SPECIAL FUNCTIONS and POLYNOMIALS 
Gerard 't Hooft 
Stefan Nobbenhuis 
Institute for Theoretical Physics 
Utrecht University, Leuvenlaan 4 
3584 CC Utrecht, the Netherlands 
and 
Spinoza Institute 
Postbox 80.195 
3508 TD Utrecht, the Netherlands 
Many of the special functions and polynomials are constructed along standard 
procedures In this short survey we list the most essential ones. 
April 8, 2013 
1
1 Legendre Polynomials P`(x) . 
Dierential Equation: 
(1  x2) P` 
00(x)  2x P` 
0(x) + `(` + 1) P`(x) = 0 ; 
or 
d 
dx 
(1  x2) 
d 
dx 
P`(x) + `(` + 1) P`(x) = 0 : (1.1) 
Generating function: 
1X 
`=0 
P`(x)t` = (1  2xt + t2)1 
2 for jtj  1; jxj  1: (1.2) 
Orthonormality: 
Z 1 
-1 
P`(x) P` 0(x) dx = 
2 
2` + 1 
 ` ` 0 ; (1.3) 
1X 
`=0 
P`(x)P`(x0)(2` + 1) = 2(x  x0) : (1.4) 
Expressions forP`(x) : 
P`(x) = 
1 
2` 
[X`=2] 
=0 
(1) (2`  2)! 
! (`  )! (`  2)! 
x`2 (1.5) 
= 
1 
`! 2` 
 d 
dx 
` 
(x2  1)` ; (1.6) 
= 
1 
 
Z  
0 
(x + 
p 
x2  1 cos ')` d' : (1.7) 
Recurrence relations: 
` P`1  (2` + 1) x P` + (` + 1) P`+1 = 0 ; 
P` = x P`1 + 
x2  1 
` 
P 0 
`1 ; 
xP 0 
`  ` P` = P 0 
`1 ; 
xP 0 
` + (` + 1) P` = P 0 
`+1 ; 
d 
dx 
[P`+1  P`1] = (2` + 1) P`: (1.8) 
Examples: 
2(3x2  1) ; P3 = 1 
2x(5x2  3) : (1.9) 
P0 = 1 ; P1 = x ; P2 = 1 
1
2 Associated Legendre Functions Pm 
` (x) . 
Dierential equation: 
(1  x2) Pm 
` (x) 00  2x Pm 
` (x) 0 + 
 
`(` + 1)  
m2 
1  x2 
 
Pm 
` (x) = 0 : (2.1) 
Generating function: 
1X 
`=0 
X` 
m=0 
Pm 
` (x) zm y` 
m! 
= 
h 
1  2y 
 
x + z 
p 
1  x2 
 
+ y2 
i 
1 
2 : (2.2) 
Orthogonality: 
Z 1 
-1 
Pm 
` (x) Pm 
` 0 (x) dx = 
2 
2` + 1 
(` + m)! 
(`  m)! 
 ` ` 0 ; ( `; ` 0  m) : (2.3) 
1X 
(2` + 1) 
`=m 
(`  m)! 
(` + m)! 
Pm 
` (x) Pm 
` (x0) = 2(x  x0) ; ( jxj  1 and jx0j  1 ) : (2.4) 
Expressions for Pm 
` (x)1: 
Pm 
` (x) = (1  x2) 
1 
2m 
  
d 
dx 
!m 
P`(x) : (2.5) 
Pm 
` (x) = 
(` + m)! 
`!  
(1)m=2 
Z  
0 
 
x + 
p 
x2  1 cos ' 
` 
cosm'd' : (2.6) 
Recurrence relations: 
Pm+1 
`  
2mx 
p 
1  x2 
Pm 
` + f`(` + 1)  m(m  1)gPm1 
` = 0 (2.7) 
p 
1  x2 Pm+1 
` (x) = (1  x2) Pm 
` (x) 0 + mxPm 
` (x) ; 
(2` + 1)x Pm 
` = (` + m) Pm 
`1 + (` + 1  m) Pm 
`+1 ; (2.8) 
x Pm 
p 
1  x2 Pm1 
` = Pm 
`1  (` + 1  m) 
` ; 
Pm 
`+1  Pm 
`1 = (2` + 1) Pm1 
` 
p 
1  x2 ; (2.9) 
and various others. 
Examples: 
P1 
1 = 
p 
1  x2 ; P2 
2 = 3(1  x2) ; 
P1 
2 = 3x 
p 
1  x2 ; P2 
3 = 15 x(1  x2) : (2.10) 
1Note that some authors de
ne Pm 
` (x) with a factor (1)m, giving Pm 
` (x) = (1)m(1  
x2) 
1 
2m 
 d 
dx 
m 
P`(x) . Obviously this minus sign propagates to the generating function, the recurrence 
relations and the explicit examples, when m is odd. 
2
3 Bessel Jn(x) and Hankel Hn(x) functions. 
Dierential equation (for both Jn and Hn ): 
x2 J00 
n(x) + x J0 
n(x) + (x2  n2) Jn(x) = 0 : (3.1) 
Generating function (if n integer): 
1X 
n=1 
Jn(x) 
 
s 
 
n 
= e 
x 
2 (s  2 
s ) ; (3.2) 
Jn = (1)n Jn : 
Orthogonality: 
Z 1 
0 
 Jn() Jn(
) d = 
1 
 
(jj  j
j) : (3.3) 
Z a 
0 
 Jn() Jn(
) d = 
a2 
2 
fJn+1(a)g2
: (3.4) 
if in the 2nd relation ;
are roots of the equation Jn() = 0. 
Expressions for Jn(x) (for n integer): 
Jn(x) = 
1X 
k=0 
(1)k 
k! (k + n)! 
 x 
2 
n+2k 
= 
1 
2i 
 x 
2 
n 
I 
tn1dt e tx2=4t : (3.5) 
Jn(x) = 
1 
 
Z  
0 
cos (n  x sin ) d : (3.6) 
Recurrence relations (for both Jn and Hn ): 
d 
dx 
fxn Jn(x)g = xn Jn1(x) ; 
Jn1(x) + Jn+1(x) = 
2n 
x 
Jn(x) ; 
J 0 
n(x) = Jn1(x)  
n 
x 
Jn(x) = 
n 
x 
Jn(x)  Jn+1(x) = 1 
2 (Jn1(x)  Jn+1(x)) : (3.7) 
Relations between Hankel and Bessel functions: 
H(1) 
n (x) = 
i 
sin n 
 
eniJn(x)  Jn(x) 
 
; 
H(2) 
n (x) = 
i 
sin n 
 
eniJn(x)  Jn(x) 
 
; (3.8) 
so that 
Jn(x) = 1 
2 
 
H(1) 
 
; 
n (x) + H(2) 
n (x) 
Jn(x) = 1 
2 
 
eniH(1) 
 
: (3.9) 
n (x) + eniH(2) 
n (x) 
3
4 Spherical Bessel Functions j`(x). 
Dierential equation: 
(xj`)00 + 
 
x  
`(` + 1) 
x 
 
j` = 0 : (4.1) 
Generating Function: 
1X 
`=0 
j`(x) t` 
`! 
= j0 
p 
x2  2xt 
 
: (4.2) 
Orthogonality: 
Z 1 
0 
x2j`(x) j`(

Admissions in India 2015

  • 1.
    SPECIAL FUNCTIONS andPOLYNOMIALS Gerard 't Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 80.195 3508 TD Utrecht, the Netherlands Many of the special functions and polynomials are constructed along standard procedures In this short survey we list the most essential ones. April 8, 2013 1
  • 2.
    1 Legendre PolynomialsP`(x) . Dierential Equation: (1 x2) P` 00(x) 2x P` 0(x) + `(` + 1) P`(x) = 0 ; or d dx (1 x2) d dx P`(x) + `(` + 1) P`(x) = 0 : (1.1) Generating function: 1X `=0 P`(x)t` = (1 2xt + t2)1 2 for jtj 1; jxj 1: (1.2) Orthonormality: Z 1 -1 P`(x) P` 0(x) dx = 2 2` + 1 ` ` 0 ; (1.3) 1X `=0 P`(x)P`(x0)(2` + 1) = 2(x x0) : (1.4) Expressions forP`(x) : P`(x) = 1 2` [X`=2] =0 (1) (2` 2)! ! (` )! (` 2)! x`2 (1.5) = 1 `! 2` d dx ` (x2 1)` ; (1.6) = 1 Z 0 (x + p x2 1 cos ')` d' : (1.7) Recurrence relations: ` P`1 (2` + 1) x P` + (` + 1) P`+1 = 0 ; P` = x P`1 + x2 1 ` P 0 `1 ; xP 0 ` ` P` = P 0 `1 ; xP 0 ` + (` + 1) P` = P 0 `+1 ; d dx [P`+1 P`1] = (2` + 1) P`: (1.8) Examples: 2(3x2 1) ; P3 = 1 2x(5x2 3) : (1.9) P0 = 1 ; P1 = x ; P2 = 1 1
  • 3.
    2 Associated LegendreFunctions Pm ` (x) . Dierential equation: (1 x2) Pm ` (x) 00 2x Pm ` (x) 0 + `(` + 1) m2 1 x2 Pm ` (x) = 0 : (2.1) Generating function: 1X `=0 X` m=0 Pm ` (x) zm y` m! = h 1 2y x + z p 1 x2 + y2 i 1 2 : (2.2) Orthogonality: Z 1 -1 Pm ` (x) Pm ` 0 (x) dx = 2 2` + 1 (` + m)! (` m)! ` ` 0 ; ( `; ` 0 m) : (2.3) 1X (2` + 1) `=m (` m)! (` + m)! Pm ` (x) Pm ` (x0) = 2(x x0) ; ( jxj 1 and jx0j 1 ) : (2.4) Expressions for Pm ` (x)1: Pm ` (x) = (1 x2) 1 2m d dx !m P`(x) : (2.5) Pm ` (x) = (` + m)! `! (1)m=2 Z 0 x + p x2 1 cos ' ` cosm'd' : (2.6) Recurrence relations: Pm+1 ` 2mx p 1 x2 Pm ` + f`(` + 1) m(m 1)gPm1 ` = 0 (2.7) p 1 x2 Pm+1 ` (x) = (1 x2) Pm ` (x) 0 + mxPm ` (x) ; (2` + 1)x Pm ` = (` + m) Pm `1 + (` + 1 m) Pm `+1 ; (2.8) x Pm p 1 x2 Pm1 ` = Pm `1 (` + 1 m) ` ; Pm `+1 Pm `1 = (2` + 1) Pm1 ` p 1 x2 ; (2.9) and various others. Examples: P1 1 = p 1 x2 ; P2 2 = 3(1 x2) ; P1 2 = 3x p 1 x2 ; P2 3 = 15 x(1 x2) : (2.10) 1Note that some authors de
  • 4.
    ne Pm `(x) with a factor (1)m, giving Pm ` (x) = (1)m(1 x2) 1 2m d dx m P`(x) . Obviously this minus sign propagates to the generating function, the recurrence relations and the explicit examples, when m is odd. 2
  • 5.
    3 Bessel Jn(x)and Hankel Hn(x) functions. Dierential equation (for both Jn and Hn ): x2 J00 n(x) + x J0 n(x) + (x2 n2) Jn(x) = 0 : (3.1) Generating function (if n integer): 1X n=1 Jn(x) s n = e x 2 (s 2 s ) ; (3.2) Jn = (1)n Jn : Orthogonality: Z 1 0 Jn() Jn(
  • 6.
    ) d = 1 (jj j
  • 7.
    j) : (3.3) Z a 0 Jn() Jn(
  • 8.
    ) d = a2 2 fJn+1(a)g2
  • 9.
    : (3.4) ifin the 2nd relation ;
  • 10.
    are roots ofthe equation Jn() = 0. Expressions for Jn(x) (for n integer): Jn(x) = 1X k=0 (1)k k! (k + n)! x 2 n+2k = 1 2i x 2 n I tn1dt e tx2=4t : (3.5) Jn(x) = 1 Z 0 cos (n x sin ) d : (3.6) Recurrence relations (for both Jn and Hn ): d dx fxn Jn(x)g = xn Jn1(x) ; Jn1(x) + Jn+1(x) = 2n x Jn(x) ; J 0 n(x) = Jn1(x) n x Jn(x) = n x Jn(x) Jn+1(x) = 1 2 (Jn1(x) Jn+1(x)) : (3.7) Relations between Hankel and Bessel functions: H(1) n (x) = i sin n eniJn(x) Jn(x) ; H(2) n (x) = i sin n eniJn(x) Jn(x) ; (3.8) so that Jn(x) = 1 2 H(1) ; n (x) + H(2) n (x) Jn(x) = 1 2 eniH(1) : (3.9) n (x) + eniH(2) n (x) 3
  • 11.
    4 Spherical BesselFunctions j`(x). Dierential equation: (xj`)00 + x `(` + 1) x j` = 0 : (4.1) Generating Function: 1X `=0 j`(x) t` `! = j0 p x2 2xt : (4.2) Orthogonality: Z 1 0 x2j`(x) j`(