SlideShare a Scribd company logo
Polynomial Functions
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
            P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
            P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
            where : pn  0
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
            P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
            where : pn  0
                      n  0 and is an integer
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
              P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
               where : pn  0
                        n  0 and is an integer
coefficients: p0 , p1 , p2 , , pn
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
              P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
               where : pn  0
                        n  0 and is an integer
coefficients: p0 , p1 , p2 , , pn
index (exponent): the powers of the pronumerals.
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
              P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
               where : pn  0
                        n  0 and is an integer
coefficients: p0 , p1 , p2 , , pn
index (exponent): the powers of the pronumerals.
degree (order): the highest index of the polynomial. The
polynomial is called “polynomial of degree n”
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
              P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
               where : pn  0
                        n  0 and is an integer
coefficients: p0 , p1 , p2 , , pn
index (exponent): the powers of the pronumerals.
degree (order): the highest index of the polynomial. The
polynomial is called “polynomial of degree n”
                   n
leading term: pn x
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
              P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
               where : pn  0
                        n  0 and is an integer
coefficients: p0 , p1 , p2 , , pn
index (exponent): the powers of the pronumerals.
degree (order): the highest index of the polynomial. The
polynomial is called “polynomial of degree n”
                   n
leading term: pn x
leading coefficient: pn
Polynomial Functions
A real polynomial P(x) of degree n is an expression of the form;
              P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
               where : pn  0
                        n  0 and is an integer
coefficients: p0 , p1 , p2 , , pn
index (exponent): the powers of the pronumerals.
degree (order): the highest index of the polynomial. The
polynomial is called “polynomial of degree n”
                   n
leading term: pn x
leading coefficient: pn
monic polynomial: leading coefficient is equal to one.
P(x) = 0: polynomial equation
P(x) = 0: polynomial equation
y = P(x): polynomial function
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
P(x) = 0: polynomial equation
y = P(x): polynomial function
roots: solutions to the polynomial equation P(x) = 0
zeros: the values of x that make polynomial P(x) zero. i.e. the x
intercepts of the graph of the polynomial.
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zeros: the values of x that make polynomial P(x) zero. i.e. the x
  intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
                   1
       a) 5 x 3  7 x  2
                   2


              4
       b) 2
           x 3
          x2  3
       c)
              4
       d) 7
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zeros: the values of x that make polynomial P(x) zero. i.e. the x
  intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
                   1
       a) 5 x 3  7 x  2
                   2
                             NO, can’t have fraction as a power
              4
       b) 2
           x 3
          x2  3
       c)
              4
       d) 7
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zeros: the values of x that make polynomial P(x) zero. i.e. the x
  intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
                   1
       a) 5 x 3  7 x  2
                   2
                             NO, can’t have fraction as a power
              4
                      NO, can’t have negative as a power 4  x  3
                                                                    1
       b) 2                                                   2
           x 3
          x2  3
       c)
              4
       d) 7
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zeros: the values of x that make polynomial P(x) zero. i.e. the x
  intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
                   1
       a) 5 x 3  7 x  2
                   2
                              NO, can’t have fraction as a power
              4
                      NO, can’t have negative as a power 4  x  3
                                                                    1
       b) 2                                                   2
           x 3
          x2  3            1 2 3
       c)            YES,     x 
              4             4     4
       d) 7
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zeros: the values of x that make polynomial P(x) zero. i.e. the x
  intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
                   1
       a) 5 x 3  7 x  2
                   2
                              NO, can’t have fraction as a power
              4
                      NO, can’t have negative as a power 4  x  3
                                                                    1
       b) 2                                                   2
           x 3
          x2  3            1 2 3
       c)            YES,     x 
              4             4     4
       d) 7          YES, 7x 0
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zeros: the values of x that make polynomial P(x) zero. i.e. the x
  intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
                      1
        a) 5 x 3  7 x  2
                      2
                               NO, can’t have fraction as a power
               4
                       NO, can’t have negative as a power 4  x  3
                                                                                1
        b) 2                                                            2
            x 3
           x2  3            1 2 3
        c)            YES,     x 
               4             4     4
        d) 7          YES, 7x 0
(ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is
     monic and state its degree.
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zeros: the values of x that make polynomial P(x) zero. i.e. the x
  intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
                      1
         a) 5 x 3  7 x  2
                      2
                                   NO, can’t have fraction as a power
                 4
                        NO, can’t have negative as a power 4  x  3
                                                                                1
         b) 2                                                           2
             x 3
             x2  3              1 2 3
         c)            YES,        x 
                4                4        4
         d) 7          YES, 7x 0
(ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is
     monic and state its degree.
    P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zeros: the values of x that make polynomial P(x) zero. i.e. the x
  intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
                      1
         a) 5 x 3  7 x  2
                      2
                                   NO, can’t have fraction as a power
                 4
                        NO, can’t have negative as a power 4  x  3
                                                                                1
         b) 2                                                           2
             x 3
             x2  3              1 2 3
         c)            YES,        x 
                4                4        4
         d) 7          YES, 7x 0
(ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is
     monic and state its degree.
    P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3
           x3  2 x 2  7 x  8
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zeros: the values of x that make polynomial P(x) zero. i.e. the x
  intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
                      1
         a) 5 x 3  7 x  2
                      2
                                   NO, can’t have fraction as a power
                 4
                        NO, can’t have negative as a power 4  x  3
                                                                                1
         b) 2                                                           2
             x 3
             x2  3              1 2 3
         c)            YES,        x 
                4                4        4
         d) 7          YES, 7x 0
(ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is
     monic and state its degree.
    P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3
           x3  2 x 2  7 x  8             monic, degree = 3
P(x) = 0: polynomial equation
 y = P(x): polynomial function
  roots: solutions to the polynomial equation P(x) = 0
  zeros: the values of x that make polynomial P(x) zero. i.e. the x
  intercepts of the graph of the polynomial.
e.g. (i) Which of the following are polynomials?
                      1
         a) 5 x 3  7 x  2
                      2
                                   NO, can’t have fraction as a power
                 4
                        NO, can’t have negative as a power 4  x  3
                                                                                1
         b) 2                                                             2
             x 3
             x2  3              1 2 3
         c)            YES,        x             Exercise 4A; 1, 2acehi, 3bdf,
                4                4        4              6bdf, 7, 9d, 10ad, 13
                                   0
         d) 7          YES, 7x
(ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is
     monic and state its degree.
    P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3
           x3  2 x 2  7 x  8             monic, degree = 3

More Related Content

What's hot

UPSEE - Mathematics -1999 Unsolved Paper
UPSEE - Mathematics -1999 Unsolved PaperUPSEE - Mathematics -1999 Unsolved Paper
UPSEE - Mathematics -1999 Unsolved Paper
Vasista Vinuthan
 
Sim(mathematics 10 polynomial functions)
Sim(mathematics 10 polynomial functions) Sim(mathematics 10 polynomial functions)
Sim(mathematics 10 polynomial functions)
ileen menes
 
Maths 12
Maths 12Maths 12
Maths 12
Mehtab Rai
 
CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2
zukun
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating Limits
Matthew Leingang
 
Natural Number Objects in Dialectica Categories
Natural Number Objects in Dialectica CategoriesNatural Number Objects in Dialectica Categories
Natural Number Objects in Dialectica Categories
Valeria de Paiva
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16
derry92
 
1001 ch 10 day 1
1001 ch 10 day 11001 ch 10 day 1
1001 ch 10 day 1
festivalelmo
 
Complex form fourier series
Complex form fourier seriesComplex form fourier series
Complex form fourier series
derry92
 
Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicas
yariannyescobar
 
Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)
Matthew Leingang
 
Calculus - Functions Review
Calculus - Functions ReviewCalculus - Functions Review
Calculus - Functions Review
hassaanciit
 
Fourier series
Fourier seriesFourier series
Fourier series
Naveen Sihag
 
Lesson 13: Derivatives of Logarithmic and Exponential Functions
Lesson 13: Derivatives of Logarithmic and Exponential FunctionsLesson 13: Derivatives of Logarithmic and Exponential Functions
Lesson 13: Derivatives of Logarithmic and Exponential Functions
Matthew Leingang
 
Lesson 21: Derivatives and the Shapes of Curves
Lesson 21: Derivatives and the Shapes of CurvesLesson 21: Derivatives and the Shapes of Curves
Lesson 21: Derivatives and the Shapes of Curves
Matthew Leingang
 
IIT JEE Maths 1983
IIT JEE Maths   1983IIT JEE Maths   1983
IIT JEE Maths 1983
Vasista Vinuthan
 
0401 ch 4 day 1
0401 ch 4 day 10401 ch 4 day 1
0401 ch 4 day 1
festivalelmo
 
11 X1 T03 01 inequations and inequalities (2010)
11 X1 T03 01 inequations and inequalities (2010)11 X1 T03 01 inequations and inequalities (2010)
11 X1 T03 01 inequations and inequalities (2010)
Nigel Simmons
 

What's hot (18)

UPSEE - Mathematics -1999 Unsolved Paper
UPSEE - Mathematics -1999 Unsolved PaperUPSEE - Mathematics -1999 Unsolved Paper
UPSEE - Mathematics -1999 Unsolved Paper
 
Sim(mathematics 10 polynomial functions)
Sim(mathematics 10 polynomial functions) Sim(mathematics 10 polynomial functions)
Sim(mathematics 10 polynomial functions)
 
Maths 12
Maths 12Maths 12
Maths 12
 
CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating Limits
 
Natural Number Objects in Dialectica Categories
Natural Number Objects in Dialectica CategoriesNatural Number Objects in Dialectica Categories
Natural Number Objects in Dialectica Categories
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16
 
1001 ch 10 day 1
1001 ch 10 day 11001 ch 10 day 1
1001 ch 10 day 1
 
Complex form fourier series
Complex form fourier seriesComplex form fourier series
Complex form fourier series
 
Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicas
 
Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)
 
Calculus - Functions Review
Calculus - Functions ReviewCalculus - Functions Review
Calculus - Functions Review
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Lesson 13: Derivatives of Logarithmic and Exponential Functions
Lesson 13: Derivatives of Logarithmic and Exponential FunctionsLesson 13: Derivatives of Logarithmic and Exponential Functions
Lesson 13: Derivatives of Logarithmic and Exponential Functions
 
Lesson 21: Derivatives and the Shapes of Curves
Lesson 21: Derivatives and the Shapes of CurvesLesson 21: Derivatives and the Shapes of Curves
Lesson 21: Derivatives and the Shapes of Curves
 
IIT JEE Maths 1983
IIT JEE Maths   1983IIT JEE Maths   1983
IIT JEE Maths 1983
 
0401 ch 4 day 1
0401 ch 4 day 10401 ch 4 day 1
0401 ch 4 day 1
 
11 X1 T03 01 inequations and inequalities (2010)
11 X1 T03 01 inequations and inequalities (2010)11 X1 T03 01 inequations and inequalities (2010)
11 X1 T03 01 inequations and inequalities (2010)
 

Viewers also liked

11X1 T04 03 pythagorean trig identities (2011)
11X1 T04 03 pythagorean trig identities (2011)11X1 T04 03 pythagorean trig identities (2011)
11X1 T04 03 pythagorean trig identities (2011)Nigel Simmons
 
11X1 T14 03 arithmetic & geometric means (2011)
11X1 T14 03 arithmetic &  geometric means (2011)11X1 T14 03 arithmetic &  geometric means (2011)
11X1 T14 03 arithmetic & geometric means (2011)
Nigel Simmons
 
11X1 T03 06 asymptotes (2011)
11X1 T03 06 asymptotes (2011)11X1 T03 06 asymptotes (2011)
11X1 T03 06 asymptotes (2011)Nigel Simmons
 
11X1 T02 09 shifting curves I (2011)
11X1 T02 09 shifting curves I (2011)11X1 T02 09 shifting curves I (2011)
11X1 T02 09 shifting curves I (2011)Nigel Simmons
 
11X1 T01 01 algebra & indices (2011)
11X1 T01 01 algebra & indices (2011)11X1 T01 01 algebra & indices (2011)
11X1 T01 01 algebra & indices (2011)
Nigel Simmons
 
11X1 T14 06 sum of a geometric series (2011)
11X1 T14 06 sum of a geometric series (2011)11X1 T14 06 sum of a geometric series (2011)
11X1 T14 06 sum of a geometric series (2011)Nigel Simmons
 
11X1 T01 04 algebraic fractions (2011)
11X1 T01 04 algebraic fractions (2011)11X1 T01 04 algebraic fractions (2011)
11X1 T01 04 algebraic fractions (2011)
Nigel Simmons
 
11X1 T05 03 equation of lines (2011)
11X1 T05 03 equation of lines (2011)11X1 T05 03 equation of lines (2011)
11X1 T05 03 equation of lines (2011)
Nigel Simmons
 
X2 T04 02 trig integrals (2011)
X2 T04 02 trig integrals (2011)X2 T04 02 trig integrals (2011)
X2 T04 02 trig integrals (2011)Nigel Simmons
 
11X1 T01 07 quadratic equations (2011)
11X1 T01 07 quadratic equations (2011)11X1 T01 07 quadratic equations (2011)
11X1 T01 07 quadratic equations (2011)Nigel Simmons
 
11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)
Nigel Simmons
 
11X1 T13 03 angle theorems 2 (2011)
11X1 T13 03 angle theorems 2 (2011)11X1 T13 03 angle theorems 2 (2011)
11X1 T13 03 angle theorems 2 (2011)
Nigel Simmons
 
11X1 T10 07 primitive function (2011)
11X1 T10 07 primitive function (2011)11X1 T10 07 primitive function (2011)
11X1 T10 07 primitive function (2011)
Nigel Simmons
 
12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)
Nigel Simmons
 
12X1 T07 01 projectile motion (2011)
12X1 T07 01 projectile motion (2011)12X1 T07 01 projectile motion (2011)
12X1 T07 01 projectile motion (2011)
Nigel Simmons
 
11X1 T13 05 tangent theorems 1 (2011)
11X1 T13 05 tangent theorems 1 (2011)11X1 T13 05 tangent theorems 1 (2011)
11X1 T13 05 tangent theorems 1 (2011)
Nigel Simmons
 
11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)
Nigel Simmons
 
11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)
Nigel Simmons
 
11 x1 t11 02 parabola as a locus (2012)
11 x1 t11 02 parabola as a locus (2012)11 x1 t11 02 parabola as a locus (2012)
11 x1 t11 02 parabola as a locus (2012)
Nigel Simmons
 
11X1 T10 03 equations reducible to quadratics (2011)
11X1 T10 03 equations reducible to quadratics (2011)11X1 T10 03 equations reducible to quadratics (2011)
11X1 T10 03 equations reducible to quadratics (2011)Nigel Simmons
 

Viewers also liked (20)

11X1 T04 03 pythagorean trig identities (2011)
11X1 T04 03 pythagorean trig identities (2011)11X1 T04 03 pythagorean trig identities (2011)
11X1 T04 03 pythagorean trig identities (2011)
 
11X1 T14 03 arithmetic & geometric means (2011)
11X1 T14 03 arithmetic &  geometric means (2011)11X1 T14 03 arithmetic &  geometric means (2011)
11X1 T14 03 arithmetic & geometric means (2011)
 
11X1 T03 06 asymptotes (2011)
11X1 T03 06 asymptotes (2011)11X1 T03 06 asymptotes (2011)
11X1 T03 06 asymptotes (2011)
 
11X1 T02 09 shifting curves I (2011)
11X1 T02 09 shifting curves I (2011)11X1 T02 09 shifting curves I (2011)
11X1 T02 09 shifting curves I (2011)
 
11X1 T01 01 algebra & indices (2011)
11X1 T01 01 algebra & indices (2011)11X1 T01 01 algebra & indices (2011)
11X1 T01 01 algebra & indices (2011)
 
11X1 T14 06 sum of a geometric series (2011)
11X1 T14 06 sum of a geometric series (2011)11X1 T14 06 sum of a geometric series (2011)
11X1 T14 06 sum of a geometric series (2011)
 
11X1 T01 04 algebraic fractions (2011)
11X1 T01 04 algebraic fractions (2011)11X1 T01 04 algebraic fractions (2011)
11X1 T01 04 algebraic fractions (2011)
 
11X1 T05 03 equation of lines (2011)
11X1 T05 03 equation of lines (2011)11X1 T05 03 equation of lines (2011)
11X1 T05 03 equation of lines (2011)
 
X2 T04 02 trig integrals (2011)
X2 T04 02 trig integrals (2011)X2 T04 02 trig integrals (2011)
X2 T04 02 trig integrals (2011)
 
11X1 T01 07 quadratic equations (2011)
11X1 T01 07 quadratic equations (2011)11X1 T01 07 quadratic equations (2011)
11X1 T01 07 quadratic equations (2011)
 
11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)
 
11X1 T13 03 angle theorems 2 (2011)
11X1 T13 03 angle theorems 2 (2011)11X1 T13 03 angle theorems 2 (2011)
11X1 T13 03 angle theorems 2 (2011)
 
11X1 T10 07 primitive function (2011)
11X1 T10 07 primitive function (2011)11X1 T10 07 primitive function (2011)
11X1 T10 07 primitive function (2011)
 
12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)
 
12X1 T07 01 projectile motion (2011)
12X1 T07 01 projectile motion (2011)12X1 T07 01 projectile motion (2011)
12X1 T07 01 projectile motion (2011)
 
11X1 T13 05 tangent theorems 1 (2011)
11X1 T13 05 tangent theorems 1 (2011)11X1 T13 05 tangent theorems 1 (2011)
11X1 T13 05 tangent theorems 1 (2011)
 
11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)
 
11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)
 
11 x1 t11 02 parabola as a locus (2012)
11 x1 t11 02 parabola as a locus (2012)11 x1 t11 02 parabola as a locus (2012)
11 x1 t11 02 parabola as a locus (2012)
 
11X1 T10 03 equations reducible to quadratics (2011)
11X1 T10 03 equations reducible to quadratics (2011)11X1 T10 03 equations reducible to quadratics (2011)
11X1 T10 03 equations reducible to quadratics (2011)
 

Similar to 11X1 T15 01 polynomial definitions (2011)

11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)
Nigel Simmons
 
Chapter 5 Polynomials
Chapter 5 PolynomialsChapter 5 Polynomials
Chapter 5 Polynomials
Reema
 
Polynomials
PolynomialsPolynomials
Polynomials
Ankit Goel
 
C3 January 2012 QP
C3 January 2012 QPC3 January 2012 QP
C3 January 2012 QP
anicholls1234
 
Intro to Polynomials
Intro to PolynomialsIntro to Polynomials
Intro to Polynomials
toni dimella
 
polynomials of class 10th
polynomials of class 10thpolynomials of class 10th
polynomials of class 10th
Ashish Pradhan
 
Pre-Cal 30S January 16, 2009
Pre-Cal 30S January 16, 2009Pre-Cal 30S January 16, 2009
Pre-Cal 30S January 16, 2009
Darren Kuropatwa
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
Dr. Nirav Vyas
 
Module 2 Lesson 2 Notes
Module 2 Lesson 2 NotesModule 2 Lesson 2 Notes
Module 2 Lesson 2 Notes
toni dimella
 
Sin cos questions
Sin cos questionsSin cos questions
Sin cos questions
Garden City
 
Sin cos questions
Sin cos questionsSin cos questions
Sin cos questions
Garden City
 
Zeros of p(x)
Zeros of p(x)Zeros of p(x)
Rational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of SignsRational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of Signs
swartzje
 
Polynomial- Maths project
Polynomial- Maths projectPolynomial- Maths project
Polynomial- Maths project
RITURAJ DAS
 
Radical functions
Radical functionsRadical functions
Radical functions
Tarun Gehlot
 
Notes 6-2
Notes 6-2Notes 6-2
Notes 6-2
Jimbo Lamb
 
Class 10 Maths Ch Polynomial PPT
Class 10 Maths Ch Polynomial PPTClass 10 Maths Ch Polynomial PPT
Class 10 Maths Ch Polynomial PPT
Sanjayraj Balasara
 
Pc12 sol c04_ptest
Pc12 sol c04_ptestPc12 sol c04_ptest
Pc12 sol c04_ptest
Garden City
 
Maths sa 1 synopsis
Maths sa 1 synopsisMaths sa 1 synopsis
Maths sa 1 synopsis
Abdallahawesome
 
Polynomials
PolynomialsPolynomials
Polynomials
Ankur Chopra
 

Similar to 11X1 T15 01 polynomial definitions (2011) (20)

11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)
 
Chapter 5 Polynomials
Chapter 5 PolynomialsChapter 5 Polynomials
Chapter 5 Polynomials
 
Polynomials
PolynomialsPolynomials
Polynomials
 
C3 January 2012 QP
C3 January 2012 QPC3 January 2012 QP
C3 January 2012 QP
 
Intro to Polynomials
Intro to PolynomialsIntro to Polynomials
Intro to Polynomials
 
polynomials of class 10th
polynomials of class 10thpolynomials of class 10th
polynomials of class 10th
 
Pre-Cal 30S January 16, 2009
Pre-Cal 30S January 16, 2009Pre-Cal 30S January 16, 2009
Pre-Cal 30S January 16, 2009
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
 
Module 2 Lesson 2 Notes
Module 2 Lesson 2 NotesModule 2 Lesson 2 Notes
Module 2 Lesson 2 Notes
 
Sin cos questions
Sin cos questionsSin cos questions
Sin cos questions
 
Sin cos questions
Sin cos questionsSin cos questions
Sin cos questions
 
Zeros of p(x)
Zeros of p(x)Zeros of p(x)
Zeros of p(x)
 
Rational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of SignsRational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of Signs
 
Polynomial- Maths project
Polynomial- Maths projectPolynomial- Maths project
Polynomial- Maths project
 
Radical functions
Radical functionsRadical functions
Radical functions
 
Notes 6-2
Notes 6-2Notes 6-2
Notes 6-2
 
Class 10 Maths Ch Polynomial PPT
Class 10 Maths Ch Polynomial PPTClass 10 Maths Ch Polynomial PPT
Class 10 Maths Ch Polynomial PPT
 
Pc12 sol c04_ptest
Pc12 sol c04_ptestPc12 sol c04_ptest
Pc12 sol c04_ptest
 
Maths sa 1 synopsis
Maths sa 1 synopsisMaths sa 1 synopsis
Maths sa 1 synopsis
 
Polynomials
PolynomialsPolynomials
Polynomials
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
David Douglas School District
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
National Information Standards Organization (NISO)
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
Katrina Pritchard
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
mulvey2
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 
Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5
sayalidalavi006
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
Celine George
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
Dr. Shivangi Singh Parihar
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
GeorgeMilliken2
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
IreneSebastianRueco1
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
Celine George
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
Nicholas Montgomery
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
Scholarhat
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
Colégio Santa Teresinha
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
amberjdewit93
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
NgcHiNguyn25
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
Celine George
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
heathfieldcps1
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
taiba qazi
 

Recently uploaded (20)

Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 
Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
 
Digital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental DesignDigital Artefact 1 - Tiny Home Environmental Design
Digital Artefact 1 - Tiny Home Environmental Design
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
 

11X1 T15 01 polynomial definitions (2011)

  • 2. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n
  • 3. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0
  • 4. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer
  • 5. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn
  • 6. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals.
  • 7. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals. degree (order): the highest index of the polynomial. The polynomial is called “polynomial of degree n”
  • 8. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals. degree (order): the highest index of the polynomial. The polynomial is called “polynomial of degree n” n leading term: pn x
  • 9. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals. degree (order): the highest index of the polynomial. The polynomial is called “polynomial of degree n” n leading term: pn x leading coefficient: pn
  • 10. Polynomial Functions A real polynomial P(x) of degree n is an expression of the form; P x   p0  p1 x  p2 x 2    pn1 x n1  pn x n where : pn  0 n  0 and is an integer coefficients: p0 , p1 , p2 , , pn index (exponent): the powers of the pronumerals. degree (order): the highest index of the polynomial. The polynomial is called “polynomial of degree n” n leading term: pn x leading coefficient: pn monic polynomial: leading coefficient is equal to one.
  • 11. P(x) = 0: polynomial equation
  • 12. P(x) = 0: polynomial equation y = P(x): polynomial function
  • 13. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0
  • 14. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial.
  • 15. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 4 b) 2 x 3 x2  3 c) 4 d) 7
  • 16. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 NO, can’t have fraction as a power 4 b) 2 x 3 x2  3 c) 4 d) 7
  • 17. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 NO, can’t have fraction as a power 4 NO, can’t have negative as a power 4  x  3 1 b) 2 2 x 3 x2  3 c) 4 d) 7
  • 18. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 NO, can’t have fraction as a power 4 NO, can’t have negative as a power 4  x  3 1 b) 2 2 x 3 x2  3 1 2 3 c) YES, x  4 4 4 d) 7
  • 19. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 NO, can’t have fraction as a power 4 NO, can’t have negative as a power 4  x  3 1 b) 2 2 x 3 x2  3 1 2 3 c) YES, x  4 4 4 d) 7 YES, 7x 0
  • 20. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 NO, can’t have fraction as a power 4 NO, can’t have negative as a power 4  x  3 1 b) 2 2 x 3 x2  3 1 2 3 c) YES, x  4 4 4 d) 7 YES, 7x 0 (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree.
  • 21. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 NO, can’t have fraction as a power 4 NO, can’t have negative as a power 4  x  3 1 b) 2 2 x 3 x2  3 1 2 3 c) YES, x  4 4 4 d) 7 YES, 7x 0 (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree. P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3
  • 22. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 NO, can’t have fraction as a power 4 NO, can’t have negative as a power 4  x  3 1 b) 2 2 x 3 x2  3 1 2 3 c) YES, x  4 4 4 d) 7 YES, 7x 0 (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree. P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3  x3  2 x 2  7 x  8
  • 23. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 NO, can’t have fraction as a power 4 NO, can’t have negative as a power 4  x  3 1 b) 2 2 x 3 x2  3 1 2 3 c) YES, x  4 4 4 d) 7 YES, 7x 0 (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree. P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3  x3  2 x 2  7 x  8  monic, degree = 3
  • 24. P(x) = 0: polynomial equation y = P(x): polynomial function roots: solutions to the polynomial equation P(x) = 0 zeros: the values of x that make polynomial P(x) zero. i.e. the x intercepts of the graph of the polynomial. e.g. (i) Which of the following are polynomials? 1 a) 5 x 3  7 x  2 2 NO, can’t have fraction as a power 4 NO, can’t have negative as a power 4  x  3 1 b) 2 2 x 3 x2  3 1 2 3 c) YES, x  Exercise 4A; 1, 2acehi, 3bdf, 4 4 4 6bdf, 7, 9d, 10ad, 13 0 d) 7 YES, 7x (ii) Determine whether P( x)  x 3  8 x  1  7 x  11   2 x 2  1 4 x 2  3 is monic and state its degree. P( x)  8 x 4  x3  7 x  11  8 x 4  6 x 2  4 x 2  3  x3  2 x 2  7 x  8  monic, degree = 3