INTRODUCTIONTO
SIGNALSANDSYSTEMS
Lecture1
Thereading material
 Thetext book
Signalsand Systems
 Alan V
. Oppenheim
 Alan S. Willsky
 S. HamidNawab
 2nd Edition
 Web based demos
Thereading material
 Anauxiliarybook
Signalsand Linear
SystemsAnalysiswith
Matlab
 Gordon E.Carlson
 Second Ed.
T
ests
 Two tests
5 marks each
Thebest score
Nonobjective type
 No MCQ, No Blanks,No True/false
Subjectivetype tests only
 Definitions,Descriptions,Mathematical Evidences
 Arguments,Comparisons,Interpretations,Calculations,
and Conclusions etc.
Chapter 1
S.
No.
Topic
No. of
Lectures
1 Basic concepts of Signals and Systems 1
2 Signal representationand models 1
3
Classification of signals and Basic operations on
signals
1
4
System characteristics,linear time-invariant (LTI)
systems
1
5
System response, system equations and impulse
response, system order,Causality and Stability
1
Total 5
Definitions
 Signal
 Signal Processing
 System
 Carrier of information
Signal transmitted
from antenna
a radio
 Manipulating, Modifying,
transforming
Amplification/attenuation, Rectification,
Modulation, Filtering, Mixing
 A setup / set of components that
processesthesignals
Man
Robot
Classification of Signals
 Electrical and non-electrical
 Continuous-time/ Discrete-time
 Periodic/ Aperiodic
 Time-limited / time-unlimited
 Right/Left handed
 Deterministic/ Random
 Even/ Odd
Classification of Signals
 Electrical and non-electrical
 Continuous-time/ Discrete-time
 Periodic/ Aperiodic
 Time-limited / time-unlimited
 Right/Left handed
 Deterministic/ Random
 Even/ Odd
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1
.5
0
.5
1
xt
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
1
.5
0
.5
-1
xnT
Classification of Signals
 Electrical and non-electrical
 Continuous-time/ Discrete-time
 Periodic/ Aperiodic
 Time-limited / time-unlimited
 Right/Left handed
 Deterministic/ Random
 Even/ Odd
Classification of Signals
 Electrical and non-electrical
 Continuous-time/ Discrete-time
 Periodic/ Aperiodic
 Time-limited / time-unlimited
 Right/Left handed
 Deterministic/ Random
 Even/ Odd
xt T xt
xn NT xnT
Classification of Signals
 Electrical / Non-electrical
 Continuous-time/ Discrete-time
 Periodic/ Aperiodic
 Time-limited / time-unlimited
 Right/Left handed
 Deterministic/ Random
 Even/ Odd
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
1
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
1
0.5
0
-0.5
-1
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1
0
1
Time-unlimited Signals
-2 -1.5 -1 -0.5 0
Time-limited Signals
0.5 1 1.5 2
1
0.8
0.6
0.4
0.2
Classification of Signals
 Electrical / Non-electrical
 Continuous-time/ Discrete-time
 Periodic/ Aperiodic
 Time-limited / time-unlimited
 Right/Left handed
 Deterministic/ Random
 Even/ Odd
Classification of Signals
 Electrical / Non-electrical
 Continuous-time/ Discrete-time
 Periodic/ Aperiodic
 Time-limited / time-unlimited
 Right/Left handed
 Deterministic/ Random
 Even/ Odd
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
1
0
-1
Time-unlimited Signals
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
1
0.8
0.6
0.4
0.2
Classification of Signals
 Electrical / Non-electrical
 Continuous-time/ Discrete-time
 Periodic/ Aperiodic
 Time-limited / time-unlimited
 Right/Left handed
 Deterministic/ Random
 Even/ Odd
Classification of Signals
 Electrical / Non-electrical
 Continuous-time/ Discrete-time
 Periodic/ Aperiodic
 Time-limited / time-unlimited
 Deterministic/ Random
 Right/Left handed
 Even/ Odd
Classification of Signals
 Electrical and non-electrical
 Periodic/ Aperiodic
 Continuous-time/ Discrete-time
 Time-limited / time-unlimited
 Deterministic/ Random
 Right/Left handed
 Even/ Odd
 Even Signal
x t  xt
xn xn
 Odd Signal
xt xt
xnxn
Classification of Signals
 Electrical and non-electrical
 Periodic/ Aperiodic
 Continuous-time/ Discrete-time
 Time-limited / time-unlimited
 Deterministic/ Random
 Right/Left handed
 Even/ Odd
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1
0
1
Time-unlimited Signals
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
1
0
-1
Evenor Odd ?
Even
Odd
-2 -1.5 -1 -0.5 0 0
.5 1 1
.5 2
0
1
2
-2 -1.5 -1 -0.5 0 0
.5 1 1
.5 2
-1
0
1
-2 -1.5 -1 -0.5 0 0
.5 1 1
.5 2
0
1
2
Neither Even
Nor Odd
Signal Representation
 Simple definition
Continuousthroughout
the domain from -∞ to ∞
 Piecewise definition
Continuousin the
subdomainsand
discontinuities at the
junctions
t
f t e


f t  
0
et
t  0
t  0
for all t
BasicTime-Operations onSignals
 Time-Shifting
Time advance
Time delay
 Time-Scaling
Compression
Expansion
 Time-Reversal
yt xat
a 1
a 1
yt xt
yt xt  
  0
  0
a 0
Time Shifting
 Time-Shifting
Time advance
Time delay
-2 -1.5 -1 -0.5 0.5 1 1.5 2
0
time
1
0.5
0
x(t+tau)
-2 -1.5 -1 -0.5 0.5 1 1.5 2
1
0.5
0
0
time
x(t)
yt xt  
  0
  0
Time Shifting
Time Shifting
 Time-Shifting
Time advance
Time delay
yt xt  
  0
  0
Time Shifting
-2 -1.5 -1 -0.5 0.5 1 1.5 2
1
0.5
0
0
time
x(t+tau)
-2 -1.5 -1 -0.5 0.5 1 1.5 2
0
time
1
0.5
0
x(t)
Time Scaling
 Time-Scaling
Compression
Expansion
a 0
-3 -2 -1 0 1 2 3
1
0.5
0
yt xat
a 1
a 1
Time Scaling
x(2t)
-3 -2 -1 0 1 2 3
1
0.5
0
x(0.5t)
-3 -2 -1 0 1 2 3
1
0.5
0
x(t)
Time Reversal
 Time-Reversal
-3 -2 -1 1 2 3
0
time
yt xt
Time Reversal
1
0.5
0
x(-t)
-3 -2 -1 1 2 3
1
0.5
0
0
time
x(t)
Evenor Odd ?
Even
Odd
-2 -1.5 -1 -0.5 0 0
.5 1 1
.5 2
0
1
2
-2 -1.5 -1 -0.5 0 0
.5 1 1
.5 2
-1
0
1
-2 -1.5 -1 -0.5 0 0
.5 1 1
.5 2
0
1
2
Neither Even
Nor Odd
x(t) = xe(t) + xo(t)
Even Signal Odd Signal
xt xe t xo t
xt xe t xo t
xt xe t xo t
xt xt 2xe t
x t
1
xt xt
e
2
xt xt 2xo t
x t
1
xt xt
o
2
+
x(t) = xe(t) + xo(t)
Even Signal Odd Signal
xt xe t xo t
xt xe t xo t
xt xe t xo t
xt xt 2xe t
e
2
x t
1
xt xt
xt xt 2xo t
x t
1
xt xt
o
2
+
x(t) = xe(t) + xo(t)
Even Signal Odd Signal
xt xe t xo t
xt xe t xo t
xt xe t xo t
xt xt 2xe t
e
2
x t
1
xt xt
xt xt 2xo t
x t
1
xt xt
o
2
+ -
x(t) = xe(t) + xo(t)
Even Signal Odd Signal
xt xe t xo t
xt xe t xo t
xt xe t xo t
xt xt 2xe t
e
2
x t
1
xt xt
xt xt 2xo t
o
2
x t
1
xt xt
+ -
x(t) = xe(t) + xo(t)
Even Signal Odd Signal
xe t
xt xt
2
xt xt
2

o
x t
2
2
o
x t
e
x t 
 t xt xt
xt x
 
2
2
2
xt xt
xt xt
o
x t
e
x t   

2
xt
2

xt
  xt
o
x t
e
x t
2
Break into Evenand Odd parts
-2 -1.5 -1 -0.5 0.5 1 1.5 2
2
1.5
1
0.5
0
0
time (seconds)
x(t)
Break into Evenand Odd parts
-2 -1.5 -1 -0.5 0.5 1 1.5 2
2
1.5
1
0.5
0
0
time (seconds)
x(t)




xt 
2(t 1) 1 t  0
2 0  t 1
0 elsewhere
xt ?
Break into Evenand Odd parts
Graphically Mathematically
 



x t  
1 t  0
0  t  1
elsewhere
2
0
 2(t 1)




xt 
2(1t) 0  t 1
2 1 t  0
0 elsewhere
-2 -1.5 -1 -0.5 0.5 1 1.5 2
0
0.5
1
1.5
2
0
time (seconds)
x(-t)
Break into Evenand Odd parts
Graphically
-2 -1 0 1 2
0
1.5
1
0.5
2
x(t)
-2 -1 0 1 2
0
1.5
1
0.5
2
x(-t)
-2 -1 0 1 2
0
2
1.5
1
0.5
Even Part
-2 -1 0 1 2
-1
1
0.5
0
-0.5
Odd Part
Break into Evenand Odd parts
Mathematically




xt 
2(t 1) 1 t  0
2 0  t 1
0 elsewhere 



xt 
2(1t) 0  t 1
2 1 t  0
0 elsewhere



xt xt 
21 t
0 0
2(t 1) 2 1 t  0
0  t  1
elsewhere



xt xt 
1 t  0
3t 0  t 1
0 elsewhere
 2(t 2)



xt xt 
21 t
0 0
2(t 1) 2 1 t  0
0  t  1
elsewhere
System Characteristics
 Electrical/Non-Electrical
 Memory/memoryless
System order
 Causality
Causal/ Non-causal
 Stability
Stable/Non-stable
 Time-invariance
Time-variant/Time-invariant
 Linearity
Linear/Non-linear
 Invertibility
Invertible/Non-invertible
System Characteristics
 Electrical/Non-Electrical
 Memory/memoryless
System order
 Causality
Causal/ Non-causal
 Stability
Stable/Non-stable
 Time-invariance
Time-variant/Time-invariant
 Linearity
Linear/Non-linear
 Invertibility
Invertible/Non-invertible
System Characteristics
 Electrical/Non-Electrical
 Memory/memoryless
System order
 Causality
Causal/ Non-causal
 Stability
Stable/Non-stable
 Time-invariance
Time-variant/Time-invariant
 Linearity
Linear/Non-linear
 Invertibility
Invertible/Non-invertible
System Characteristics
 Electrical/Non-Electrical
 Memory/memoryless
System order
 Causality
Causal/ Non-causal
 Stability
Stable/Non-stable
 Time-invariance
Time-variant/Time-invariant
 Linearity
Linear/Non-linear
 Invertibility
Invertible/Non-invertible
System Characteristics
2
yt 2xt xt 1
1
xt  2
2
2
yn 2xn xn1
1
xn 2
2
yn 2xn xn1
1
xn 2
 Electrical/Non-Electrical
 Memory/memoryless
System order
 Causality
Causal/ Non-causal
 Stability
Stable/Non-stable
 Time-invariance
Time-variant/Time-invariant yt 2xt xt 1
1
xt  2
 Linearity
Linear/Non-linear
 Invertibility
Invertible/Non-invertible
System Characteristics
 BIBO stability
Boundedoutputfor
bounded input
 Electrical/Non-Electrical
 Memory/memoryless
System order
 Causality
Causal/ Non-causal
 Stability
Stable/Unstable
 Time-invariance
Time-variant/Time-invariant
 Linearity
Linear/Non-linear
 Invertibility
Invertible/Non-invertible
System Characteristics
 Electrical/Non-Electrical
 Memory/memoryless
System order
 Causality
Causal/ Non-causal
 Stability
Stable/Non-stable
 Time-invariance
Time-variant/Time-invariant
 Linearity
Linear/Non-linear
 Invertibility
Invertible/Non-invertible
System Characteristics
  
x t  y t
 Electrical/Non-Electrical
 Memory/memoryless
System order
 Causality
Causal/ Non-causal
 Stability
Stable/Non-stable
 Time-invariance
Time-variant/Time-invariant
 Linearity
Linear/Non-linear
 Invertibility
Invertible/Non-invertible
xt   yt  
System Characteristics
 Electrical/Non-Electrical
 Memory/memoryless
System order
 Causality
Causal/Non-causal
 Stability
Stable/Non-stable
 Time-invariance
Time-variant/Time-invariant
 Linearity
Linear/Non-linear
 Invertibility
Invertible/Non-invertible
1 1
x  y
x2  y2
Ax1  Bx2  Ay1  By2
System Characteristics
 Electrical/Non-Electrical
 Memory/memoryless
System order
 Causality
Causal/Non-causal
 Stability
Stable/Non-stable
 Time-invariance
Time-variant/Time-invariant
 Linearity
Linear/Non-linear
 Invertibility
Invertible/Non-invertible
-2 -1.5 -1 -0.5 0.5 1 1.5 2
-2
-1
0
1
2
0
x(t)
y(t)
-2 -1.5 -1 -0.5 0.5 1 1.5 2
-4
-2
0
2
4
0
x(t)
y(t)
- 2 - 1 . 5 - 1 - 0 . 5 0 . 5 1 1 . 5 2
0
0 . 5
1
1 . 5
2
2 . 5
3
3 . 5
4
0
x(t )
y(t
)
System Characteristics
 Electrical/Non-Electrical
 Memory/memoryless
System order
 Causality
Causal/Non-causal
 Stability
Stable/Non-stable
 Time-invariance
Time-variant/Time-invariant
 Linearity
Linear/Non-linear
 Invertibility
Invertible/Non-invertible
System Representation
Block Diagram System Component
System Representation
Block Diagram System Component

Signals and Systems 1.pptx

  • 1.
  • 2.
    Thereading material  Thetextbook Signalsand Systems  Alan V . Oppenheim  Alan S. Willsky  S. HamidNawab  2nd Edition  Web based demos
  • 3.
    Thereading material  Anauxiliarybook SignalsandLinear SystemsAnalysiswith Matlab  Gordon E.Carlson  Second Ed.
  • 4.
    T ests  Two tests 5marks each Thebest score Nonobjective type  No MCQ, No Blanks,No True/false Subjectivetype tests only  Definitions,Descriptions,Mathematical Evidences  Arguments,Comparisons,Interpretations,Calculations, and Conclusions etc.
  • 5.
    Chapter 1 S. No. Topic No. of Lectures 1Basic concepts of Signals and Systems 1 2 Signal representationand models 1 3 Classification of signals and Basic operations on signals 1 4 System characteristics,linear time-invariant (LTI) systems 1 5 System response, system equations and impulse response, system order,Causality and Stability 1 Total 5
  • 6.
    Definitions  Signal  SignalProcessing  System  Carrier of information Signal transmitted from antenna a radio  Manipulating, Modifying, transforming Amplification/attenuation, Rectification, Modulation, Filtering, Mixing  A setup / set of components that processesthesignals Man Robot
  • 7.
    Classification of Signals Electrical and non-electrical  Continuous-time/ Discrete-time  Periodic/ Aperiodic  Time-limited / time-unlimited  Right/Left handed  Deterministic/ Random  Even/ Odd
  • 8.
    Classification of Signals Electrical and non-electrical  Continuous-time/ Discrete-time  Periodic/ Aperiodic  Time-limited / time-unlimited  Right/Left handed  Deterministic/ Random  Even/ Odd -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -1 .5 0 .5 1 xt -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 1 .5 0 .5 -1 xnT
  • 9.
    Classification of Signals Electrical and non-electrical  Continuous-time/ Discrete-time  Periodic/ Aperiodic  Time-limited / time-unlimited  Right/Left handed  Deterministic/ Random  Even/ Odd
  • 10.
    Classification of Signals Electrical and non-electrical  Continuous-time/ Discrete-time  Periodic/ Aperiodic  Time-limited / time-unlimited  Right/Left handed  Deterministic/ Random  Even/ Odd xt T xt xn NT xnT
  • 11.
    Classification of Signals Electrical / Non-electrical  Continuous-time/ Discrete-time  Periodic/ Aperiodic  Time-limited / time-unlimited  Right/Left handed  Deterministic/ Random  Even/ Odd -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0 0.5 1 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 1 0.5 0 -0.5 -1 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -1 0 1 Time-unlimited Signals -2 -1.5 -1 -0.5 0 Time-limited Signals 0.5 1 1.5 2 1 0.8 0.6 0.4 0.2
  • 12.
    Classification of Signals Electrical / Non-electrical  Continuous-time/ Discrete-time  Periodic/ Aperiodic  Time-limited / time-unlimited  Right/Left handed  Deterministic/ Random  Even/ Odd
  • 13.
    Classification of Signals Electrical / Non-electrical  Continuous-time/ Discrete-time  Periodic/ Aperiodic  Time-limited / time-unlimited  Right/Left handed  Deterministic/ Random  Even/ Odd -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 1 0 -1 Time-unlimited Signals -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 1 0.8 0.6 0.4 0.2
  • 14.
    Classification of Signals Electrical / Non-electrical  Continuous-time/ Discrete-time  Periodic/ Aperiodic  Time-limited / time-unlimited  Right/Left handed  Deterministic/ Random  Even/ Odd
  • 15.
    Classification of Signals Electrical / Non-electrical  Continuous-time/ Discrete-time  Periodic/ Aperiodic  Time-limited / time-unlimited  Deterministic/ Random  Right/Left handed  Even/ Odd
  • 16.
    Classification of Signals Electrical and non-electrical  Periodic/ Aperiodic  Continuous-time/ Discrete-time  Time-limited / time-unlimited  Deterministic/ Random  Right/Left handed  Even/ Odd  Even Signal x t  xt xn xn  Odd Signal xt xt xnxn
  • 17.
    Classification of Signals Electrical and non-electrical  Periodic/ Aperiodic  Continuous-time/ Discrete-time  Time-limited / time-unlimited  Deterministic/ Random  Right/Left handed  Even/ Odd -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -1 0 1 Time-unlimited Signals -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 1 0 -1
  • 18.
    Evenor Odd ? Even Odd -2-1.5 -1 -0.5 0 0 .5 1 1 .5 2 0 1 2 -2 -1.5 -1 -0.5 0 0 .5 1 1 .5 2 -1 0 1 -2 -1.5 -1 -0.5 0 0 .5 1 1 .5 2 0 1 2 Neither Even Nor Odd
  • 19.
    Signal Representation  Simpledefinition Continuousthroughout the domain from -∞ to ∞  Piecewise definition Continuousin the subdomainsand discontinuities at the junctions t f t e   f t   0 et t  0 t  0 for all t
  • 20.
    BasicTime-Operations onSignals  Time-Shifting Timeadvance Time delay  Time-Scaling Compression Expansion  Time-Reversal yt xat a 1 a 1 yt xt yt xt     0   0 a 0
  • 21.
    Time Shifting  Time-Shifting Timeadvance Time delay -2 -1.5 -1 -0.5 0.5 1 1.5 2 0 time 1 0.5 0 x(t+tau) -2 -1.5 -1 -0.5 0.5 1 1.5 2 1 0.5 0 0 time x(t) yt xt     0   0 Time Shifting
  • 22.
    Time Shifting  Time-Shifting Timeadvance Time delay yt xt     0   0 Time Shifting -2 -1.5 -1 -0.5 0.5 1 1.5 2 1 0.5 0 0 time x(t+tau) -2 -1.5 -1 -0.5 0.5 1 1.5 2 0 time 1 0.5 0 x(t)
  • 23.
    Time Scaling  Time-Scaling Compression Expansion a0 -3 -2 -1 0 1 2 3 1 0.5 0 yt xat a 1 a 1 Time Scaling x(2t) -3 -2 -1 0 1 2 3 1 0.5 0 x(0.5t) -3 -2 -1 0 1 2 3 1 0.5 0 x(t)
  • 24.
    Time Reversal  Time-Reversal -3-2 -1 1 2 3 0 time yt xt Time Reversal 1 0.5 0 x(-t) -3 -2 -1 1 2 3 1 0.5 0 0 time x(t)
  • 25.
    Evenor Odd ? Even Odd -2-1.5 -1 -0.5 0 0 .5 1 1 .5 2 0 1 2 -2 -1.5 -1 -0.5 0 0 .5 1 1 .5 2 -1 0 1 -2 -1.5 -1 -0.5 0 0 .5 1 1 .5 2 0 1 2 Neither Even Nor Odd
  • 26.
    x(t) = xe(t)+ xo(t) Even Signal Odd Signal xt xe t xo t xt xe t xo t xt xe t xo t xt xt 2xe t x t 1 xt xt e 2 xt xt 2xo t x t 1 xt xt o 2 +
  • 27.
    x(t) = xe(t)+ xo(t) Even Signal Odd Signal xt xe t xo t xt xe t xo t xt xe t xo t xt xt 2xe t e 2 x t 1 xt xt xt xt 2xo t x t 1 xt xt o 2 +
  • 28.
    x(t) = xe(t)+ xo(t) Even Signal Odd Signal xt xe t xo t xt xe t xo t xt xe t xo t xt xt 2xe t e 2 x t 1 xt xt xt xt 2xo t x t 1 xt xt o 2 + -
  • 29.
    x(t) = xe(t)+ xo(t) Even Signal Odd Signal xt xe t xo t xt xe t xo t xt xe t xo t xt xt 2xe t e 2 x t 1 xt xt xt xt 2xo t o 2 x t 1 xt xt + -
  • 30.
    x(t) = xe(t)+ xo(t) Even Signal Odd Signal xe t xt xt 2 xt xt 2  o x t 2 2 o x t e x t   t xt xt xt x   2 2 2 xt xt xt xt o x t e x t     2 xt 2  xt   xt o x t e x t 2
  • 31.
    Break into EvenandOdd parts -2 -1.5 -1 -0.5 0.5 1 1.5 2 2 1.5 1 0.5 0 0 time (seconds) x(t)
  • 32.
    Break into EvenandOdd parts -2 -1.5 -1 -0.5 0.5 1 1.5 2 2 1.5 1 0.5 0 0 time (seconds) x(t)     xt  2(t 1) 1 t  0 2 0  t 1 0 elsewhere xt ?
  • 33.
    Break into EvenandOdd parts Graphically Mathematically      x t   1 t  0 0  t  1 elsewhere 2 0  2(t 1)     xt  2(1t) 0  t 1 2 1 t  0 0 elsewhere -2 -1.5 -1 -0.5 0.5 1 1.5 2 0 0.5 1 1.5 2 0 time (seconds) x(-t)
  • 34.
    Break into EvenandOdd parts Graphically -2 -1 0 1 2 0 1.5 1 0.5 2 x(t) -2 -1 0 1 2 0 1.5 1 0.5 2 x(-t) -2 -1 0 1 2 0 2 1.5 1 0.5 Even Part -2 -1 0 1 2 -1 1 0.5 0 -0.5 Odd Part
  • 35.
    Break into EvenandOdd parts Mathematically     xt  2(t 1) 1 t  0 2 0  t 1 0 elsewhere     xt  2(1t) 0  t 1 2 1 t  0 0 elsewhere    xt xt  21 t 0 0 2(t 1) 2 1 t  0 0  t  1 elsewhere    xt xt  1 t  0 3t 0  t 1 0 elsewhere  2(t 2)    xt xt  21 t 0 0 2(t 1) 2 1 t  0 0  t  1 elsewhere
  • 36.
    System Characteristics  Electrical/Non-Electrical Memory/memoryless System order  Causality Causal/ Non-causal  Stability Stable/Non-stable  Time-invariance Time-variant/Time-invariant  Linearity Linear/Non-linear  Invertibility Invertible/Non-invertible
  • 37.
    System Characteristics  Electrical/Non-Electrical Memory/memoryless System order  Causality Causal/ Non-causal  Stability Stable/Non-stable  Time-invariance Time-variant/Time-invariant  Linearity Linear/Non-linear  Invertibility Invertible/Non-invertible
  • 38.
    System Characteristics  Electrical/Non-Electrical Memory/memoryless System order  Causality Causal/ Non-causal  Stability Stable/Non-stable  Time-invariance Time-variant/Time-invariant  Linearity Linear/Non-linear  Invertibility Invertible/Non-invertible
  • 39.
    System Characteristics  Electrical/Non-Electrical Memory/memoryless System order  Causality Causal/ Non-causal  Stability Stable/Non-stable  Time-invariance Time-variant/Time-invariant  Linearity Linear/Non-linear  Invertibility Invertible/Non-invertible
  • 40.
    System Characteristics 2 yt 2xtxt 1 1 xt  2 2 2 yn 2xn xn1 1 xn 2 2 yn 2xn xn1 1 xn 2  Electrical/Non-Electrical  Memory/memoryless System order  Causality Causal/ Non-causal  Stability Stable/Non-stable  Time-invariance Time-variant/Time-invariant yt 2xt xt 1 1 xt  2  Linearity Linear/Non-linear  Invertibility Invertible/Non-invertible
  • 41.
    System Characteristics  BIBOstability Boundedoutputfor bounded input  Electrical/Non-Electrical  Memory/memoryless System order  Causality Causal/ Non-causal  Stability Stable/Unstable  Time-invariance Time-variant/Time-invariant  Linearity Linear/Non-linear  Invertibility Invertible/Non-invertible
  • 42.
    System Characteristics  Electrical/Non-Electrical Memory/memoryless System order  Causality Causal/ Non-causal  Stability Stable/Non-stable  Time-invariance Time-variant/Time-invariant  Linearity Linear/Non-linear  Invertibility Invertible/Non-invertible
  • 43.
    System Characteristics   x t  y t  Electrical/Non-Electrical  Memory/memoryless System order  Causality Causal/ Non-causal  Stability Stable/Non-stable  Time-invariance Time-variant/Time-invariant  Linearity Linear/Non-linear  Invertibility Invertible/Non-invertible xt   yt  
  • 44.
    System Characteristics  Electrical/Non-Electrical Memory/memoryless System order  Causality Causal/Non-causal  Stability Stable/Non-stable  Time-invariance Time-variant/Time-invariant  Linearity Linear/Non-linear  Invertibility Invertible/Non-invertible 1 1 x  y x2  y2 Ax1  Bx2  Ay1  By2
  • 45.
    System Characteristics  Electrical/Non-Electrical Memory/memoryless System order  Causality Causal/Non-causal  Stability Stable/Non-stable  Time-invariance Time-variant/Time-invariant  Linearity Linear/Non-linear  Invertibility Invertible/Non-invertible -2 -1.5 -1 -0.5 0.5 1 1.5 2 -2 -1 0 1 2 0 x(t) y(t) -2 -1.5 -1 -0.5 0.5 1 1.5 2 -4 -2 0 2 4 0 x(t) y(t) - 2 - 1 . 5 - 1 - 0 . 5 0 . 5 1 1 . 5 2 0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 0 x(t ) y(t )
  • 46.
    System Characteristics  Electrical/Non-Electrical Memory/memoryless System order  Causality Causal/Non-causal  Stability Stable/Non-stable  Time-invariance Time-variant/Time-invariant  Linearity Linear/Non-linear  Invertibility Invertible/Non-invertible
  • 47.
  • 48.