Numerical Analysis and
Statistics
Presented By:
Sr. No. Name Enroll. No.
1 Vishal Donga 140800107067
2 Lucky Vishwakarma 140800107068
3 Jaimin Vitthalpara 140800107069
4 Nitu Yadav 140800107070
Guided By:
Prof. Poonam Kumari
Newton’s Divided Difference
Polynomial Method of
Interpolation
What is Interpolation ?
Given (x0,y0), (x1,y1), …… (xn,yn), find the
value of ‘y’ at a value of ‘x’ that is not given.
Newton’s Divided Difference
Method
Linear interpolation: Given pass a
linear interpolant through the data
where
),,( 00 yx ),,( 11 yx
)()( 0101 xxbbxf −+=
)( 00 xfb =
01
01
1
)()(
xx
xfxf
b
−
−
=
Divided differences and the coefficients
f
ix [ ]if x
The divided difference of a function,
with respect to is denoted as
It is called as zeroth divided difference and is
simply the value of the function, f
at ix
[ ] ( )ii xfxf =
[ ]1i if x , x +
fThe divided difference of a function,
called as the first divided difference, is
denoted
ixwith respect to and 1ix +
[ ]
[ ] [ ]1
1
1
i i
i i
i i
f x f x
f x , x
x x
+
+
+
−
=
−
fThe divided difference of a function,
called as the second divided difference, is
denoted as
ixwith respect to and1ix +, 2ix +
[ ]1 2i i if x , x , x+ +
[ ]
[ ] [ ]1 2 1
1 2
2
i i i i
i i i
i i
f x , x f x , x
f x , x , x
x x
+ + +
+ +
+
−
=
−
[ ]
[ ] [ ]
1 2 3
1 2 3 1 2
3
i i i i
i i i i i i
i i
f x , x , x , x
f x , x , x f x , x , x
x x
+ + +
+ + + + +
+
−
=
−
The third divided difference with respect to
ix 1ix + 2ix + 3ix +
, and,
The coefficients of Newton’s interpolating
polynomial are:
[ ]00 xfa =
[ ]101 x,xfa =
[ ]2102 x,x,xfa =
[ ]32103 x,x,x,xfa =
[ ]432104 x,x,x,x,xfa = and so on.
First
divided differences
Second
divided differences
Third
divided differences
Example
Find Newton’s interpolating polynomial to
approximate a function whose 5 data points
are given below.
( )f x
2.0 0.85467
2.3 0.75682
2.6 0.43126
2.9 0.22364
3.2 0.08567
x
i ix [ ]ixf [ ]ii x,xf 1− [ ]iii x,x,xf 12 −−
[ ]ii x,,xf 3−
[ ]ii x,,xf 4−
0 2.0 0.85467
-0.32617
1 2.3 0.75682 -1.26505
-1.08520 2.13363
2 2.6 0.43126 0.65522 -2.02642
-0.69207 -0.29808
3 2.9 0.22364 0.38695
-0.45990
4 3.2 0.08567
The 5 coefficients of the Newton’s interpolating
polynomial are:
[ ]0 0 0 85467a f x .= =
[ ]1 0 1 0 32617a f x , x .= = −
[ ]2 0 1 2 1 26505a f x , x , x .= = −
[ ]3 0 1 2 3 2 13363a f x , x , x , x .= =
[ ]4 0 1 2 3 4 2 02642a f x , x , x , x , x .= = −
( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
0 1 0
2 0 1
3 0 1 2
4 0 1 2 3
P x a a x x
a x x x x
a x x x x x x
a x x x x x x x x
= + −
+ − −
+ − − −
+ − − − −
( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
0 85467 0 32617 2 0
-1.26505 2 0 2 3
2 13363 2 0 2 3 2 6
2 02642 2 0 2 3 2 6 2 9
P x . . x .
x . x .
. x . x . x .
. x . x . x . x .
= − −
− −
+ − − −
− − − − −
P(x) can now be used to estimate the value of the
function f(x) say at x = 2.8.
( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
2 8 0 85467 0 32617 2 8 2 0
-1.26505 2 8 2 0 2 8 2 3
2 13363 2 8 2 0 2 8 2 3 2 8 2 6
2 02642 2 8 2 0 2 8 2 3 2 8 2 6 2 8 2 9
P . . . . .
. . . .
. . . . . . .
. . . . . . . . .
= − −
− −
+ − − −
− − − − −
( ) ( )2 8 2 8 0 275f . P . .≈ =
Thank You

Newton divided difference interpolation

  • 1.
  • 2.
    Presented By: Sr. No.Name Enroll. No. 1 Vishal Donga 140800107067 2 Lucky Vishwakarma 140800107068 3 Jaimin Vitthalpara 140800107069 4 Nitu Yadav 140800107070 Guided By: Prof. Poonam Kumari
  • 3.
  • 4.
    What is Interpolation? Given (x0,y0), (x1,y1), …… (xn,yn), find the value of ‘y’ at a value of ‘x’ that is not given.
  • 5.
    Newton’s Divided Difference Method Linearinterpolation: Given pass a linear interpolant through the data where ),,( 00 yx ),,( 11 yx )()( 0101 xxbbxf −+= )( 00 xfb = 01 01 1 )()( xx xfxf b − − =
  • 6.
    Divided differences andthe coefficients f ix [ ]if x The divided difference of a function, with respect to is denoted as It is called as zeroth divided difference and is simply the value of the function, f at ix [ ] ( )ii xfxf =
  • 7.
    [ ]1i ifx , x + fThe divided difference of a function, called as the first divided difference, is denoted ixwith respect to and 1ix + [ ] [ ] [ ]1 1 1 i i i i i i f x f x f x , x x x + + + − = −
  • 8.
    fThe divided differenceof a function, called as the second divided difference, is denoted as ixwith respect to and1ix +, 2ix + [ ]1 2i i if x , x , x+ + [ ] [ ] [ ]1 2 1 1 2 2 i i i i i i i i i f x , x f x , x f x , x , x x x + + + + + + − = −
  • 9.
    [ ] [ ][ ] 1 2 3 1 2 3 1 2 3 i i i i i i i i i i i i f x , x , x , x f x , x , x f x , x , x x x + + + + + + + + + − = − The third divided difference with respect to ix 1ix + 2ix + 3ix + , and,
  • 10.
    The coefficients ofNewton’s interpolating polynomial are: [ ]00 xfa = [ ]101 x,xfa = [ ]2102 x,x,xfa = [ ]32103 x,x,x,xfa = [ ]432104 x,x,x,x,xfa = and so on.
  • 11.
  • 12.
    Example Find Newton’s interpolatingpolynomial to approximate a function whose 5 data points are given below. ( )f x 2.0 0.85467 2.3 0.75682 2.6 0.43126 2.9 0.22364 3.2 0.08567 x
  • 13.
    i ix []ixf [ ]ii x,xf 1− [ ]iii x,x,xf 12 −− [ ]ii x,,xf 3− [ ]ii x,,xf 4− 0 2.0 0.85467 -0.32617 1 2.3 0.75682 -1.26505 -1.08520 2.13363 2 2.6 0.43126 0.65522 -2.02642 -0.69207 -0.29808 3 2.9 0.22364 0.38695 -0.45990 4 3.2 0.08567
  • 14.
    The 5 coefficientsof the Newton’s interpolating polynomial are: [ ]0 0 0 85467a f x .= = [ ]1 0 1 0 32617a f x , x .= = − [ ]2 0 1 2 1 26505a f x , x , x .= = − [ ]3 0 1 2 3 2 13363a f x , x , x , x .= = [ ]4 0 1 2 3 4 2 02642a f x , x , x , x , x .= = −
  • 15.
    ( ) () ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 1 0 2 0 1 3 0 1 2 4 0 1 2 3 P x a a x x a x x x x a x x x x x x a x x x x x x x x = + − + − − + − − − + − − − −
  • 16.
    ( ) () ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 85467 0 32617 2 0 -1.26505 2 0 2 3 2 13363 2 0 2 3 2 6 2 02642 2 0 2 3 2 6 2 9 P x . . x . x . x . . x . x . x . . x . x . x . x . = − − − − + − − − − − − − − P(x) can now be used to estimate the value of the function f(x) say at x = 2.8.
  • 17.
    ( ) () ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 8 0 85467 0 32617 2 8 2 0 -1.26505 2 8 2 0 2 8 2 3 2 13363 2 8 2 0 2 8 2 3 2 8 2 6 2 02642 2 8 2 0 2 8 2 3 2 8 2 6 2 8 2 9 P . . . . . . . . . . . . . . . . . . . . . . . . . = − − − − + − − − − − − − − ( ) ( )2 8 2 8 0 275f . P . .≈ =
  • 18.