns of the Matrix be the Eigenvectors of AH corresponding to the Stable Eigenvalues λ1,λ2,…,λn, and J the corresponding Jordan Matrix. Then ( )nxnnxn RZYR Z Y ∈∈      ,2 Define TTT SRSPQBRBWSRBAE 111 :,:,: −−− −==−= ( ) ( ) ( )       −− − =         −−−− −− = −− −− TTTT TT H EQ WE SRBASRSP BRBSRBA A 11 11 :    =−− =− ⇒      =            −− − ⇒      =      JZZEQY JYZWYE J Z Y Z Y EQ WE J Z Y Z Y A TTHWe have ( ) ZYJZWZZEYZYJWZEYJYZWYE TTTTTTTTTTT =−⇒=−⇒=− JZYQYYZEYJZYZEYQYYJZZEQYY TTTTTTTTTT −−=⇒=−−⇒=−−
  • 10. Linear Quadratic Regulator (LQR) Problem SOLO Inner-Outer and Spectral Factorizations Proof (1) (continue – 1) Since –YT QT Y-ZT WZ is symmetric so is (YT Z)J+JT (YT Z) or ( ) ( )ZYJJZYZWZQYYZWZZYJJZYQYY JZYQYYZEY ZYJZWZZEY TTTTTTTTTT TTTT TTTTT +=−−⇒+=−−⇒     −−= =− ( ) ( ) ( ) ( )[ ] ( ) ( )TTTTTTTTTTT ZYJJZYZYJJZYZYJJZY +=+=+ Because J represents the stable Eigenvalues Re[λi(J)+λj(J)]≠0 for all I,j=1,…,n, the Unique Solution of the Sylvester Matrix Equation is ( ) ( )[ ] ( ) ( )[ ] [ ]0=−+− TTTTTTT ZYZYJJZYZY Sylvester Matrix Equation ( ) ( ) [ ] ( ) ( ) SymmetricisZYZYZYZYZY TTTTTTT =⇒=− 0 (1) The Matrix YT Z is Symmetric. (2) If Y-1 exists, the X=ZY-1 is the Solution of CARE such that the Matrix ((A-BR-1 ST )-BR-1 BT X) has the Eigenvalues λ1,λ2,…,λn. X is Symmetric. (3) If (A,B) Stabilizable and Re[λi(AH)]≠0 for all i=1,2,…,2n (Theorem 1) Y-1 exists. Theorem 2 Let the columns of the Matrix be the Eigenvectors of AH corresponding to the Stable Eigenvalues λ1,λ2,…,λn, and J the corresponding Jordan Matrix. Then ( )nxnnxn RZYR Z Y ∈∈      ,2
  • 11. Linear Quadratic Regulator (LQR) Problem SOLO Inner-Outer and Spectral Factorizations Proof (2)    =−− =− JZZEQY JYZWYE T 111 −−− =−⇒=− YJYYZWEYJYZWYE 1111111 −−−−−−− =−⇒=− YJZYZWYZEYZYJYYZWEYZ 111 −−− =−−⇒=−− YJZYZEQYJZZEQY TT ( ) ( ) ( ) ( ) [ ]01111 =+−+ −−−− QYZWYZEYZYZET Define TTT SRSPQBRBWSRBAE 111 :,:,: −−− −==−= Therefore X=ZY-1 is the Unique Stabilizing Solution of the CARE ( ) ( ) ( ) [ ]01111 =−+−−+− −−−− TTTTT SRSPXBRBXSRBAXXSRBA q.e.d. (1) The Matrix YT Z is Symmetric. (2) If Y-1 exists, the X=ZY-1 is the Solution of CARE such that the Matrix ((A-BR-1 ST )-BR-1 BT X) has the Eigenvalues λ1,λ2,…,λn. X is Symmetric. (3) If (A,B) Stabilizable and Re[λi(AH)]≠0 for all i=1,2,…,2n (Theorem 1) Y-1 exists. Theorem 2 Let the columns of the Matrix be the Eigenvectors of AH corresponding to the Stable Eigenvalues λ1,λ2,…,λn, and J the corresponding Jordan Matrix. Then ( )nxnnxn RZYR Z Y ∈∈      ,2 Assume Y-1 exists:
  • 12. Linear Quadratic Regulator (LQR) Problem SOLO Inner-Outer and Spectral Factorizations Proof (2) (continue – 1) q.e.d. From (1) YT Z is Symmetric, so ( ) YZZYZY TTTT == TTTTTTTT ZYXZXYZYZYYYZZY −−− =⇒=⇒=⇒= 11 1− = YZX ( ) TTTT XYZZYX === −− 1 X is Symmetric (1) The Matrix YT Z is Symmetric. (2) If Y-1 exists, the X=ZY-1 is the Solution of CARE such that the Matrix ((A-BR-1 ST )-BR-1 BT X) has the Eigenvalues λ1,λ2,…,λn. X is Symmetric. (3) If (A,B) Stabilizable and Re[λi(AH)]≠0 for all i=1,2,…,2n (Theorem 1) Y-1 exists. Theorem 2 Let the columns of the Matrix be the Eigenvectors of AH corresponding to the Stable Eigenvalues λ1,λ2,…,λn, and J the corresponding Jordan Matrix. Then ( )nxnnxn RZYR Z Y ∈∈      ,2
  • 13. References SOLO 13 S. Hermelin, “Robustness and Sensitivity Design of Linear Time-Invariant Systems”, PhD Thesis, Stanford University, 1986 G.Stein, J.Doyle, B.Francis, “Advances in Multivariable Control”, ONR/Honeywell Workshop, 1984 Inner-Outer and Spectral Factorizations T. Kailath, A.H. Sayed, B. Hassibi, “Linear Estimation”. Prentice Hall, 2000
  • 14. 14 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 – 2013 Stanford University 1983 – 1986 PhD AA
  • 15. Sylvester Matrix Equation : Anxn Xnxm+Xnxm Bmxm=Cnxm SOLO 15 Consider the Sylvester Matrix Equation where Anxn, Bmxm, Cnxm are given matrices. Then there exists a Unique Solution Xnxm if and only if Matrices James Joseph Sylvester (1814 – 1887) nxmmxmnxmnxmnxn CBXXA =+ ( )[ ] ( )[ ] njiAA nxnjnxni ,,1,0ReRe =∀≠+ λλ ∫ ∞ = 0 dteCeX tB nxm tA nxm mxmnxn Note : If B=AT : Lyapunov Equation The Necessary and Sufficient Condition for the existence of a Unique Solution is nxn T nxnnxnnxnnxn CAXXA =+ In particular if λi(A)=- λj(A) = j ω a Unique Solution does not exist. Aleksandr Mikhailovich Lyapunov 1857 - 1918 ( ) ( ) mjniBA mxmjnxni ,,1,,,10  ==∀≠+ λλ the Unique Solution is given by If ( )[ ] ( )[ ] mjniBA mxmjnxni ,,1,,,10ReRe  ==∀<+ λλ
  • 16. Sylvester Matrix Equation : Anxn Xnxm+Xnxm Bmxm=Cnxm SOLO Matrices Proof Let rewrite [ ]0 21 22221 11211 21 22221 11211 21 22221 11211 21 22221 11211 21 22221 11211 =             −                         +                         = −+ nmnn m m mmmm m m nmnn m m nmnn m m nnnn n n nxmmxmnxmnxmnxn ccc ccc ccc bbb bbb bbb xxx xxx xxx xxx xxx xxx aaa aaa aaa CBXXA                                             = nmnn m m nnnn n n nxmnxn xxx xxx xxx aaa aaa aaa XA         21 22221 11211 21 22221 11211 ( ) ( ) ( ) [ ]nxmnxnc mnxn nxn nxn Xvec m nm m n n nxn nxn nxn nxmcnxnm XAvec cA cA cA c x x c x x c x x A A A XvecAI nxmc =             =                                                            =⊗           2 1 1 2 2 12 1 1 11 00 00 00 ( ) [ ] ( ) ( )         nxmc Xvec xmn m nm m n n mcnxmc c x x c x x c x x cccvecXvec 1 1 2 2 12 1 1 11 21 : ⋅                                                == Define the Vectorization Operator vec:
  • 17. Sylvester Matrix Equation : Anxn Xnxm+Xnxm Bmxm=Cnxm SOLO Matrices Proof (continue – 1) Let rewrite [ ]0 21 22221 11211 21 22221 11211 21 22221 11211 21 22221 11211 21 22221 11211 =             −                         +                         = −+ nmnn m m mmmm m m nmnn m m nmnn m m nnnn n n nxmmxmnxmnxmnxn ccc ccc ccc bbb bbb bbb xxx xxx xxx xxx xxx xxx aaa aaa aaa CBXXA                     ( ) ( ) ( ) [ ]mxmnxmc mmmmm mm mm Xvec m nm m n n nmmnmnm nmnm nmnn nxmcn T mxm BXvec cbcbcb cbcbcb cbcbcb c x x c x x c x x IbIbIb IbIbIb IbIbIb XvecIB nxmc =             +++ +++ +++ =                                                            =⊗              2211 2222112 1221111 1 2 2 12 1 1 11 21 22212 12111                         = mmmm m m nmnn m m mxmnxm bbb bbb bbb xxx xxx xxx BX         21 22221 11211 21 22221 11211
  • 18. Sylvester Matrix Equation : Anxn Xnxm+Xnxm Bmxm=Cnxm SOLO Matrices Proof (continue – 2) We have [ ] [ ] [ ] [ ] [ ]0=−+=−+ nxmcmxmnxmcnxmnxncnxmmxmnxmnxmnxnc CvecBXvecXAvecCBXXAvec ( ) ( ) [ ]nxmcnxmcn T mxmnxnm CvecXvecIBAI =⊗+⊗or Let use the Jordan decomposition for Anxn and Bmxm 11 & −− == TTT BBB T mxmAAAnxn SJSBSJSA ( ) ( ) ( ) ( ) ( ) ( ) n TTT m TT TTT I AABBBAAA I BB nBBBAAAmn T mxmnxnm SSSJSSJSSS ISJSSJSIIBAI 1111 11 −−−− −− ⊗+⊗= ⊗+⊗=⊗+⊗ ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )      111 111 1111 −−− −−− ⊗ −− ⊗⊗⊗⊗ −− ⋅⊗⋅=⊗⊗ ⊗=⊗ ⊗⊗+⊗⊗= ATB T nTBATB TT ATBAm TT SS AB IJSS ABB SSJI AABAB DBCADCBA BABA SSSJSSJSSS ( )( )( ) 1− ⊗⊗+⊗⊗=⊗+⊗ ABnBAmABn T mxmnxnm SSIJJISSIBAI T T T This equation has a Unique Solution iff is Nonsingular.( )n T mxmnxnm IBAI ⊗+⊗
  • 19. Sylvester Matrix Equation : Anxn Xnxm+Xnxm Bmxm=Cnxm SOLO Matrices Proof (continue – 3) where ( )( )( ) 1− ⊗⊗+⊗⊗=⊗+⊗ ABnBAmABn T mxmnxnm SSIJJISSIBAI T T T [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]            = lJ J J J     00 00 00 2 1 [ ]                     = i i i i i xkki ii J λ λ λ λ λ 0000 1000 0000 0010 0001       Ji are Upper-Triangular Matrices ( )nBAm IJJI T ⊗+⊗Therefore is also Upper Triangular with diagonal elements λi[A] + λj[B] (i=1,…,n, j=1,…,m), that are the Eigenvalues of and therefore to the Similar Matrix . This Matrix is Nonsingular iff ( )nBAm IJJI T ⊗+⊗ ( )n T mxmnxnm IBAI ⊗+⊗ ( ) ( ) mjniBA mxmjnxni ,,1,,,10  ==∀≠+ λλ
  • 20. Sylvester Matrix Equation : Anxn Xnxm+Xnxm Bmxm=Cnxm SOLO Matrices Since ( )[ ] ( )[ ] [ ] [ ]0lim,0lim,,1,,,10ReRe ====∀<+ ∞→∞→ tB t tA t mxmjnxni eemjniBA λλ Proof (continue – 4) Let rewrite [ ] [ ]       =            − =−+= nxm m Snnxm nxm m nxnnxm mxm nnxmnxmmxmnxmnxmnxn X I AIX X I AC B IXCBXXA 0 0 ( ) ( ) nxmnxm tB nxm tA nxm CPeCetP mxmnxn −=⇒−= 0:Define By differentiation ( ) mxmnxmnxmnxnmxm tB nxm tAtB nxm tA nxn nxm BPPABeCeeCeA td tPd mxmnxnmxmnxn −−=−−= Let Integrate the Differential Equation ( ) ( ) ( ) mxmnxmnxmnxn nxm nxmnxm BdtPdtPAdt td tPd PP         −+        −==−∞ ∫∫∫ ∞∞∞ 000 0 We have and where ∫ ∞ = 0 dteCeX tB nxm tA nxm mxmnxn ( ) [ ]0=∞nxmP mxmnxmnxmnxnmxmnxmnxmnxnnxm BXXABdtPdtPAC +=        −+        −= ∫∫ ∞∞ 00
  • 21. Matrix Differential Riccati Equation SOLO Inner-Outer and Spectral Factorizations ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tDtXtCtXtBtXtXtAtX +++= where all matrices are nxn and A (t),B (t), C(t), D(t) are integrable over an interval t0 ≤ t ≤ tf. This Matrix Differential Equation can be decompose in the following 2 Linear Differential Equations: The Nonlinear Matrix Differential Riccati Equation is given by ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tZtAtYtDtZ tZtCtYtBtY += −−=   If in the interval t0 ≤ t ≤ tf the Matrix Y(t) is nonsingular, then the solution of the Riccati Differential Equation is ( ) ( ) ( ) 10 1 ttttYtZtX ≤≤= − To verify we have ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tY td tYd tYtY td d tY td d tZtY td tZd tX td d 11111 & −−−−− −=+= ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tXtCtXtBtXtXtAtD tYtZtCtYtBtYtZtYtZtAtYtDtX td d +++= −−−+= −−− 111
  • 22. Matrix Differential Riccati Equation SOLO Inner-Outer and Spectral Factorizations ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tDtXtCtXtBtXtXtAtX +++= If yhe matrices are nxn and A ,B , C, D are constant, then This Matrix Differential Equation can be decompose in the following 2 Linear Differential Equations: The Nonlinear Matrix Differential Riccati Equation is given by ( ) ( ) ( ) ( ) ( ) ( )tZAtYDtZ tZCtYBtY += −−=   If in the interval t0 ≤ t ≤ tf the Matrix Y(t) is nonsingular, then the solution of the Riccati Differential Equation is ( ) ( ) ( ) 10 1 ttttYtZtX ≤≤= − Define ( ) ( ) ( )       −− =      = AD CB G tZ tY tW :&: to obtain which have the solution( ) ( )tGWtW = ( ) ( ) ( )0 0 tWetW ttG − =

Editor's Notes

  1. K. Ogata, “State Space Analysis of Control Systems”, Prentice Hall, Inc., 1967 , pp.356-357
  2. K. Ogata, “State Space Analysis of Control Systems”, Prentice Hall, Inc., 1967 , pp.356-357
  3. K. Ogata, “State Space Analysis of Control Systems”, Prentice Hall, Inc., 1967 , pp.356-357
  4. K. Ogata, “State Space Analysis of Control Systems”, Prentice Hall, Inc., 1967 , pp.356-357
  5. K. Ogata, “State Space Analysis of Control Systems”, Prentice Hall, Inc., 1967 , pp.356-357
  6. K. Ogata, “State Space Analysis of Control Systems”, Prentice Hall, Inc., 1967 , pp.321-322
  7. K. Ogata, “State Space Analysis of Control Systems”, Prentice Hall, Inc., 1967 , pp.321-322