Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
1
Numerical Techniques
Unit- 2: Finite Differences and Interpolation
Table of content
1. Introduction
2. Finite Differences
(a) Forward Differences
(b) Backward Differences
(c) Central Differences
3. Interpolation for equal intervals
(a) Newton Forward and Backward Interpolation Formula
(b) Gauss Forward and Backward Interpolation Formula
(c) Stirling’s Interpolation Formula
4. Interpolation for unequal intervals
(a) Lagrange’s Interpolation Formula
5. Inverse interpolation
6. Relation between the operators
7. Newton Divided Difference Interpolation Formula
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
2
Numerical Techniques
Unit- 2: Finite Differences and Interpolation
D efinition : Finite D ifferences
0 1 1 1
L et ( , ) ; 0,1, 2, ..., b e an y set o f d ata va lu es fo r th e fu n ctio n
( ) w ith th e valu es are eq u ally sp aced , d istan ce ap art so
th at ... ; th at is , an d ( ).
S o th e val
i i
i
n n i i i i
x y i n
y f x x h
x x x x x x h y f x 


      
1
0 1
0 1
u e o f is k n o w n as th e F in ite d ifferen c e
b etw een tw o co n secu tive term s o f .
S u p p o se th at , , ..., b e th e set o f valu es o f co rresp o n d in g
to th e valu es o f as , , ..., th en th e ex p re
i i
n
n
h x x
x
y y y y
x x x x

 
1 0 2 1 1
ssio n lik e
y , y , ..., y are called th e d ifferen ces o f .n n
y y y y
  
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
3
Numerical Techniques
There are three types of finite differences as follows :
Finite
Differences
Forward
Difference
Backward
Difference
Central
Difference
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
4
Numerical Techniques
Unit- 2: Finite Differences and Interpolation
Definition : Forward Difference
0 1 0
1 2 1
2 3 2
1
T h e d iffe re n c e b e tw e e n tw o c o n se c u tiv e v a lu e s o f y is c a lle d
th e fo rw a rd d iffe re n c e a n d it is d e n o te d b y .
M a th e m a tic a lly w e e x p re ss it a s fo llo w s:
,
,
,
.
.
.
w h e rei i i
y y y
y y y
y y y
y y y i

  
  
  
    0 ,1, 2 ..., .n
1st forward
difference
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
5
Numerical Techniques
Unit- 2: Finite Differences and Interpolation
Definition : Forward Difference
2
2
0 0 1 0 1 0
2
1 1 2 1 2 1
2
2 2 3 2 3 2
2
1
T h e S e c o n d fo rw a rd d iffe re n c e is d e n o te d b y .
M a th e m a tic a lly w e e x p re ss it a s fo llo w s:
( ) ( ) ,
( ) ( ) ,
( ) ( ) ,
.
.
.
( ) ( )i i i i
y y y y y y
y y y y y y
y y y y y y
y y y y

          
          
          
        1
w h e re 0 ,1, 2 ..., .
i i
y y
i n

  

2nd forward
difference
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
6
Numerical Techniques
Unit- 2: Finite Differences and Interpolation
Definition : Forward Difference
1 1 1 1
1 1
S im ilarly w e o b tain ed th e n fo rw ard d ifferen ce is d en o ted b y .
M ath em atically w e ex p ress it as fo llo w s:
( ) ( )
w h ere 0 ,1, 2 ..., .
th n
n n n n n
i i i i i i
y y y y y y
i n
   
 

          

nth forward
difference
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
7
Numerical Techniques
A bove all the form ulae w e show n in the follow ing tabular form :
x y 
2

3

4

0
x 0
y
1
x 1
y
2
x 2
y
3
x 3
y
4
x 4
y
0
y
1
y
2
y
3
y
2
0
y
2
1
y
2
2
y
3
0
y
3
1
y
4
0
y
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
8
Numerical Techniques
P roperties of the operator :
   1 . [ ( ) ( )] ( ) ( )
w h ere ' ' an d ' ' are co n stan ts.
a f x b g x a f x b g x
a b
     
 2 . [ ( ) ] ( ) w h ere 'c' is co n stan t.c f x c f x  
 3 . ( ) ( )
w h e re ' ' a n d ' ' a re p o s itiv e in te g e rs .
m n m n
f x f x
m n

   
 4 . [ ( ) ( )] ( ) ( )f x g x f x g x    
5 . [ ] 0 w h ere 'c' is co n stan tc 
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
9
Numerical Techniques
2
2 3
E x -1 : C o n stru ct th e fo rw ard tab le fo r ( ) ; 0,1, 2, 3, 4 an d fin d
th e valu es o f ( (2 )), (1), (0 ).
f x x x
f
 
  
x y 
2

3

4

0
0x  0
0y 
1
1x  1
1y 
2
2x  2
4y 
3
3x  3
9y 
4
4x  4
1 6y 
0
1y 
1
3y 
2
5y 
2
0
2y 
2
1
2y 
3
0
0y 
3
7y 
2
1
2y 
3
1
0y 
4
0
0y 
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Forward
Differences
10
Numerical Techniques
2
T o fin d : (a ) ( ( 2 ))
N o w ( 2 ) = 4
( ( 2 )) ( 4 ) ( ) 5 .
f
f
f y

     
2
2 2
1
T o fin d : (b ) (1)
(1) ( ) 2 .y

    
3
3 3
0
T o fin d : (c ) ( 0 )
( 0 ) ( ) 0 .y

    
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Backward
Differences
11
Numerical Techniques
Definition : Backward Difference
1 1 0
2 2 1
3 3 2
1
T h e d iffe re n c e b e tw e e n tw o c o n se c u tiv e v a lu e s o f y is c a lle d
th e b a c k w a rd d iffe re n c e a n d it is d e n o te d b y .
M a th e m a tic a lly w e e x p re ss it a s fo llo w s:
,
,
,
.
.
.
w h e rei i i
y y y
y y y
y y y
y y y i

  
  
  
   1, 2 ..., .n
1st backward
difference
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Backward
Differences
12
Numerical Techniques
Definition : Backward Difference
2nd forward
difference
2
2
1 1 1 0 1 0
2
2 2 2 1 2 1
2
3 3 3 2 3 2
2
1
T h e S e c o n d fo rw a rd d iffe re n c e is d e n o te d b y .
M a th e m a tic a lly w e e x p re s s it a s fo llo w s :
( ) ( ) ,
( ) ( ) ,
( ) ( ) ,
.
.
.
( ) ( )i i i i
y y y y y y
y y y y y y
y y y y y y
y y y y 

          
          
          
        1
w h e re 1, 2 ..., .
i i
y y
i n

  

Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Backward
Differences
13
Numerical Techniques
1 1 1 1
1 1
S im ilarly w e o b tain ed th e n b ack w ard d ifferen ce is d en o ted b y .
M ath em atically w e ex p ress it as fo llo w s:
( ) ( )
w h ere 1, 2 ..., .
th n
n n n n n
i i i i i i
y y y y y y
i n
   
 

          

nth
backward
difference
Definition : Backward Difference
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Backward
Differences
14
Numerical Techniques
A bove all the form ulae w e show n in the follow ing tabular form :
x y 
2

3

4

0
x 0
y
1
x 1
y
2
x 2
y
3
x 3
y
4
x 4
y
1
y
2
y
3
y
4
y
2
2
y
2
3
y
2
4
y
3
3
y
3
4
y
4
4
y
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Backward
Differences
15
Numerical Techniques
P roperties of the operator :
   1 . [ ( ) ( )] ( ) ( )
w h ere ' ' an d ' ' are co n stan ts.
a f x b g x a f x b g x
a b
     
 2 . [ ( ) ] ( ) w h ere 'c' is co n stan t.c f x c f x  
 3 . ( ) ( )
w h e re ' ' a n d ' ' a re p o s itiv e in te g e rs .
m n m n
f x f x
m n

   
 4 . [ ( ) ( )] ( ) ( )f x g x f x g x    
5 . [ ] 0 w h ere 'c' is co n stan tc 
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Central
Difference
16
Numerical Techniques
Definition : Central Difference
1 1 0
2
3 2 1
2
5 3 2
2
2 1 1
2
T h e d iffe re n c e b e tw e e n tw o c o n se c u tiv e v a lu e s o f y is c a lle d
th e b a c k w a rd d iffe re n c e a n d it is d e n o te d b y .
M a th e m a tic a lly w e e x p re ss it a s fo llo w s:
,
,
,
.
.
.
i i i
y y y
y y y
y y y
y y y




  
 
 
 
  w h e re 1, 2 ..., .i n
1st central
difference
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : Central
Difference
17
Numerical Techniques
A bove all the form ulae w e show n in the follow ing tabular form :
x y 
2

3

0
x 0
y
1
x 1
y
2
x 2
y
3
x 3
y
1
2
y
3
2
y
5
2
y
2
1
y
2
2
y
3
3
2
y
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic :
Interpolation
18
Numerical Techniques
Definition : Interpolation and Extrapolation
(a) Newton Forward Interpolation Formula
2 3 4
0 0 0 0 0
0
1 0 2 1 1
( 1) ( 1)( 2) ( 1)( 2)( 3)
( ) ...
2 ! 3 ! 4 !
W h e r e , ...
n
n n
p p p p p p p p p
P x y p y y y y
x x
p h x x x x x x
h

     
         

       
Interpolation for equal intervals
E x -1 : U s in g N e w t o n F o r w a r d In t e r p o la t io n F o r m u la f in d
(1 .6 ) f r o m t h e f o llo w in g t a b u la r v a lu e s .
1 1 .4 1 .8 2 .2
( ) 3 .4 9 4 .8 2 5 .9 6 6 .5
f
x
y f x
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
19
Numerical Techniques
2 3
0 0 0 0
0
1 0 2 1 1
( 1) ( 1)( 2)
( ) .......... (1)
2 ! 3 !
W h e r e , ...
n
n n
p p p p p
P x y p y y y
x x
p h x x x x x x
h

  
        

       
:Solu tion
W e k n o w th a t th e N -F -I-F is g iv e n b y ,
0
0
G iv e n th a t 1, 1 .6 a n d 0 .4
1 .6 1 0 .6 3
1 .5
0 .4 0 .4 2
x x h
x x
T h e r e fo r e p
h
  
 
    
2 3 4
0 0 0 0
In w h ic h w e w a n t t o f in d t h e v a lu e s o f
y , y , y , y , ..... u s in g f o llo w in g t a b le .   
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
20
Numerical Techniques
x y 
2

3

0
1x 0
3 .4 9y
1
1 .4x 1
4 .8 2y
2
1 .8x 2
5 .9 6y
3
2 .2x 3
6 .5y
1.33
1.14
0.54
0.19
0.60
0.41
:Solu tion
0 0
2 3
0 0
T h e re fo re 3 .4 9 , 1 .3 3,
0 .1 9 a n d 0 .4 1
S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,
  
     
y y
y y
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
21
Numerical Techniques
2 3
0 0 0 0
( 1) ( 1)( 2)
(1) ( ) ...
2 ! 3 !
n
p p p p p
P x y p y y y
  
        
:Solu tion
1 .5 (1 .5 1) 1 .5 (1 .5 1) (1 .5 2)
( ) 3 .4 9 1 .5 1 .3 3 ( 0 .1 9) ( 0 .4 1)
2 6
n
P x
     
                   
   
( ) 3 .4 9 1 .9 9 5 0 .0 7 1 3 0 .0 2 5 6n
P x                  
E x -2 : T h e p o p u la tio n o f th e to w n in d e c e n n ia l c e n s u s w a s a s g iv e n
b e lo w e s tim a te th e p o p u la tio n fo r th e y e a r 1 8 9 5 .
y e a r (x ) 1 8 9 1 1 9 0 1 1 9 1 1 1 9 2 1 1 9 3 1
P o p u la tio n (y ) 4 6 6 6 8 1 9 3 1 0 1
(in th o u s a n d )
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
22
Numerical Techniques
2 3 4
0 0 0 0 0
0
1 0 2 1 1
( 1) ( 1)( 2) ( 1)( 2)( 3)
( ) .......... (1)
2 ! 3 ! 4 !
W h e r e , ...
n
n n
p p p p p p p p p
P x y p y y y y
x x
p h x x x x x x
h

     
         

       
:Solu tion
W e k n o w th a t th e N -F -I-F is g iv e n b y ,
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
23
Numerical Techniques
:Solu tion
0
0
G iv e n th a t 1 8 9 1, 1 8 9 5 a n d 1 0
1 8 9 5 1 8 9 1 4
0 .4
1 0 1 0
x x h
x x
T h e r e fo r e p
h
  
 
   
2 3 4
0 0 0 0
In w h ic h w e w a n t t o f in d t h e v a lu e s o f
y , y , y , y , ..... u s in g f o llo w in g t a b le .   
x y
1981 46
1901 66
1911 81
1921 93
1931 101
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
24
Numerical Techniques
:Solu tion

2
 3

4

20
15
12
8
-5
-3
-4
2
-1
-3
Semester :III
Mr. Tushar J Bhatt
25
Numerical Techniques
:Solu tion
0 0
2 3 4
0 0 0
T h e re fo re 4 6 , 2 0 ,
5 , 2 a n d 3
S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,
  
       
y y
y y y
2 3 4
0 0 0 0 0
( 1) ( 1)( 2) ( 1)( 2)( 3)
(1) ( )
2 ! 3 ! 4 !
n
p p p p p p p p p
P x y p y y y y
     
         
0 .4 (0 .4 1) 0 .4 (0 .4 1)(0 .4 2)
( ) 4 6 0 .4 2 0 ( 5) (2)
2 6
0 .4 (0 .4 1)(0 .4 2)(0 .4 3)
( 3)
2 4
n
P x
     
              
   
   
   
 
0 .4 ( 0 .6 ) 0 .4 ( 0 .6 )( 1 .6 )
( ) 4 6 0 .4 2 0 ( 5) (2)
2 6
0 .4 ( 0 .6 )( 1 .6 )( 2 .6 )
( 3)
2 4
n
P x
     
              
   
   
   
 
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
26
Numerical Techniques
:Solu tion
( ) 4 6 8 0 .6 0 .1 2 8 0 .4 5 1 2n
P x                       
E x -3 : D e t e r m in e t h e in t e r p o la t in g p o ly n o m ia l f o r t h e
1 2 3 4
f o llo w in g t a b le o f d a t a :
( ) 1 1 1 5
x
y f x  
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
27
Numerical Techniques
2 3
0 0 0 0
0
1 0 2 1 1
( 1) ( 1)( 2)
( ) .......... (1)
2 ! 3 !
W h e r e , ...
n
n n
p p p p p
P x y p y y y
x x
p h x x x x x x
h

  
        

       
:Solu tion
W e k n o w th a t th e N -F -I-F is g iv e n b y ,
0
0
G iv e n th a t 1, a n d 1
1
1
1
x x x h
x x x
T h e r e fo r e p x
h
  
 
   
2 3 4
0 0 0 0
In w h ic h w e w a n t t o f in d t h e v a lu e s o f
y , y , y , y , ..... u s in g f o llo w in g t a b le .   
x y
1 -1
2 -1
3 1
4 5
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
28
Numerical Techniques
:Solu tion

2
 3

0
2
4
2
2
0
Semester :III
Mr. Tushar J Bhatt
29
Numerical Techniques
:Solu tion
2 3
0 0 0 0
T h e re fo re 1, 0 , 2 , 0
S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,
       y y y y
2 3
0 0 0 0
( 1) ( 1)( 2)
(1) ( )
2 ! 3 !
n
p p p p p
P x y p y y y
  
       
( 1)( 2) ( 1)( 2)( 3)
( ) 1 ( 1) (0 ) (2) (0 )
2 6
n
x x x x x
P x x
       
               
   
2
( ) 1 0 3 2 0n
P x x x       
Semester :III
Mr. Tushar J Bhatt
30
Numerical Techniques
2 3
4
( 1) ( 1) ( 2)
( )
2 ! 3 !
( 1) ( 2)( 3)
...
4 !
n n n n n
n
p p p p p
P x y p y y y
p p p p
y
  
      
  
  
(b) Newton Backward Interpolation Formula
1 0 1
W h e re , ... , 1 1
n
n n
x x
p h x x x x p
h


        
Semester :III
Mr. Tushar J Bhatt
31
Numerical Techniques
2 3
4
( 1) ( 1) ( 2)
( )
2 ! 3 !
( 1) ( 2)( 3)
... (1)
4 !
n n n n n
n
p p p p p
P x y p y y y
p p p p
y
  
      
  
       
E x -1 : C o m p u t e t h e v a lu e o f (7 .5), b y u s i n g s u it a b le in t e r p o la t io n
f o r m u la u s in g t h e f o llo w in g d a t a :
3 4 5 6 7 8
( ) 2 8 6 5 1 2 6 2 1 7 3 4 4 5 1 3
f
x
y f x
:Solu tion
W e k n o w th a t th e N -B -I-F is g iv e n b y ,
G iv e n th a t 8, 7 .5 a n d 1
7 .5 8
0 .5
1
n
n
x x h
x x
T h e r e fo r e p
h
  
 
   
2 3 4
In w h ic h w e w a n t t o f in d t h e v a lu e s o f
y , y , y , y , ..... u s in g f o llo w in g t a b le .n n n n
   
x y
3 28
4 65
5 126
6 217
7 344
8 513
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
32
Numerical Techniques
:Solu tion
37
61
91
127
169
24
30
36
42
6
6
6
0
0
0

2

3

4
 5

Semester :III
Mr. Tushar J Bhatt
33
Numerical Techniques
:Solu tion
2 3
4 5
T h e re fo re 5 1 3, 1 6 9 , 4 2 , 6 ,
0 , 0
S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,
      
   
n n n n
n n
y y y y
y y
2 3 4( 1) ( 1) ( 2) ( 1) ( 2)( 3)
(1) ( ) ...
2 ! 3 ! 4 !
n n n n n n
p p p p p p p p p
P x y p y y y y
     
          
( 0 .5) ( 0 .5 1) ( 0 .5) ( 0 .5 1) ( 0 .5 2)
( ) 5 1 3 ( 0 .5) (1 6 9) (4 2) (6 )
2 6
n
P x
          
                  
   
( ) 5 1 3 8 4 .5 5 .2 5 0 .3 7 5n
P x                  
Semester :III
Mr. Tushar J Bhatt
34
Numerical Techniques
2 3
4
( 1) ( 1) ( 2)
( )
2 ! 3 !
( 1) ( 2)( 3)
... (1)
4 !
n n n n n
n
p p p p p
P x y p y y y
p p p p
y
  
      
  
       
E x -2 : P o p u la t io n o f a t o w n in t h e c e n s u s is a s g iv e n in t h e d a t a .
E s t im a t e t h e p o p u la t io n in t h e y e a r 1 9 9 6 .
( ) 1 9 6 1 1 9 7 1 1 9 8 1 1 9 9 1 2 0 0 1
P o p u la t io n ( ) 4 6 6 6 8 1 9 3 1 0 1
(in t h o u s a n d s)
Y e a r x
y
:Solu tion
W e k n o w th a t th e N -B -I-F is g iv e n b y ,
G iv e n th a t 2 0 0 1, 1 9 9 6 a n d 1 0
1 9 9 6 2 0 0 1
0 .5
1 0
n
n
x x h
x x
T h e r e fo r e p
h
  
 
   
2 3 4
In w h ic h w e w a n t t o f in d t h e v a lu e s o f
y , y , y , y , ..... u s in g f o llo w in g t a b le .n n n n
   
x y
1961 46
1971 66
1981 81
1991 93
2001 101
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :2
Topic : N-F-I-F
35
Numerical Techniques
:Solu tion
20
15
12
8
-5
-3
-4
2
-1
-3

2

3

4

Semester :III
Mr. Tushar J Bhatt
36
Numerical Techniques
:Solu tion
2 3
4
T h e re fo re 1 0 1, 8, 4 , 1,
3
S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,
        
  
n n n n
n
y y y y
y
2 3 4( 1) ( 1) ( 2) ( 1) ( 2)( 3)
(1) ( ) ...
2 ! 3 ! 4 !
n n n n n n
p p p p p p p p p
P x y p y y y y
     
          
( 0 .5) ( 0 .5 1) ( 0 .5) ( 0 .5 1) ( 0 .5 2)
( ) 1 0 1 ( 0 .5) (8 ) ( 4 ) ( 1)
2 6
( 0 .5) ( 0 .5 1) ( 0 .5 2)( 0 .5 3)
( 3)
2 4
n
P x
          
                    
   
       
   
 
( ) 1 0 1 4 .0 0 .5 0 .0 6 2 5 0 .1 1 7 2n
P x                       
Semester :III
Mr. Tushar J Bhatt
37
Numerical Techniques
(c) Gauss’s Forward Interpolation Formula
2 3 4
0 0 1 1 2
( 1) ( 1) ( 1) ( 1) ( 1)( 2)
....
2 ! 3! 4 !
p
p p p p p p p p p
y y p y y y y  
     
         
x y 
2

3

4

2
x 
1
x 
0
x
1
x
2
x
2
y 
1
y 
0
y
1
y
2
y
0
y
1
y
1
y 

2
y 

2
0
y
2
1
y 

2
2
y 

3
1
y 

3
2
y 

4
2
y 

0
1 0 1
W h ere ,
in w h ich ... .n n
x x
p
h
h x x x x 


    
Semester :III
Mr. Tushar J Bhatt
38
Numerical Techniques
E x -1 : F in d ( 2 2 ) fro m th e fo llo w in g ta b u la r v a lu e s u sin g
G a u ss's fo rw a rd fo rm u la .
2 0 2 5 3 0 3 5 4 0 4 5
3 5 4 3 3 2 2 9 1 2 6 0 2 3 1 2 0 4
f
x
y
S o lu tio n :
W e k n o w th a t th e G -F -I-F is g iv e n b y ,
2 3 4
0 0 1 1 2
( 1) ( 1) ( 1) ( 1) ( 1)( 2)
....
2 ! 3! 4 !
p
p p p p p p p p p
y y p y y y y  
     
         
1
 

  
    
0
0
H e re w e w a n t to fin d ( ) w h e re 2 2, S o 2 2 is lie s in th e in te rv a l [2 5, 3 0 ] ,
in w h ic h 2 2 is v e ry n e a r to 2 5 ra th e r th a n 3 0 th e re fo re w e c h o o s e 2 5 .
2 2 2 5 3
0 .6
5 5
f x x x
x
x x
p
h
2 3 4 5
1 1
1
2
0 0 1
3
0 1
2 4
1 1 0 1
3 5
1 0 1
2 4
2 2 1 0
3
2 1
2
3 3 2
3
4 4
20 354
22
25 332 19
41 29
30 291 10 37
31 8 45
35 260 2 8
29 0
40 231 2
27
45 204
x y
x y
y
x y y
y y
x y y y
y y y
x y y y
y y
x y y
y
x y
 





    
 
  
    
    
      
       
     
    
   
  
 
Semester :III
39
Numerical Techniques
S o lu tio n :
Semester :III
40
Numerical Techniques
S o lu tio n : W e have substitute the values of
2 3 4
0 0 1 1 2
( 1) ( 1) ( 1) ( 1) ( 1)( 2)
....
2 ! 3! 4 !
p
p p p p p p p p p
y y p y y y y  
     
         
1
  0 .6A n d p
in th e fo llo w in g eq u atio n ......(1 ) w e g et
( 0.6)( 0.6 1) ( 0.6 1)( 0.6)( 0.6 1)
(1) 332 ( 0.6)( 41) ( 19) (29)
2 6
p
y
       
         
( 0.6)( 0.6 1) ( 0.6 1)( 0.6)( 0.6 1)
332 ( 0.6)( 41) ( 19) (29)
2 6
332 24.6 9.12 1.856
349.336
p
p
p
y
y
y
       
         
    
 
Semester :III
41
Numerical Techniques
1 0 1
0
W h e r e ,
... 0 .5
3 .2 3 .0 0 .2
0 .4
0 .5 0 .5
n n
h x x x x
x x
p
h

     
 
   
E x -2 : F in d t h e v a lu e s o f y w h e n x = 3 .2 f r o m t h e f o llo w in g d a t a
u s in g G a u s s 's f o r w a r d in t e r p o la t io n f o r m u la :
2 .0 2 .5 3 .0 3 .5 4 .0
2 4 6 .2 4 0 9 .3 5 3 7 .2 6 3 6 .3 7 1 5 .9
x
y
:Solu tion
W e k n o w th a t th e G -F -I-F is g iv e n b y ,
2 3 4
0 0 1 1 2
( 1) ( 1) ( 1) ( 1) ( 1)(p 2)
( ) ...
2 ! 3 ! 4 !
n
p p p p p p p p
P x y p y y y y  
     
         
1
42
Numerical Techniques
1
x y 1st difference 2nd difference
3rd
difference
4th difference
2
2 .0
x
1
2 .5
x
0
3 .0x
1
3 .5x
2
4 .0x
0
5 3 7 .2y
1
409.3
y
2
246.2
y
1
6 3 6 .3y
2
7 1 5 .9y
0
9 9 .1 y
1
7 9 .6 y
1
127.9
 y
2
1 6 3 .1
 y
2
1
28.8
  y
2
2
35.2
  y
3
1
9.3
 y
3
2
6.4
 y
4
2
2.9
 y
:Solu tion
43
Numerical Techniques
:Solu tion
N o w w e h a v e 0 .4 a n dp
2 3 4
0 0 1 1 2
( 1) ( 1) ( 1) ( 1) ( 1)(p 2)
(1) ( ) ...
2 ! 3 ! 4 !
n
p p p p p p p p
P x y p y y y y  
     
          
   
0 .4 (0 .4 1)
( ) 5 3 7 .2 0 .4 9 9 .1 2 8 .8
2
(0 .4 1) (0 .4 ) (0 .4 1) (0 .4 1) (0 .4 ) (0 .4 1) (0 .4 2)
9 .3 2 .9
6 2 4
n
P x
  
                
  
          
             
      
         ( ) 5 3 7 .2 3 9 .6 4 3 .4 5 6 0 .5 2 0 8 0 .0 6 4 9 6n
P x     
( ) 5 7 9 .8 4n
P x  ANSWER
S ubstitute all the above values in result ..............(1) w e get
Semester :III
Mr. Tushar J Bhatt
44
Numerical Techniques
(d) Gauss’s Backward Interpolation Formula
2 3 4
0 1 1 2 2
( 1) ( 1) ( 1) ( 1) ( 1)( 2)
....
2 ! 3! 4 !
p
p p p p p p p p p
y y p y y y y   
     
         
x y 
2

3

4

2
x 
1
x 
0
x
1
x
2
x
2
y 
1
y 
0
y
1
y
2
y
0
y
1
y
1
y 

2
y 

2
0
y
2
1
y 

2
2
y 

3
1
y 

3
2
y 

4
2
y 

0
1 0 1
W h ere ,
in w h ich ... .n n
x x
p
h
h x x x x 


    
Semester :III
Mr. Tushar J Bhatt
45
Numerical Techniques
E x -1 : U s in g G a u s s 's b a c k w a rd in te rp o la ti o n fo rm u la fin d (8 ) fro m th e
0 5 1 0 1 5 2 0 2 5
fo llo w in g ta b le .
7 1 1 1 4 1 8 2 4 3 2
y
x
y
:Solu tion
W e k n o w th a t th e G -B -I-F is g iv e n b y ,
2 3 4
0 1 1 2 2
( 1) ( 1) ( 1) ( 1) ( 1)( 2)
....
2 ! 3! 4 !
p
p p p p p p p p p
y y p y y y y   
     
         
1 0 1
0
0
W h ere ... 5, an d 8 is n ear to th e tab u lar valu e 1 0
th erefo re 1 0 .
8 1 0 2
In w h ich 0 .4
5 5
n n
h x x x x x
x
x x
p
h

      

  
    
1
2 3 4 5
2 2
2
2
1 1 2
3
1 2
2 4
0 0 1 2
3 5
0 1 2
2 4
1 1 0 1
3
1 0
2
2 2 1
2
3 3
0 7
4
5 1 1 1
3 2
1 0 1 4 1 1
4 1 0
1 5 1 8 2 1
6 0
2 0 2 4 2
8
2 5 3 2
x y
x y
y
x y y
y y
x y y y
y y y
x y y y
y y
x y y
y
x y
 

  
 
 
 

    
 
 
    
   
      
     
      
   
   
 
 
Semester :III
Mr. Tushar J Bhatt
46
Numerical Techniques
:Solu tion :Solu tion
Semester :III
Mr. Tushar J Bhatt
47
Numerical Techniques
:Solu tion :Solu tion
 N o w w e h a v e 0 .4 a n dp
S ubstitute all the above values in result ..............(1) w e get
2 3 4
0 1 1 2 2
( 1) ( 1) ( 1) ( 1) ( 1)( 2)
(1) ....
2 ! 3! 4 !
p
p p p p p p p p p
y y p y y y y   
     
          
Semester :III
Mr. Tushar J Bhatt
48
Numerical Techniques
:Solu tion :Solu tion
( 0 .4 )( 0 .4 1)
(1) 1 4 ( 0 .4 ) (3) (1)
2
( 0 .4 1)( 0 .4 )( 0 .4 1)
( 2 )
6
( 0 .4 1)( 0 .4 )( 0 .4 1)( 0 .4 2 )
( 1)
2 4
p
y
  
      
    
 
      
  
1 4 1 .2 0 .1 2 0 .1 1 2 0 .0 3 4
1 2 .8 2 6
p
p
y
y
     
 
Semester :III
Mr. Tushar J Bhatt
49
Numerical Techniques
E x -2 : U s in g G a u s s 's b a c k w a rd in te rp o la ti o n fo rm u la fin d (1 9 7 4 ) fro m th e
1 9 3 9 1 9 4 9 1 9 5 9 1 9 6 9 1 9 7 9 1 9 8 9
fo llo w in g ta b le .
1 2 1 5 2 0 2 7 3 9 5 2
y
x
y
:Solu tion
W e k n o w th a t th e G -B -I-F is g iv e n b y ,
2 3 4
0 1 1 2 2
( 1) ( 1) ( 1) ( 1) ( 1)( 2)
....
2 ! 3! 4 !
p
p p p p p p p p p
y y p y y y y   
     
         
1 0 1
0
0
W h ere ... 1 0, an d 1 9 7 4 is n ear to th e tab u lar valu e 1 9 6 9
th erefo re 1 9 6 9 .
1 9 7 4 1 9 6 9 5
In w h ich 0 .5
1 0 1 0
n n
h x x x x x
x
x x
p
h

      

 
   
1
Semester :III
Mr. Tushar J Bhatt
50
Numerical Techniques
:Solu tion
2 3 4 5
3 3
3
2
2 2 3
3
2 3
2 4
1 1 2 3
3 5
1 2 3
2 4
0 0 1 2
3
0 1
2
1 1 0
1
2 2
1 9 3 9 1 2
3
1 9 4 9 1 5 2
5 0
1 9 5 9 2 0 2 3
7 3 1 0
1 9 6 9 2 7 5 7
1 2 4
1 9 7 9 3 9 1
1 3
1 9 8 9 5 2
x y
x y
y
x y y
y y
x y y y
y y y
x y y y
y y
x y y
y
x y
 

  
 
   
  
 

    
 
 
   
   
     
      
      
    
   
 
 
Semester :III
Mr. Tushar J Bhatt
51
Numerical Techniques
:Solu tion :Solu tion
N o w w e h a v e 0 .5 a n dp
S ubstitute all the above values in result ..............(1) w e get
2 3 4
0 1 1 2 2
5
3
( 1) ( 1) ( 1) ( 1) ( 1)( 2 )
(1)
2 ! 3 ! 4 !
( 1) ( 1)( 2 )( 2 )
5 !
p
p p p p p p p p p
y y p y y y y
p p p p p
y
   

     
         
   
 
Semester :III
Mr. Tushar J Bhatt
52
Numerical Techniques
:Solu tion :Solu tion
(0 .5 )(0 .5 1) (0 .5 1)(0 .5 )(0 .5 1)
(1) 2 7 (0 .5 )(7 ) (5 ) (3)
2 6
(0 .5 1)(0 .5 )(0 .5 1)(0 .5 2 )
( 7 )
2 4
(0 .5 1)(0 .5 )(0 .5 1)(0 .5 2 )(0 .5 2 )
( 1 0 )
1 2 0
p
y
  
      
  
  
   
  
      
 
2 7 3 .5 1 .8 7 5 0 .1 8 7 5 0 .2 7 4 3 0 .1 1 7 2
3 2 .5 3 2
p
p
y
y
Semester :III
Mr. Tushar J Bhatt
53
Numerical Techniques
:Solu tion :Solu tion
      
 
2 7 3 .5 1 .8 7 5 0 .1 8 7 5 0 .2 7 4 3 0 .1 1 7 2
3 2 .5 3 2
p
p
y
y
Semester :III
Mr. Tushar J Bhatt
54
Numerical Techniques
(c) Stirling’s Interpolation Formula
 We have discussed Newton forward and backward
interpolation formulae which are applicable for interpolation
near the beginning and end respectively, of tabulated values.
 They are not suited to estimate the value of a function near
the middle of a table.
 To obtain more accuracy near the middle of a table, we use
central difference interpolation formulae.
Semester :III
Mr. Tushar J Bhatt
55
Numerical Techniques
(c) Stirling’s Interpolation Formula
x y
1st
difference
2nd
difference
3rd
difference
4th
difference
2
x
1
x
0
x
1
x
2
x
0
y
1
y
2
y
1
y
2
y
0
 y
1
 y
1
 y
2
 y
2
0
 y
2
1
 y
2
2
 y
3
1
 y
3
2
 y
4
2
 y
Mr. Tushar J Bhatt
56
Numerical Techniques
(c) Stirling’s Interpolation Formula
3 32 2 2 2
2 40 1 1 2
0 1 2
5 52 2 2 2 2
62 3
3
( 1) ( 1)
2 2 ! 3 ! 2 4 !
( 1)( 4 ) ( 1)( 4 )
...
5 ! 2 6 !
p
y y y yp p p p p
y y p y y
y yp p p p p p
y
  
 
 

         
         
  
      
    
 
0
1 0 1
W h e r e , ... n n
x x
p h x x x x
h


     
1 1
In u s in g t h is f o r m u la , w e s h o u ld h a v e < .
2 2
1 1
G o o d e s t im a t e s w ill b e o b t a in e d if < .
4 4
p
p




Semester :III
Mr. Tushar J Bhatt
57
Numerical Techniques
1 2 .2
E x -1 : U sin g S tirlin g 's fo rm u la to co m p u t e fro m th e fo llo w in g tab le
1 0 1 1 1 2 1 3 1 4
0 .2 3 9 6 7 0 .2 8 0 6 0 0 .3 1 7 8 8 0 .3 5 2 0 9 0 .3 8 3 6 8
y
x
y
:Solu tion
W e k n o w th a t th e S -C -I-F is g iv e n b y ,
1
3 32 2 2 2
2 40 1 1 2
0 1 2
( 1) ( 1)
...
2 2 ! 3 ! 2 4 !
p
y y y yp p p p p
y y p y y
  
 
         
          
  


     
 
  
0
1 0 1
0
H e r e 1 2 .2 is n e a r t o t h e t a b u la r v a lu e s = 1 2
A n d W h e r e ... 1 ,
1 2 .2 1 2
0 .2
1
n n
x x
h x x x x
x x
p
h
58
Numerical Techniques
x y 1st difference 2nd difference 3rd difference 4th difference
2
1 0x 

1
1 1x 

0
1 2x 
1
1 3x 
2
1 4x 
0
0.31788y 
1
0.28060y

2
0.23967y

1
0.35209y 
2
0.38368y 
0
0 .0 3 4 2 1y 
1
0.03159y 
1
0.03728y
 
2
0.04093y
 
2
0
0.00062y  
2
1
0.00307y
  
2
2
0.00365y
  
3
1
0.00045y
  
3
2
0 .0 0 0 5 8y
 
4
2
0.00013y
  
:Solu tion
59
Numerical Techniques
:Solu tion
N o w w e h a v e 0 .5 a n dp
S ubstitute all the above values in result ..............(1) w e get
  
 
         
           
  
3 32 2 2 2
2 40 1 1 2
0 1 2
( 1) ( 1)
(1) ...
2 2 ! 3 ! 2 4 !
p
y y y yp p p p p
y y p y y
60
Numerical Techniques
:Solu tion
 
       
 
   
    
 
2
2 2 2
0 .0 3 7 2 8 0 .0 3 4 2 1 (0 .2)
(1) 0 .3 1 7 8 8 (0 .2) ( 0 .0 0 3 0 7 )
2 2
(0 .2) ((0 .2) 1) 0 .0 0 0 5 8 0 .0 0 0 4 5 (0 .2) ((0 .2) 1)
( 0 .0 0 0 1 3)
6 2 2 4
p
y
     0 .3 1 7 8 8 0 .0 0 7 1 5 0 .0 0 0 0 6 0 .0 0 0 0 0 2 0 .0 0 0 0 0 0 2p
y
  0 .3 2 4 9 7p
y
Semester :III
Mr. Tushar J Bhatt
61
Numerical Techniques
E x -2 : U sin g S tirlin g 's fo rm u la to co m p u t e tan 1 6 fro m th e fo llo w in g tab le
0 5 1 0 1 5 2 0 2 5 3 0
tan 0 0 .0 8 7 5 0 .1 7 6 3 0 .2 6 7 9 0 .3 6 4 0 0 .4 6 6 3 0 .5 7 7 4
x
y x
:Solu tion W e k n o w th a t th e S -C -I-F is g iv e n b y ,
0
1 0 1
0
H e r e 1 6 is n e a r t o t h e t a b u la r v a lu e s = 1 5
A n d W h e r e ... 5 ,
1 6 1 5 1
0 .2
5 5
n n
x x
h x x x x
x x
p
h


     
 
   
3 32 2 2 2
2 40 1 1 2
0 1 2
5 52 2 2 2 2
62 3
3
( 1) ( 1)
2 2 ! 3 ! 2 4 !
( 1)( 4 ) ( 1)( 4 )
... (1)
5 ! 2 6 !
p
y y y yp p p p p
y y p y y
y yp p p p p p
y
  
 
 

         
         
  
      
      
 
62
Numerical Techniques
:Solu tion
x y
0 0
5 0.0875
10 0.1763
15 0.2679
20 0.3640
25 0.4663
30 0.5774

2

3

4
 5

6

0.0875
0.0888
0.0916
0.1023
0.1111
0.0961
0.0013
0.0028
0.0015
0.0062
0.0088
0.0045
0.0017
0.0017
0.0026
0.0002
0.0000
-0.0002
0.0009
0.0009
0.0011
63
Numerical Techniques
:Solu tion
N o w w e h a v e 0 .2 a n dp 
S ubstitute all the above values in result ..............(1) w e get
3 5
2 4 61 2 3
0 1 2 33 3
0 1 2
0 .0 9 1 6 0 .0 0 1 7 0 .0 0 0 2
0 .2 6 7 9 0 .0 0 4 5 0 0 .0 0 1 1
0 .0 9 6 1 0 .0 0 1 7 0 .0 0 0 9
y y y
y y y y
y y y
  
  
 
      
      
     
3 32 2 2 2
2 40 1 1 2
0 1 2
5 52 2 2 2 2
62 3
3
( 1) ( 1)
2 2 ! 3 ! 2 4 !
( 1)( 4 ) ( 1)( 4 )
... (1)
5 ! 2 6 !
p
y y y yp p p p p
y y p y y
y yp p p p p p
y
  
 
 

         
         
  
      
      
 
64
Numerical Techniques
:Solu tion
   
   
   
2
2 2
2 2
2 2
0 .0 9 6 1 0 .0 9 1 6 (0 .2)
(1) 0 .2 6 7 9 (0 .2) (0 .0 0 4 5)
2 2
(0 .2) (0 .2) 1 (0 .2) (0 .2) 10 .0 0 1 7 0 .0 0 1 7
(0 )
6 2 2 4
(0 .2) (0 .2) 1 (0 .2) 4 0 .0 0 0 9 0 .0 0 0 2
1 2 0 2
(0 .2) (0 .2) 1 (0 .2) 4
(0 .0 0 1 1)
7 2 0
p
y
 
      
 
    
    
 
     
   
 
   
 
0 .2 6 7 9 0 .0 1 8 7 7 0 .0 0 0 0 9 0 .0 0 0 0 5 0 0 .0 0 0 0 0 2 0 .0 0 0 0 0 0 2p
y       
0 .2 8 6 7p
y 
Semester :III
65
Numerical Techniques
Interpolation for unequal intervals
 The various interpolation formulae derived so far possess the
disadvantage of being applicable only to equally spaced values of an interval.
It is, therefore desirable to develop interpolation formulae for unequally
spaced values of x.
 Therefore we shall study the Lagrange’s interpolation formula.
Lagrange’s interpolation formula
0 1 0 1
0 11 2
0 1
0 1 0 2 0 1 0 1 2 1
0 1
If y = f (x ) t a k e s t h e v a lu e y , , ..., c o r e s s p o n d in g t o , , ..., t h e n
( )( ) ( )( )( ) ( )
( )
( )( ) ( ) ( )( ) ( )
( )( ) (
n n
nn
n n
y y x x x x
x x x x x xx x x x x x
y f x y y
x x x x x x x x x x x x
x x x x x

    
    
     
  

0 1 1
2
2 0 2 1 2 0 1 1
) ( )( ) ( )
...
( )( ) ( ) ( )( ) ( )
n n
n
n n n n n
x x x x x x x
y y
x x x x x x x x x x x x


  
   
     
66
Numerical Techniques
1 : F o r th e g iv e n fo llo w in g ta b u la r v a lu e s e v a lu a te f(9 ),
5 7 1 1 1 3
u s in g L a g ra n g e 's fo rm u la
( ) 1 5 0 3 9 2 1 4 5 2 2 3 6 6
E x
x
y f x


:Solu tion

   
   
0 1 2 3
0 1 2 3
H e r e g iv e n t h a t 9,
5, 7 , 1 1, 1 3 a n d
1 5 0, 3 9 2, 1 4 5 2, 2 3 6 6 .
x
x x x x
y y y y
            
        
               
1 2 3 0 2 3 0 1 3
0 1
0 1 0 2 0 3 1 0 1 2 1 3 2 0 2 1 2 3
W e know that the Lagrange's interp olatio n form ula is,
( )( )( ) ( )( )( ) ( )( )( )
y
( )( )( ) ( )( )( ) ( )( )( )
p
x x x x x x x x x x x x x x x x x x
y y
x x x x x x x x x x x x x x x x x x
    
    
       
0 1 2
2 3
3 0 3 1 3 2
( )( )( )
.....(1)
( )( )( )
subtitute all the above values in equation ....(1) w e get
x x x x x x
y y
x x x x x x
N ow
67
Numerical Techniques
:Solu tion
        
       
        
        
      
        
(9 7 )(9 1 1)(9 1 3) (9 5)(9 1 1)(9 1 3)
(1 ) y 1 5 0 3 9 2
(5 7 )(5 1 1)(5 1 3) (7 5)(7 1 1)(7 1 3)
(9 5)(9 7 )(9 1 3) (9 5)(9 7 )(9 1 1)
1 4 5 2 2 3 6 6
(1 1 5)(1 1 7 )(1 1 1 3) (1 3 5)(1 3 7 )(1 3 1 1)
p
                    
               
                    
2 ( 2) ( 4) 4 ( 2) ( 4) 4 2 ( 4) 4 2 ( 2)
y 1 5 0 3 9 2 1 4 5 2 2 3 6 6
( 2) ( 6) ( 8) 2 ( 4) ( 6) 6 4 ( 2) 8 6 2
p
        
               
       
1 2 2 ( 1)
y 1 5 0 3 9 2 1 4 5 2 2 3 6 6
6 3 3 6
p
       
           
       
1 5 0 7 8 4 9 6 8 2 3 6 6
y
6 3 1 6
p
68
Numerical Techniques
:Solu tion
                   y 2 5 2 6 1 .3 3 9 6 8 3 9 4 .3 3p
 y 8 1 0p
       
           
       
1 5 0 7 8 4 9 6 8 2 3 6 6
y
6 3 1 6
p
69
Numerical Techniques
2 : F o r th e g iv e n fo llo w in g ta b u la r v a lu e s e v a lu a te ( 4 ),
2 3 5 6
u s in g L a g ra n g e 's fo rm u la
( ) 1 5 3 0 4 5 6 0
E x f
x
y f x


:Solu tion

   
   
0 1 2 3
0 1 2 3
H e r e g i v e n t h a t 4 ,
2, 3, 5, 6 a n d
1 5, 3 0, 4 5, 6 0 .
x
x x x x
y y y y
            
        
               
1 2 3 0 2 3 0 1 3
0 1
0 1 0 2 0 3 1 0 1 2 1 3 2 0 2 1 2 3
W e kn o w th at th e Lagran ge's in terp o latio n fo rm u la is,
( )( )( ) ( )( )( ) ( )( )( )
y
( )( )( ) ( )( )( ) ( )( )( )
p
x x x x x x x x x x x x x x x x x x
y y
x x x x x x x x x x x x x x x x x x
    
    
       
0 1 2
2 3
3 0 3 1 3 2
( )( )( )
.....(1)
( )( )( )
su b titu te all th e ab o v e v alu es in eq u atio n ....(1) w e get
x x x x x x
y y
x x x x x x
N ow
70
Numerical Techniques
:Solu tion
        
       
        
        
      
        
(4 3)(4 5)(4 6 ) (4 2)(4 5)(4 6 )
(1 ) y 1 5 3 0
(2 3)(2 5)(2 6 ) (3 2)(3 5)(3 6 )
(4 2)(4 3)(4 6 ) (4 2)(4 3)(4 5)
4 5 6 0
(5 2)(5 3)(5 6 ) (6 2)(6 3)(6 5)
p
            
               
            
(1)( 1)( 2) (2)( 1)( 2) (2)(1)( 2) (2)(1)( 1)
(1 ) y 1 5 3 0 4 5 6 0
( 1)( 3)( 4 ) (1)( 2)( 3) (3)(2)( 1) (4 )(3)(1)
p
       
            
       
5 2 0 3 0 1 0
(1 ) y
2 1 1 1
p
71
Numerical Techniques
:Solu tion
 y 3 7 .5p
                   y 2 .5 2 0 3 0 1 0p
  y 5 0 1 2 .5p
Semester :III
72
Numerical Techniques
Inverse Interpolation method
 For unequal intervals if we want to find the value of x corresponding
given y then we will use following Lagrange’s interpolation formula
Lagrange’s inverse interpolation formula
0 1 0 1
0 21 2
0 1
0 1 0 2 0 1 0 1 2 1
0 1
If x = f (y ) t a k e s t h e v a lu e , , ..., c o r e s s p o n d in g t o y , , ..., t h e n
(y )(y ) (y )(y )(y ) (y )
(y )
(y )(y ) (y ) (y )(y ) (y )
(y )(y ) (y
n n
nn
n n
x x x x y y
y y yy y y
x f x x
y y y y y y
y y

    
    
     
  

0 1 1
2
2 0 2 1 2 0 1 1
) (y )(y ) (y )
...
(y )(y ) (y ) (y )(y ) (y )
n n
n
n n n n n
y y y y
x x
y y y y y y


  
   
     
73
Numerical Techniques
1 : F o r th e g iv e n fo llo w in g ta b u la r v a lu e s fin d x c o rre s p o n d in g to y= 1 2 , u s in g
1 .2 2 .1 2 .8 4 .1 4 .9 6 .2
L a g ra n g e 's in v e rs e in te rp o la tio n fo rm u la
4 .2 6 .8 9 .8 1 3 .4 1 5 .5 1 9 .6
E x
x
y
:Solu tion
0 1 2 3 4 5
0 1 2 3 4 5
H e r e g iv e n t h a t y 1 2,
1 .2, 2 .1, 2 .8, 4 .1, 4 .9 , 6 .2 a n d
4 .2, 6 .8, 9 .8, 1 3 .4 , 1 5 .5, 1 9 .6 .
T a k in g y = 1 2 a n d a b o v e a ll t h e v a lu e s in L a g r a n g e 's
in v e r s e in t e r p o la t io n f o r m u la ;
x x x x x x
y y y y y y

     
     
74
Numerical Techniques:Solution
1 2 3 4 5 1 2 3 4 5
0 1
0 1 0 2 0 3 0 4 0 5 1 0 1 2 1 3 1 4 1 5
0 1 3 4 5
2 0 2 1 2 3 2
(y )
(y )(y )(y )(y )(y ) (y )(y )(y )(y )(y )
(y )(y )(y )(y )(y ) (y )(y )(y )(y )(y )
(y )(y )(y )(y )(y )
(y )(y )(y )(y
x f
y y y y y y y y y y
x x
y y y y y y y y y y
y y y y y
y y y

         
   
         
    

   
0 1 2 4 5
2 3
4 2 5 3 0 3 1 3 2 3 4 3 5
0 1 2 3 5 0 1 2 3 4
4
4 0 4 1 4 2 4 3 4 5 5 0 5 1 5
(y )(y )(y )(y )(y )
)(y ) (y )(y )(y )(y )(y )
(y )(y )(y )(y )(y ) (y )(y )(y )(y )(y )
(y )(y )(y )(y )(y ) (y )(y )(y
y y y y y
x x
y y y y y y y
y y y y y y y y y y
x
y y y y y y y
    
  
     
         
  
       
5
2 5 3 5 4
)(y )(y )
x
y y y

 
75
Numerical Techniques:Solution
(y )
(1 2 6 .8 )(1 2 9 .8 )(1 2 1 3 .4 )(1 2 1 5 .5)(1 2 1 9 .6 )
1 .2
(4 .2 6 .8 )(4 .2 9 .8 )(4 .2 1 3 .4 )(4 .2 1 5 .5)(4 .2 1 9 .6 )
(1 2 4 .2)(1 2 9 .8 )(1 2 1 3 .4 )(1 2 1 5 .5)(1 2 1 9 .6 )
2 .1
(6 .8 4 .2)(6 .8 9 .8 )(6 .8 1 3 .4 )(6 .8 1 5 .5)(6 .8 1 9 .6 )
(
x f
    
 
    
    
 
    

1 2 4 .2)(1 2 6 .8 )(1 2 1 3 .4 )(1 2 1 5 .5)(1 2 1 9 .6 )
2 .8
(9 .8 4 .2)(9 .8 6 .8 )(9 .8 1 3 .4 )(9 .8 1 5 .5)(9 .8 1 9 .6 )
(1 2 4 .2)(1 2 6 .8 )(1 2 9 .8 )(1 2 1 5 .5)(1 2 1 9 .6 )
4 .1
(1 3 .4 4 .2)(1 3 .4 6 .8 )(1 3 .4 9 .8 )(1 3 .4 1 5 .5)(1 3 .4 1 9 .6 )
(1 2 4 .
    

    
    
 
    


2)(1 2 6 .8 )(1 2 9 .8 )(1 2 1 3 .4 )(1 2 1 9 .6 )
4 .9
(1 5 .5 4 .2)(1 5 .5 6 .8 )(1 5 .5 9 .8 )(1 5 .5 1 3 .4 )(1 5 .5 1 9 .6 )
(1 2 4 .2)(1 2 6 .8 )(1 2 9 .8 )(1 2 1 3 .4 )(1 2 1 5 .5)
6 .2
(1 9 .6 4 .2)(1 9 .6 6 .8 )(1 9 .6 9 .8 )(1 9 .6 1 3 .4 )(1 9 .6 1 5 .5)
   

    
    
 
    
76
Numerical Techniques
:Solution
0.022 0.234 1.252 3.419 0.964 0.055x      
3.55x 
77
Numerical Techniques
2 : A p p ly L an g ran g es fo rm u la in versely to o b tain a ro o t o f th e eq u atio n
( ) 0, g iven th at (3 0 ) -3 0, (3 4 ) 1 3, (3 8) 3 an d (4 2 ) 1 8 .

     
E x
f x f f f f
:Solu tion
0 1 2 3
0 1 2 3
H e r e g iv e n t h a t y 0,
3 0, 3 4 , 3 8, 4 2 a n d
3 0, 1 3, 3, 1 8 .
T a k in g y = 0 a n d a b o v e a ll t h e v a lu e s in L a g r a n g e 's
in v e r s e in t e r p o la t io n f o r m u la ;
x x x x
y y y y

   
     
78
Numerical Techniques:Solution
1 2 3 0 2 3
0 1
0 1 0 2 0 3 1 0 1 2 1 3
0 1 3 0 1 2
2 3
2 0 2 1 2 3 3 0 3 1 3 2
(y )
(y )(y )(y ) (y )(y )(y )
(y )(y )(y ) (y )(y )(y )
(y )(y )(y ) (y )(y )(y )
(y )(y )(y ) (y )(y )(y )
x f
y y y y y y
x x
y y y y y y
y y y y y y
x x
y y y y y y
 
     
   
     
     
   
     
(0 1 3)(0 3)(0 1 8 ) (0 3 0 )(0 3)(0 1 8 )
3 0 3 4
( 3 0 1 3)( 3 0 3)( 3 0 1 8 ) ( 1 3 3 0 )( 1 3 3)( 1 3 1 8 )
(0 3 0 )(0 1 3)(0 1 8 ) (0 3 0 )(0 1 3)(0 3)
3 8 4 2
(3 3 0 )(3 1 3)(3 1 8 ) (1 8 3 0 )(1 8 1 3)(1 8 3)
x
     
    
           
     
   
     
79
Numerical Techniques
:Solution
(1 3)( 3)( 1 8 ) (3 0 )( 3)( 1 8 )
3 0 3 4
( 1 7 )( 3 3)( 4 8 ) (1 7 )( 1 6 )( 3 1)
(3 0 )(1 3)( 1 8 ) (3 0 )(1 3)( 3)
3 8 4 2
(3 3)(1 6 )( 1 5) (4 8 )(3 1)(1 5)
x
   
    
    
 
   

0.782 6.532 33.682 2.202x     
3 7 .2 3x 
80
Numerical Techniques
N ew ton - D evided D ifference Form ula
0 1
0 1
1 0
0 1
1 0
L e t f (x ) b e g iv e n a t (n + 1 ) d is t in c t p o in t s x , , ..., . W e d e f in e
t h e f ir s t d iv id e d d if f e r e n c e o f f (x ) f o r t h e p o in t s x a n d x a s
( ) ( )
f (x , ) .........(1)
n
x x
f x f x
x
x x



1
0 1 2
1 2 0
0 1 2
2 0
T h e s e c o n d d iv id e d d if f e r e n c e o f f (x ) f o r t h e p o in t s x , x a n d x
is d e f in e a s
( , x ) ( , x )
f (x , , x ) ........(2)
f x f x
x
x x



11 2 0 1
0 1 2
0
a n d in g e n e r a l th e n d iv id e d d if f e r e n c e is d e f in e a s
( , x ,..., x ) ( , x ,...., x )
f (x , , x ,...., x ) ........(3)
th
n n
n
n
f x f x
x
x x




81
Numerical TechniquesDevided Difference Table
0 0
1 0
0 1
1 0
1 1 1 2 0 1
0 1 2
2 0
2 1 1 2 3 0 1 2
1 2 0 1 2 3
2 1 3 0
2 2 2 3 1 2
1 2 3
3 1
( ) 1 2 3
( ) ( )
( , x )
( ) ( , x ) ( , x )
( , x , x )
( ) ( ) ( , x , x ) ( , x , x )
( , x ) ( , x , x , x )
( ) ( , x ) ( , x )
( , x , x )
(
st n d rd
x f x D D D D D D
f x f x
f x
x x
x f x f x f x
f x
x x
f x f x f x f x
f x f x
x x x x
x f x f x f x
f x
x x
f x






 
 
 



3 2
2 3
3 2
3 3
( ) ( )
, x )
( )
f x f x
x x
x f x



82
Numerical Techniques
N ew ton-D evided D ifference Form ula
0 0 0 1 0 1 0 1 2
0 1 2 0 1 2 3
0 1 2 1 0 1 2 3
( ) ( ) (x x ) ( , x ) (x x )(x x ) ( , x , x )
(x x )(x x )(x x ) ( , x , x , x )
.... (x x )(x x )(x x )....(x x ) ( , x , x , x ,..., x )n n
P x f x f x f x
f x
f x
     
   
     
E x -1 : U s in g N e w to n 's d iv id e d d iffe re n c e in te rp o la tio n fo rm u la fin d
1 0 2 5 1 0
f(1 ) a n d f(9 ) fo rm th e fo llo w in g ta b le : .
2 1 7 1 2 4 9 9 9
x
y

 
:Solution
83
Numerical Techniques
:Solu tion
1 2 3 4
1 2
1 2
1
0 1
0 1 4 1
1
2 1
7 1 7 1
4 1
2 0 5 1
2 7 3 9 4 1 1
7 0
5 0 1 0 1
1 2 4 7 1 7 7
3 9 1
5 2 1 0 0
5 1 2 4 1 7 5 3 9
1 7
1 0 2
9 9 9 1 2 4
1 7 5
1 0 5
1 0 9 9 9
s t n d r d th
x y D D D D D D D D
 
 


 


 
 
 
 
 
 
 
 
 






84
Numerical Techniques
:Solu tion
0 0 0 1 0 1 0 1 2
0 1 2 0 1 2 3
0 1 2 1 0 1 2 3
( ) ( ) (x x ) ( , x ) (x x )(x x ) ( , x , x )
(x x )(x x )(x x ) ( , x , x , x )
.... (x x )(x x )(x x )....(x x ) ( , x , x , x ,..., x )n n
P x f x f x f x
f x
f x
     
   
     
( ) 2 (x 1) (1) (x 1)(x 0) (1) (x 1)(x 0)(x 2) (1)P x              
T o fin d : f(1 )
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
(1) (1) 2 (1 1) (1) (1 1)(1 0 ) (1) (1 1)(1 0 )(1 2) (1)
(1) (1) 2 2 2 2
(1) (1) 0
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
f P
f P
f P
               
      
  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
85
Numerical Techniques
:Solu tion
( ) 2 (x 1) (1) (x 1)(x 0) (1) (x 1)(x 0)(x 2) (1)P x              
T o fin d : f(9 )
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
(9) (9) 2 (9 1) (1) (9 1)(9 0 ) (1) (9 1)(9 0 )(9 2) (1)
(9) (9) 2 1 0 1 1 0 9 1 1 0 9 7 1
(9) (9) 2 1 0 9 0 6 3 0
(9)
f P
f P
f P
f P
               
            
      
  (9) 7 2 8
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

86
Numerical Techniques
E x -2 : U s in g N e w to n 's d iv id e d d iffe re n c e in te rp o la tio n fo rm u la fin d
1 0 1 3
th e p o ly n o m ia l s a tis fy in g th e d a ta : .
( ) 2 1 0 1
x
f x y

 
:Solution
87
Numerical Techniques:Solution
1 2 3
1 2
1 2
1
0 1
0 1 1 1
0
1 1
0 1 1
1 0
11 0 6
3 1 2 4
1 0 1
1
12
3 0 6
1 0 1
3 1 2
3 1
s t n d r d
x y D D D D D D


 

 



  







  



88
Numerical Techniques:Solution
0 0 0 1 0 1 0 1 2
0 1 2 0 1 2 3
0 1 2 1 0 1 2 3
( ) ( ) (x x ) ( , x ) (x x )(x x ) ( , x , x )
(x x )(x x )(x x ) ( , x , x , x )
.... (x x )(x x )(x x )....(x x ) ( , x , x , x ,..., x )n n
P x f x f x f x
f x
f x
     
   
     
2
3
3
3
3
1
( ) 2 ( x 1) ( 1) ( x 1) ( x 0 ) (0 ) ( x 1) ( x 0 ) ( x 1)
2 4
1
( ) 2 1 0 ( 1)
2 4
1
( ) 2 1 0 ( )
2 4
( ) 2 1 0
2 4 2 4
2 5
( ) 1
2 4 2 4
2 5 2 4
( )
2 4
P x
P x x x x
P x x x x
x x
P x x
x x
P x
x x
P x
             
       
       
      
   
 
 
89
Numerical Techniques
T he O p erators:
 (1) D iffe re n c e O p e ra to rs ( , a n d ) :
(a) T h e F o rw ard d ifferen ce o p erato r is d e n o ted b y , d efin ed as ( ) ( ) ( ).
(b ) T h e B ack w ard d ifferen ce o p erato r is d en o ted b y , d efin ed as ( ) ( ) ( ).
(c ) T h e C en tral d ifferen ce o p erato r i
f x f x h f x
f x f x f x h
    
    
s d en o ted b y , d efin ed as ( )
2 2
W h ere 'h ' is th e d ifferen ce b etw een th e co n secu tive valu es o f th e in d ep en d en t va riab le "x " is called
th e in terval o f d ifferen cin g .
h h
f x f x f x 
   
      
   
90
Numerical Techniques
2
2
2
2
2
2 2
N o w ( ) ( ( ))
( ) ( )
( ) [ ( 1)] ( ......(1))
( ) ( 1) [ ], ( 1 is c o n s ta n t )
( ) ( 1) [ ( 1)] ( ......(1))
( ) ( 1) [ ]..................( 2 )
x x
x x h
x h x h
x h x h
x h x
f x f x
e e
e e e fr o m
e e e e
e e e e fr o m
e e e
   
    
    
     
    
   

  
1
E x -1 : E v a lu a te th e fo llo w in g ( ) ( e ) ( ) (lo g ) ( ) (ta n ).
:
n x
i ii x iii x
S o lu tio n
H ere w e k n o w th at h e d ifferen tial o p erato r ( ) ( ) ( ).f x f x h f x   
( ) ( ) ( )
x x h x h
i L e t f x e th e r e fo r e f x h e e e

   
( ) ( ) ( )
( ) ( 1).................(1)
x x h x x h
f x f x h f x
e e e e e e
   
     
91
Numerical Techniques
3 2
3 2
3 2
3 2
3 2
3 3
( ) ( ( ))
( ) ( )
( ) [( 1) [ ] ( ......( 2 ))
( ) ( 1) [ ], ( 1 is c o n s ta n t )
( ) ( 1) [ ( 1)] ( ......( 2 ))
( ) ( 1) [ ]..................(3)
x x
x h x
x h x h
x h x h
x h x
S im ila r ly f x f x
e e
e e e fr o m
e e e e
e e e e fr o m
e e e
   
    
    
     
    
   
F ro m resu lt .......(1 ), (2 ) an d (3 ) w e g et in g en eral
( ) ( 1) [ ]
n x h n x
e e e   
92
Numerical Techniques
3 2
3 2
3 2
3 2
3 2
3 3
( ) ( ( ))
( ) ( )
( ) [( 1) [ ] ( ......( 2 ))
( ) ( 1) [ ], ( 1 is c o n s ta n t )
( ) ( 1) [ ( 1)] ( ......( 2 ))
( ) ( 1) [ ]..................(3)
x x
x h x
x h x h
x h x h
x h x
S im ila r ly f x f x
e e
e e e fr o m
e e e e
e e e e fr o m
e e e
   
    
    
     
    
   
F ro m resu lt .......(1 ), (2 ) an d (3 ) w e g et in g en eral
( ) ( 1) [ ]
n x h n x
e e e   
93
Numerical Techniques
( ) ( ) lo g ( ) a n d ( ) lo g ( )
w e k n o w th a t ( ) ( ) - ( )
( ) ( ) ( ) .........(1)
( ) ( ) - ( )
lo g ( ) lo g ( ) lo g ( )
( )
lo g ( ) lo g
( )
( )
lo g ( ) lo g
ii L e t f x f x f x h f x h b u t
f x f x h f x
f x h f x f x
N o w f x f x h f x
f x f x h f x
f x h
f x
f x
f x
f x
   
  
    
  
    
 
    
 
 
  
( )
( .......(1) )
( )
( )
lo g ( ) lo g 1
( )
f x
fr o m
f x
f x
f x
f x
 
 
 
 
    
 
94
Numerical Techniques
1 1
1 1 1
1 1 1 1 1
1 1
( ) ( ) ta n a n d ( ) ta n ( )
( ) ( ) - ( )
ta n ta n ( ) ta n
ta n ta n ta n ta n ta n
1 ( ) 1
ta n ta n
1 ( )
iii L e t f x x f x h x h
N o w f x f x h f x
x x h x
x h x
x
x x h
h
x
x x h
 
 
 
 
  
    
 
   
  
    
      
        
      
 
    
  
95
Numerical Techniques
(2) S h ift O p e ra to r (E ) :
T h e sh ift o p erato r is d en o ted b y E , d efin ed as E ( ) ( ).f x f x h 
2
N o w E ( ) ( ( )) ( ( )) ( ) ( 2 )f x E E f x E f x h f x h h f x h       
3 2
S im ilarly E ( ) ( ( )) ( ( 2 )) ( 2 ) ( 3 )f x E E f x E f x h f x h h f x h       
1
In g e n e ra l E ( ) ( )
E ( ) ( )
E ( ) ( )
n
n
f x f x n h
f x f x h a n d
f x f x n h


  
  
  
R e la tio n b e tw e e n D iffe re n c e o p e ra to r a n d S h ift o p e ra to r
H ere w e k n o w th at h e d ifferen ce o p erato r ( ) ( ) ( )
( ) ( ) ( )
( ) ( 1) ( )
1 1
f x f x h f x
f x E f x f x
f x E f x
E o r E
   
   
   
      
96
Numerical Techniques
(3) D iffe re n tia l O p e ra to r (D ) :
T h e D iffeen tial o p erato r is d en o ted b y D , d efin ed as D ( ) ( ) '( ).
d
f x f x f x
d x
 
2
N o w D ( ) "( )f x f x
3
S im ilarly D ( ) "'( )f x f x
In g en eral D ( ) ( ).
n n
f x f x 
R elatio n b etw een D ifferen tial o p erato r a n d D ifferen ce o p erato r
2 3
2 3
2 3
T a ylo r's se rie s w e h a v e ,
( ) ( ) '( ) "( ) "'( ) ...
2 ! 3 !
( ) ( ) ( ( )) ( ( )) ( ( )) ....
2 ! 3 !
B y
h h
f x h f x h f x f x f x
h h
E f x f x h D f x D f x D f x
     
     
97
Numerical Techniques
R elatio n b etw een D ifferen tial o p erato r a n d D ifferen ce o p erato r
2 2 3 3
2 2 3 3
2 2 3 3
( ) ( ) 1 .....
2 ! 3 !
1 .....
2 ! 3 !
1 .....
2 ! 3 !
1 ( 1 ) .
h D h x
h D
h D h D
E f x f x h D
h D h D
E h D
h x h x
E e e h x
o r e E
 
      
 
     
 
       
 
     
98
Numerical Techniques
(4 ) A v e ra g in g O p e ra to r ( ) :
1
T h e averan g in g o p erato r is d en o ted b y , d efin ed as ( ) .
2 2 2
h h
f x f x f x 
    
       
    
R e la tio n b e tw e e n A v e ra n g in g o p e ra to r a n d S h ift o p e ra to r
 
1 1
2 2
1 1
2 2
1
( )
2 2 2
1
( ) ( ) ( ) ( ) ( )
2
1
2
n
h h
f x f x f x
f x E f x E f x E f x f x n h
E E





    
       
    
 
      
 
 
   
 
99
Numerical Techniques
 


           
1 1 1
1 2 2 2
E x -1 : P ro v e th a t (i) 1 ( ) ( ) ( )E ii E E iii E E iv E
Proof:
W e k n o w th at
( ) ( ) ( )......(1)
( ) ( ) ( )......( 2 )
( ) ......(3)
2 2
f x f x h f x
f x f x f x h
h h
f x f x f x
   
   
   
      
   
E ( ) ( )......( 4 )f x f x h 
1
( ) ......(5 )
2 2 2
h h
f x f x f x
    
       
    
100
Numerical Techniques
 
 
1
1 1
1
1
( ) T o p ro v e : 1
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) 1 ( )
1 .
i E
f x f x f x h
f x f x E f x E f x f x h
f x E f x
E

 


  
    
     
   
   
101
Numerical Techniques
1 1
2 2
1 1
2 2
1 1
2 2
1 1
2 2
( ) T o p ro v e :
( )
2 2
( ) ( ) ( )
( ) ( )
ii E E
h h
f x f x f x
f x E f x E f x
f x E E f x
E E









 
   
       
   
  
 
   
 
  
102
Numerical Techniques
 
 
   
( ) T o p ro v e : ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
iii a E
E f x E f x
E f x E f x f x h
E f x E f x E f x h
E f x f x h f x h h
E f x f x h f x
E f x f x
E
  
   
    
    
      
    
   
   
103
Numerical Techniques
 
 
( ) T o p ro v e : ( )
( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( )
iii b E
E f x E f x
E f x f x h
E f x f x h f x
E f x f x
E
  
  
    
    
   
   
104
Numerical Techniques
1
2
1 1
2 2
1
2
1
2
1
2
1
2
1
2
( ) T o p r o v e :
( ) ( )
( )
2
( )
2 2 2 2
( ) ( ) ( )
( ) ( )
.
iv E
E f x E f x
h
E f x f x
h h h h
E f x f x f x
E f x f x h f x
E f x f x
E

 
 




 
 
   
 
  
    
  
   
         
   
   
  
  
105
Numerical Techniques
   
    
 
         
 
2
1 12 2
2 2 2 2 2
E x -2 : P ro v e th a t ( ) 1 1 ( ) 1 ( ) ( )
2 4 2 2
i ii iii E iv E
Proof:
 
   
 
1 1 1 1
2 2 2 2
1 1 1 1
2 2 2 2
1
2
2 1
2 2 2 1 2
1
( ) W e k n o w th at = an d
2
1
2
1
2
1
2
1
2
4
i E E E E
E E E E
E E
E E
E E E E
 
 
 
 
 
 
 


 
 
   
 
   
      
   
  
 
  
 
 
   
106
Numerical Techniques
 2 2 2 1 2
2 1 2
2 2
2 2
2 2
2
1
2 2
1
1 2 1
4
2 4
1
4
2
1
4
1 ......(1)
2
E E E E
E E E E
E E
E E
 
 
 
 
 
 


     
  
  
 
  
 
    
 
 
2
1 12
2 2
2
1
2 1
2 1
N o w
1
1 1
2 2
1
1 1 2
2 2
2 2
1
2 2
1 ......( 2 )
2 2
E E
E E
E E
E E








 
     
 
     
  
  

  
2
1
2 2
2
2
2 2
F ro m ......(1 ) an d ......(2 ) w e h ave ,
1
2
1 1
2
E E
 

 

 
   
 
 
    
 
107
Numerical Techniques
THANK YOU

Interpolation in Numerical Methods

  • 1.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 1 Numerical Techniques Unit- 2: Finite Differences and Interpolation Table of content 1. Introduction 2. Finite Differences (a) Forward Differences (b) Backward Differences (c) Central Differences 3. Interpolation for equal intervals (a) Newton Forward and Backward Interpolation Formula (b) Gauss Forward and Backward Interpolation Formula (c) Stirling’s Interpolation Formula 4. Interpolation for unequal intervals (a) Lagrange’s Interpolation Formula 5. Inverse interpolation 6. Relation between the operators 7. Newton Divided Difference Interpolation Formula
  • 2.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 2 Numerical Techniques Unit- 2: Finite Differences and Interpolation D efinition : Finite D ifferences 0 1 1 1 L et ( , ) ; 0,1, 2, ..., b e an y set o f d ata va lu es fo r th e fu n ctio n ( ) w ith th e valu es are eq u ally sp aced , d istan ce ap art so th at ... ; th at is , an d ( ). S o th e val i i i n n i i i i x y i n y f x x h x x x x x x h y f x           1 0 1 0 1 u e o f is k n o w n as th e F in ite d ifferen c e b etw een tw o co n secu tive term s o f . S u p p o se th at , , ..., b e th e set o f valu es o f co rresp o n d in g to th e valu es o f as , , ..., th en th e ex p re i i n n h x x x y y y y x x x x    1 0 2 1 1 ssio n lik e y , y , ..., y are called th e d ifferen ces o f .n n y y y y   
  • 3.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 3 Numerical Techniques There are three types of finite differences as follows : Finite Differences Forward Difference Backward Difference Central Difference
  • 4.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 4 Numerical Techniques Unit- 2: Finite Differences and Interpolation Definition : Forward Difference 0 1 0 1 2 1 2 3 2 1 T h e d iffe re n c e b e tw e e n tw o c o n se c u tiv e v a lu e s o f y is c a lle d th e fo rw a rd d iffe re n c e a n d it is d e n o te d b y . M a th e m a tic a lly w e e x p re ss it a s fo llo w s: , , , . . . w h e rei i i y y y y y y y y y y y y i               0 ,1, 2 ..., .n 1st forward difference
  • 5.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 5 Numerical Techniques Unit- 2: Finite Differences and Interpolation Definition : Forward Difference 2 2 0 0 1 0 1 0 2 1 1 2 1 2 1 2 2 2 3 2 3 2 2 1 T h e S e c o n d fo rw a rd d iffe re n c e is d e n o te d b y . M a th e m a tic a lly w e e x p re ss it a s fo llo w s: ( ) ( ) , ( ) ( ) , ( ) ( ) , . . . ( ) ( )i i i i y y y y y y y y y y y y y y y y y y y y y y                                           1 w h e re 0 ,1, 2 ..., . i i y y i n      2nd forward difference
  • 6.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 6 Numerical Techniques Unit- 2: Finite Differences and Interpolation Definition : Forward Difference 1 1 1 1 1 1 S im ilarly w e o b tain ed th e n fo rw ard d ifferen ce is d en o ted b y . M ath em atically w e ex p ress it as fo llo w s: ( ) ( ) w h ere 0 ,1, 2 ..., . th n n n n n n i i i i i i y y y y y y i n                    nth forward difference
  • 7.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 7 Numerical Techniques A bove all the form ulae w e show n in the follow ing tabular form : x y  2  3  4  0 x 0 y 1 x 1 y 2 x 2 y 3 x 3 y 4 x 4 y 0 y 1 y 2 y 3 y 2 0 y 2 1 y 2 2 y 3 0 y 3 1 y 4 0 y
  • 8.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 8 Numerical Techniques P roperties of the operator :    1 . [ ( ) ( )] ( ) ( ) w h ere ' ' an d ' ' are co n stan ts. a f x b g x a f x b g x a b        2 . [ ( ) ] ( ) w h ere 'c' is co n stan t.c f x c f x    3 . ( ) ( ) w h e re ' ' a n d ' ' a re p o s itiv e in te g e rs . m n m n f x f x m n       4 . [ ( ) ( )] ( ) ( )f x g x f x g x     5 . [ ] 0 w h ere 'c' is co n stan tc 
  • 9.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 9 Numerical Techniques 2 2 3 E x -1 : C o n stru ct th e fo rw ard tab le fo r ( ) ; 0,1, 2, 3, 4 an d fin d th e valu es o f ( (2 )), (1), (0 ). f x x x f      x y  2  3  4  0 0x  0 0y  1 1x  1 1y  2 2x  2 4y  3 3x  3 9y  4 4x  4 1 6y  0 1y  1 3y  2 5y  2 0 2y  2 1 2y  3 0 0y  3 7y  2 1 2y  3 1 0y  4 0 0y 
  • 10.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Forward Differences 10 Numerical Techniques 2 T o fin d : (a ) ( ( 2 )) N o w ( 2 ) = 4 ( ( 2 )) ( 4 ) ( ) 5 . f f f y        2 2 2 1 T o fin d : (b ) (1) (1) ( ) 2 .y       3 3 3 0 T o fin d : (c ) ( 0 ) ( 0 ) ( ) 0 .y      
  • 11.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Backward Differences 11 Numerical Techniques Definition : Backward Difference 1 1 0 2 2 1 3 3 2 1 T h e d iffe re n c e b e tw e e n tw o c o n se c u tiv e v a lu e s o f y is c a lle d th e b a c k w a rd d iffe re n c e a n d it is d e n o te d b y . M a th e m a tic a lly w e e x p re ss it a s fo llo w s: , , , . . . w h e rei i i y y y y y y y y y y y y i              1, 2 ..., .n 1st backward difference
  • 12.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Backward Differences 12 Numerical Techniques Definition : Backward Difference 2nd forward difference 2 2 1 1 1 0 1 0 2 2 2 2 1 2 1 2 3 3 3 2 3 2 2 1 T h e S e c o n d fo rw a rd d iffe re n c e is d e n o te d b y . M a th e m a tic a lly w e e x p re s s it a s fo llo w s : ( ) ( ) , ( ) ( ) , ( ) ( ) , . . . ( ) ( )i i i i y y y y y y y y y y y y y y y y y y y y y y                                            1 w h e re 1, 2 ..., . i i y y i n     
  • 13.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Backward Differences 13 Numerical Techniques 1 1 1 1 1 1 S im ilarly w e o b tain ed th e n b ack w ard d ifferen ce is d en o ted b y . M ath em atically w e ex p ress it as fo llo w s: ( ) ( ) w h ere 1, 2 ..., . th n n n n n n i i i i i i y y y y y y i n                    nth backward difference Definition : Backward Difference
  • 14.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Backward Differences 14 Numerical Techniques A bove all the form ulae w e show n in the follow ing tabular form : x y  2  3  4  0 x 0 y 1 x 1 y 2 x 2 y 3 x 3 y 4 x 4 y 1 y 2 y 3 y 4 y 2 2 y 2 3 y 2 4 y 3 3 y 3 4 y 4 4 y
  • 15.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Backward Differences 15 Numerical Techniques P roperties of the operator :    1 . [ ( ) ( )] ( ) ( ) w h ere ' ' an d ' ' are co n stan ts. a f x b g x a f x b g x a b        2 . [ ( ) ] ( ) w h ere 'c' is co n stan t.c f x c f x    3 . ( ) ( ) w h e re ' ' a n d ' ' a re p o s itiv e in te g e rs . m n m n f x f x m n       4 . [ ( ) ( )] ( ) ( )f x g x f x g x     5 . [ ] 0 w h ere 'c' is co n stan tc 
  • 16.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Central Difference 16 Numerical Techniques Definition : Central Difference 1 1 0 2 3 2 1 2 5 3 2 2 2 1 1 2 T h e d iffe re n c e b e tw e e n tw o c o n se c u tiv e v a lu e s o f y is c a lle d th e b a c k w a rd d iffe re n c e a n d it is d e n o te d b y . M a th e m a tic a lly w e e x p re ss it a s fo llo w s: , , , . . . i i i y y y y y y y y y y y y                w h e re 1, 2 ..., .i n 1st central difference
  • 17.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Central Difference 17 Numerical Techniques A bove all the form ulae w e show n in the follow ing tabular form : x y  2  3  0 x 0 y 1 x 1 y 2 x 2 y 3 x 3 y 1 2 y 3 2 y 5 2 y 2 1 y 2 2 y 3 3 2 y
  • 18.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : Interpolation 18 Numerical Techniques Definition : Interpolation and Extrapolation (a) Newton Forward Interpolation Formula 2 3 4 0 0 0 0 0 0 1 0 2 1 1 ( 1) ( 1)( 2) ( 1)( 2)( 3) ( ) ... 2 ! 3 ! 4 ! W h e r e , ... n n n p p p p p p p p p P x y p y y y y x x p h x x x x x x h                           Interpolation for equal intervals
  • 19.
    E x -1: U s in g N e w t o n F o r w a r d In t e r p o la t io n F o r m u la f in d (1 .6 ) f r o m t h e f o llo w in g t a b u la r v a lu e s . 1 1 .4 1 .8 2 .2 ( ) 3 .4 9 4 .8 2 5 .9 6 6 .5 f x y f x Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 19 Numerical Techniques 2 3 0 0 0 0 0 1 0 2 1 1 ( 1) ( 1)( 2) ( ) .......... (1) 2 ! 3 ! W h e r e , ... n n n p p p p p P x y p y y y x x p h x x x x x x h                       :Solu tion W e k n o w th a t th e N -F -I-F is g iv e n b y , 0 0 G iv e n th a t 1, 1 .6 a n d 0 .4 1 .6 1 0 .6 3 1 .5 0 .4 0 .4 2 x x h x x T h e r e fo r e p h           2 3 4 0 0 0 0 In w h ic h w e w a n t t o f in d t h e v a lu e s o f y , y , y , y , ..... u s in g f o llo w in g t a b le .   
  • 20.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 20 Numerical Techniques x y  2  3  0 1x 0 3 .4 9y 1 1 .4x 1 4 .8 2y 2 1 .8x 2 5 .9 6y 3 2 .2x 3 6 .5y 1.33 1.14 0.54 0.19 0.60 0.41 :Solu tion 0 0 2 3 0 0 T h e re fo re 3 .4 9 , 1 .3 3, 0 .1 9 a n d 0 .4 1 S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,          y y y y
  • 21.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 21 Numerical Techniques 2 3 0 0 0 0 ( 1) ( 1)( 2) (1) ( ) ... 2 ! 3 ! n p p p p p P x y p y y y             :Solu tion 1 .5 (1 .5 1) 1 .5 (1 .5 1) (1 .5 2) ( ) 3 .4 9 1 .5 1 .3 3 ( 0 .1 9) ( 0 .4 1) 2 6 n P x                               ( ) 3 .4 9 1 .9 9 5 0 .0 7 1 3 0 .0 2 5 6n P x                  
  • 22.
    E x -2: T h e p o p u la tio n o f th e to w n in d e c e n n ia l c e n s u s w a s a s g iv e n b e lo w e s tim a te th e p o p u la tio n fo r th e y e a r 1 8 9 5 . y e a r (x ) 1 8 9 1 1 9 0 1 1 9 1 1 1 9 2 1 1 9 3 1 P o p u la tio n (y ) 4 6 6 6 8 1 9 3 1 0 1 (in th o u s a n d ) Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 22 Numerical Techniques 2 3 4 0 0 0 0 0 0 1 0 2 1 1 ( 1) ( 1)( 2) ( 1)( 2)( 3) ( ) .......... (1) 2 ! 3 ! 4 ! W h e r e , ... n n n p p p p p p p p p P x y p y y y y x x p h x x x x x x h                           :Solu tion W e k n o w th a t th e N -F -I-F is g iv e n b y ,
  • 23.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 23 Numerical Techniques :Solu tion 0 0 G iv e n th a t 1 8 9 1, 1 8 9 5 a n d 1 0 1 8 9 5 1 8 9 1 4 0 .4 1 0 1 0 x x h x x T h e r e fo r e p h          2 3 4 0 0 0 0 In w h ic h w e w a n t t o f in d t h e v a lu e s o f y , y , y , y , ..... u s in g f o llo w in g t a b le .   
  • 24.
    x y 1981 46 190166 1911 81 1921 93 1931 101 Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 24 Numerical Techniques :Solu tion  2  3  4  20 15 12 8 -5 -3 -4 2 -1 -3
  • 25.
    Semester :III Mr. TusharJ Bhatt 25 Numerical Techniques :Solu tion 0 0 2 3 4 0 0 0 T h e re fo re 4 6 , 2 0 , 5 , 2 a n d 3 S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,            y y y y y 2 3 4 0 0 0 0 0 ( 1) ( 1)( 2) ( 1)( 2)( 3) (1) ( ) 2 ! 3 ! 4 ! n p p p p p p p p p P x y p y y y y                 0 .4 (0 .4 1) 0 .4 (0 .4 1)(0 .4 2) ( ) 4 6 0 .4 2 0 ( 5) (2) 2 6 0 .4 (0 .4 1)(0 .4 2)(0 .4 3) ( 3) 2 4 n P x                                    0 .4 ( 0 .6 ) 0 .4 ( 0 .6 )( 1 .6 ) ( ) 4 6 0 .4 2 0 ( 5) (2) 2 6 0 .4 ( 0 .6 )( 1 .6 )( 2 .6 ) ( 3) 2 4 n P x                                   
  • 26.
    Semester :III Mr. TusharJ Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 26 Numerical Techniques :Solu tion ( ) 4 6 8 0 .6 0 .1 2 8 0 .4 5 1 2n P x                       
  • 27.
    E x -3: D e t e r m in e t h e in t e r p o la t in g p o ly n o m ia l f o r t h e 1 2 3 4 f o llo w in g t a b le o f d a t a : ( ) 1 1 1 5 x y f x   Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 27 Numerical Techniques 2 3 0 0 0 0 0 1 0 2 1 1 ( 1) ( 1)( 2) ( ) .......... (1) 2 ! 3 ! W h e r e , ... n n n p p p p p P x y p y y y x x p h x x x x x x h                       :Solu tion W e k n o w th a t th e N -F -I-F is g iv e n b y , 0 0 G iv e n th a t 1, a n d 1 1 1 1 x x x h x x x T h e r e fo r e p x h          2 3 4 0 0 0 0 In w h ic h w e w a n t t o f in d t h e v a lu e s o f y , y , y , y , ..... u s in g f o llo w in g t a b le .   
  • 28.
    x y 1 -1 2-1 3 1 4 5 Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 28 Numerical Techniques :Solu tion  2  3  0 2 4 2 2 0
  • 29.
    Semester :III Mr. TusharJ Bhatt 29 Numerical Techniques :Solu tion 2 3 0 0 0 0 T h e re fo re 1, 0 , 2 , 0 S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,        y y y y 2 3 0 0 0 0 ( 1) ( 1)( 2) (1) ( ) 2 ! 3 ! n p p p p p P x y p y y y            ( 1)( 2) ( 1)( 2)( 3) ( ) 1 ( 1) (0 ) (2) (0 ) 2 6 n x x x x x P x x                             2 ( ) 1 0 3 2 0n P x x x       
  • 30.
    Semester :III Mr. TusharJ Bhatt 30 Numerical Techniques 2 3 4 ( 1) ( 1) ( 2) ( ) 2 ! 3 ! ( 1) ( 2)( 3) ... 4 ! n n n n n n p p p p p P x y p y y y p p p p y                 (b) Newton Backward Interpolation Formula 1 0 1 W h e re , ... , 1 1 n n n x x p h x x x x p h           
  • 31.
    Semester :III Mr. TusharJ Bhatt 31 Numerical Techniques 2 3 4 ( 1) ( 1) ( 2) ( ) 2 ! 3 ! ( 1) ( 2)( 3) ... (1) 4 ! n n n n n n p p p p p P x y p y y y p p p p y                      E x -1 : C o m p u t e t h e v a lu e o f (7 .5), b y u s i n g s u it a b le in t e r p o la t io n f o r m u la u s in g t h e f o llo w in g d a t a : 3 4 5 6 7 8 ( ) 2 8 6 5 1 2 6 2 1 7 3 4 4 5 1 3 f x y f x :Solu tion W e k n o w th a t th e N -B -I-F is g iv e n b y , G iv e n th a t 8, 7 .5 a n d 1 7 .5 8 0 .5 1 n n x x h x x T h e r e fo r e p h          2 3 4 In w h ic h w e w a n t t o f in d t h e v a lu e s o f y , y , y , y , ..... u s in g f o llo w in g t a b le .n n n n    
  • 32.
    x y 3 28 465 5 126 6 217 7 344 8 513 Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 32 Numerical Techniques :Solu tion 37 61 91 127 169 24 30 36 42 6 6 6 0 0 0  2  3  4  5 
  • 33.
    Semester :III Mr. TusharJ Bhatt 33 Numerical Techniques :Solu tion 2 3 4 5 T h e re fo re 5 1 3, 1 6 9 , 4 2 , 6 , 0 , 0 S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,            n n n n n n y y y y y y 2 3 4( 1) ( 1) ( 2) ( 1) ( 2)( 3) (1) ( ) ... 2 ! 3 ! 4 ! n n n n n n p p p p p p p p p P x y p y y y y                  ( 0 .5) ( 0 .5 1) ( 0 .5) ( 0 .5 1) ( 0 .5 2) ( ) 5 1 3 ( 0 .5) (1 6 9) (4 2) (6 ) 2 6 n P x                                   ( ) 5 1 3 8 4 .5 5 .2 5 0 .3 7 5n P x                  
  • 34.
    Semester :III Mr. TusharJ Bhatt 34 Numerical Techniques 2 3 4 ( 1) ( 1) ( 2) ( ) 2 ! 3 ! ( 1) ( 2)( 3) ... (1) 4 ! n n n n n n p p p p p P x y p y y y p p p p y                      E x -2 : P o p u la t io n o f a t o w n in t h e c e n s u s is a s g iv e n in t h e d a t a . E s t im a t e t h e p o p u la t io n in t h e y e a r 1 9 9 6 . ( ) 1 9 6 1 1 9 7 1 1 9 8 1 1 9 9 1 2 0 0 1 P o p u la t io n ( ) 4 6 6 6 8 1 9 3 1 0 1 (in t h o u s a n d s) Y e a r x y :Solu tion W e k n o w th a t th e N -B -I-F is g iv e n b y , G iv e n th a t 2 0 0 1, 1 9 9 6 a n d 1 0 1 9 9 6 2 0 0 1 0 .5 1 0 n n x x h x x T h e r e fo r e p h          2 3 4 In w h ic h w e w a n t t o f in d t h e v a lu e s o f y , y , y , y , ..... u s in g f o llo w in g t a b le .n n n n    
  • 35.
    x y 1961 46 197166 1981 81 1991 93 2001 101 Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :2 Topic : N-F-I-F 35 Numerical Techniques :Solu tion 20 15 12 8 -5 -3 -4 2 -1 -3  2  3  4 
  • 36.
    Semester :III Mr. TusharJ Bhatt 36 Numerical Techniques :Solu tion 2 3 4 T h e re fo re 1 0 1, 8, 4 , 1, 3 S u b s titu te in a b o v e re s u lt ------(1 ) w e g e t,             n n n n n y y y y y 2 3 4( 1) ( 1) ( 2) ( 1) ( 2)( 3) (1) ( ) ... 2 ! 3 ! 4 ! n n n n n n p p p p p p p p p P x y p y y y y                  ( 0 .5) ( 0 .5 1) ( 0 .5) ( 0 .5 1) ( 0 .5 2) ( ) 1 0 1 ( 0 .5) (8 ) ( 4 ) ( 1) 2 6 ( 0 .5) ( 0 .5 1) ( 0 .5 2)( 0 .5 3) ( 3) 2 4 n P x                                                   ( ) 1 0 1 4 .0 0 .5 0 .0 6 2 5 0 .1 1 7 2n P x                       
  • 37.
    Semester :III Mr. TusharJ Bhatt 37 Numerical Techniques (c) Gauss’s Forward Interpolation Formula 2 3 4 0 0 1 1 2 ( 1) ( 1) ( 1) ( 1) ( 1)( 2) .... 2 ! 3! 4 ! p p p p p p p p p p y y p y y y y                   x y  2  3  4  2 x  1 x  0 x 1 x 2 x 2 y  1 y  0 y 1 y 2 y 0 y 1 y 1 y   2 y   2 0 y 2 1 y   2 2 y   3 1 y   3 2 y   4 2 y   0 1 0 1 W h ere , in w h ich ... .n n x x p h h x x x x        
  • 38.
    Semester :III Mr. TusharJ Bhatt 38 Numerical Techniques E x -1 : F in d ( 2 2 ) fro m th e fo llo w in g ta b u la r v a lu e s u sin g G a u ss's fo rw a rd fo rm u la . 2 0 2 5 3 0 3 5 4 0 4 5 3 5 4 3 3 2 2 9 1 2 6 0 2 3 1 2 0 4 f x y S o lu tio n : W e k n o w th a t th e G -F -I-F is g iv e n b y , 2 3 4 0 0 1 1 2 ( 1) ( 1) ( 1) ( 1) ( 1)( 2) .... 2 ! 3! 4 ! p p p p p p p p p p y y p y y y y                   1            0 0 H e re w e w a n t to fin d ( ) w h e re 2 2, S o 2 2 is lie s in th e in te rv a l [2 5, 3 0 ] , in w h ic h 2 2 is v e ry n e a r to 2 5 ra th e r th a n 3 0 th e re fo re w e c h o o s e 2 5 . 2 2 2 5 3 0 .6 5 5 f x x x x x x p h
  • 39.
    2 3 45 1 1 1 2 0 0 1 3 0 1 2 4 1 1 0 1 3 5 1 0 1 2 4 2 2 1 0 3 2 1 2 3 3 2 3 4 4 20 354 22 25 332 19 41 29 30 291 10 37 31 8 45 35 260 2 8 29 0 40 231 2 27 45 204 x y x y y x y y y y x y y y y y y x y y y y y x y y y x y                                                               Semester :III 39 Numerical Techniques S o lu tio n :
  • 40.
    Semester :III 40 Numerical Techniques So lu tio n : W e have substitute the values of 2 3 4 0 0 1 1 2 ( 1) ( 1) ( 1) ( 1) ( 1)( 2) .... 2 ! 3! 4 ! p p p p p p p p p p y y p y y y y                   1   0 .6A n d p in th e fo llo w in g eq u atio n ......(1 ) w e g et ( 0.6)( 0.6 1) ( 0.6 1)( 0.6)( 0.6 1) (1) 332 ( 0.6)( 41) ( 19) (29) 2 6 p y                   ( 0.6)( 0.6 1) ( 0.6 1)( 0.6)( 0.6 1) 332 ( 0.6)( 41) ( 19) (29) 2 6 332 24.6 9.12 1.856 349.336 p p p y y y                         
  • 41.
    Semester :III 41 Numerical Techniques 10 1 0 W h e r e , ... 0 .5 3 .2 3 .0 0 .2 0 .4 0 .5 0 .5 n n h x x x x x x p h              E x -2 : F in d t h e v a lu e s o f y w h e n x = 3 .2 f r o m t h e f o llo w in g d a t a u s in g G a u s s 's f o r w a r d in t e r p o la t io n f o r m u la : 2 .0 2 .5 3 .0 3 .5 4 .0 2 4 6 .2 4 0 9 .3 5 3 7 .2 6 3 6 .3 7 1 5 .9 x y :Solu tion W e k n o w th a t th e G -F -I-F is g iv e n b y , 2 3 4 0 0 1 1 2 ( 1) ( 1) ( 1) ( 1) ( 1)(p 2) ( ) ... 2 ! 3 ! 4 ! n p p p p p p p p P x y p y y y y                   1
  • 42.
    42 Numerical Techniques 1 x y1st difference 2nd difference 3rd difference 4th difference 2 2 .0 x 1 2 .5 x 0 3 .0x 1 3 .5x 2 4 .0x 0 5 3 7 .2y 1 409.3 y 2 246.2 y 1 6 3 6 .3y 2 7 1 5 .9y 0 9 9 .1 y 1 7 9 .6 y 1 127.9  y 2 1 6 3 .1  y 2 1 28.8   y 2 2 35.2   y 3 1 9.3  y 3 2 6.4  y 4 2 2.9  y :Solu tion
  • 43.
    43 Numerical Techniques :Solu tion No w w e h a v e 0 .4 a n dp 2 3 4 0 0 1 1 2 ( 1) ( 1) ( 1) ( 1) ( 1)(p 2) (1) ( ) ... 2 ! 3 ! 4 ! n p p p p p p p p P x y p y y y y                        0 .4 (0 .4 1) ( ) 5 3 7 .2 0 .4 9 9 .1 2 8 .8 2 (0 .4 1) (0 .4 ) (0 .4 1) (0 .4 1) (0 .4 ) (0 .4 1) (0 .4 2) 9 .3 2 .9 6 2 4 n P x                                                                 ( ) 5 3 7 .2 3 9 .6 4 3 .4 5 6 0 .5 2 0 8 0 .0 6 4 9 6n P x      ( ) 5 7 9 .8 4n P x  ANSWER S ubstitute all the above values in result ..............(1) w e get
  • 44.
    Semester :III Mr. TusharJ Bhatt 44 Numerical Techniques (d) Gauss’s Backward Interpolation Formula 2 3 4 0 1 1 2 2 ( 1) ( 1) ( 1) ( 1) ( 1)( 2) .... 2 ! 3! 4 ! p p p p p p p p p p y y p y y y y                    x y  2  3  4  2 x  1 x  0 x 1 x 2 x 2 y  1 y  0 y 1 y 2 y 0 y 1 y 1 y   2 y   2 0 y 2 1 y   2 2 y   3 1 y   3 2 y   4 2 y   0 1 0 1 W h ere , in w h ich ... .n n x x p h h x x x x        
  • 45.
    Semester :III Mr. TusharJ Bhatt 45 Numerical Techniques E x -1 : U s in g G a u s s 's b a c k w a rd in te rp o la ti o n fo rm u la fin d (8 ) fro m th e 0 5 1 0 1 5 2 0 2 5 fo llo w in g ta b le . 7 1 1 1 4 1 8 2 4 3 2 y x y :Solu tion W e k n o w th a t th e G -B -I-F is g iv e n b y , 2 3 4 0 1 1 2 2 ( 1) ( 1) ( 1) ( 1) ( 1)( 2) .... 2 ! 3! 4 ! p p p p p p p p p p y y p y y y y                    1 0 1 0 0 W h ere ... 5, an d 8 is n ear to th e tab u lar valu e 1 0 th erefo re 1 0 . 8 1 0 2 In w h ich 0 .4 5 5 n n h x x x x x x x x p h                  1
  • 46.
    2 3 45 2 2 2 2 1 1 2 3 1 2 2 4 0 0 1 2 3 5 0 1 2 2 4 1 1 0 1 3 1 0 2 2 2 1 2 3 3 0 7 4 5 1 1 1 3 2 1 0 1 4 1 1 4 1 0 1 5 1 8 2 1 6 0 2 0 2 4 2 8 2 5 3 2 x y x y y x y y y y x y y y y y y x y y y y y x y y y x y                                                                Semester :III Mr. Tushar J Bhatt 46 Numerical Techniques :Solu tion :Solu tion
  • 47.
    Semester :III Mr. TusharJ Bhatt 47 Numerical Techniques :Solu tion :Solu tion  N o w w e h a v e 0 .4 a n dp S ubstitute all the above values in result ..............(1) w e get 2 3 4 0 1 1 2 2 ( 1) ( 1) ( 1) ( 1) ( 1)( 2) (1) .... 2 ! 3! 4 ! p p p p p p p p p p y y p y y y y                    
  • 48.
    Semester :III Mr. TusharJ Bhatt 48 Numerical Techniques :Solu tion :Solu tion ( 0 .4 )( 0 .4 1) (1) 1 4 ( 0 .4 ) (3) (1) 2 ( 0 .4 1)( 0 .4 )( 0 .4 1) ( 2 ) 6 ( 0 .4 1)( 0 .4 )( 0 .4 1)( 0 .4 2 ) ( 1) 2 4 p y                            1 4 1 .2 0 .1 2 0 .1 1 2 0 .0 3 4 1 2 .8 2 6 p p y y        
  • 49.
    Semester :III Mr. TusharJ Bhatt 49 Numerical Techniques E x -2 : U s in g G a u s s 's b a c k w a rd in te rp o la ti o n fo rm u la fin d (1 9 7 4 ) fro m th e 1 9 3 9 1 9 4 9 1 9 5 9 1 9 6 9 1 9 7 9 1 9 8 9 fo llo w in g ta b le . 1 2 1 5 2 0 2 7 3 9 5 2 y x y :Solu tion W e k n o w th a t th e G -B -I-F is g iv e n b y , 2 3 4 0 1 1 2 2 ( 1) ( 1) ( 1) ( 1) ( 1)( 2) .... 2 ! 3! 4 ! p p p p p p p p p p y y p y y y y                    1 0 1 0 0 W h ere ... 1 0, an d 1 9 7 4 is n ear to th e tab u lar valu e 1 9 6 9 th erefo re 1 9 6 9 . 1 9 7 4 1 9 6 9 5 In w h ich 0 .5 1 0 1 0 n n h x x x x x x x x p h                1
  • 50.
    Semester :III Mr. TusharJ Bhatt 50 Numerical Techniques :Solu tion 2 3 4 5 3 3 3 2 2 2 3 3 2 3 2 4 1 1 2 3 3 5 1 2 3 2 4 0 0 1 2 3 0 1 2 1 1 0 1 2 2 1 9 3 9 1 2 3 1 9 4 9 1 5 2 5 0 1 9 5 9 2 0 2 3 7 3 1 0 1 9 6 9 2 7 5 7 1 2 4 1 9 7 9 3 9 1 1 3 1 9 8 9 5 2 x y x y y x y y y y x y y y y y y x y y y y y x y y y x y                                                                    
  • 51.
    Semester :III Mr. TusharJ Bhatt 51 Numerical Techniques :Solu tion :Solu tion N o w w e h a v e 0 .5 a n dp S ubstitute all the above values in result ..............(1) w e get 2 3 4 0 1 1 2 2 5 3 ( 1) ( 1) ( 1) ( 1) ( 1)( 2 ) (1) 2 ! 3 ! 4 ! ( 1) ( 1)( 2 )( 2 ) 5 ! p p p p p p p p p p y y p y y y y p p p p p y                           
  • 52.
    Semester :III Mr. TusharJ Bhatt 52 Numerical Techniques :Solu tion :Solu tion (0 .5 )(0 .5 1) (0 .5 1)(0 .5 )(0 .5 1) (1) 2 7 (0 .5 )(7 ) (5 ) (3) 2 6 (0 .5 1)(0 .5 )(0 .5 1)(0 .5 2 ) ( 7 ) 2 4 (0 .5 1)(0 .5 )(0 .5 1)(0 .5 2 )(0 .5 2 ) ( 1 0 ) 1 2 0 p y                                 2 7 3 .5 1 .8 7 5 0 .1 8 7 5 0 .2 7 4 3 0 .1 1 7 2 3 2 .5 3 2 p p y y
  • 53.
    Semester :III Mr. TusharJ Bhatt 53 Numerical Techniques :Solu tion :Solu tion          2 7 3 .5 1 .8 7 5 0 .1 8 7 5 0 .2 7 4 3 0 .1 1 7 2 3 2 .5 3 2 p p y y
  • 54.
    Semester :III Mr. TusharJ Bhatt 54 Numerical Techniques (c) Stirling’s Interpolation Formula  We have discussed Newton forward and backward interpolation formulae which are applicable for interpolation near the beginning and end respectively, of tabulated values.  They are not suited to estimate the value of a function near the middle of a table.  To obtain more accuracy near the middle of a table, we use central difference interpolation formulae.
  • 55.
    Semester :III Mr. TusharJ Bhatt 55 Numerical Techniques (c) Stirling’s Interpolation Formula x y 1st difference 2nd difference 3rd difference 4th difference 2 x 1 x 0 x 1 x 2 x 0 y 1 y 2 y 1 y 2 y 0  y 1  y 1  y 2  y 2 0  y 2 1  y 2 2  y 3 1  y 3 2  y 4 2  y
  • 56.
    Mr. Tushar JBhatt 56 Numerical Techniques (c) Stirling’s Interpolation Formula 3 32 2 2 2 2 40 1 1 2 0 1 2 5 52 2 2 2 2 62 3 3 ( 1) ( 1) 2 2 ! 3 ! 2 4 ! ( 1)( 4 ) ( 1)( 4 ) ... 5 ! 2 6 ! p y y y yp p p p p y y p y y y yp p p p p p y                                              0 1 0 1 W h e r e , ... n n x x p h x x x x h         1 1 In u s in g t h is f o r m u la , w e s h o u ld h a v e < . 2 2 1 1 G o o d e s t im a t e s w ill b e o b t a in e d if < . 4 4 p p    
  • 57.
    Semester :III Mr. TusharJ Bhatt 57 Numerical Techniques 1 2 .2 E x -1 : U sin g S tirlin g 's fo rm u la to co m p u t e fro m th e fo llo w in g tab le 1 0 1 1 1 2 1 3 1 4 0 .2 3 9 6 7 0 .2 8 0 6 0 0 .3 1 7 8 8 0 .3 5 2 0 9 0 .3 8 3 6 8 y x y :Solu tion W e k n o w th a t th e S -C -I-F is g iv e n b y , 1 3 32 2 2 2 2 40 1 1 2 0 1 2 ( 1) ( 1) ... 2 2 ! 3 ! 2 4 ! p y y y yp p p p p y y p y y                                           0 1 0 1 0 H e r e 1 2 .2 is n e a r t o t h e t a b u la r v a lu e s = 1 2 A n d W h e r e ... 1 , 1 2 .2 1 2 0 .2 1 n n x x h x x x x x x p h
  • 58.
    58 Numerical Techniques x y1st difference 2nd difference 3rd difference 4th difference 2 1 0x   1 1 1x   0 1 2x  1 1 3x  2 1 4x  0 0.31788y  1 0.28060y  2 0.23967y  1 0.35209y  2 0.38368y  0 0 .0 3 4 2 1y  1 0.03159y  1 0.03728y   2 0.04093y   2 0 0.00062y   2 1 0.00307y    2 2 0.00365y    3 1 0.00045y    3 2 0 .0 0 0 5 8y   4 2 0.00013y    :Solu tion
  • 59.
    59 Numerical Techniques :Solu tion No w w e h a v e 0 .5 a n dp S ubstitute all the above values in result ..............(1) w e get                               3 32 2 2 2 2 40 1 1 2 0 1 2 ( 1) ( 1) (1) ... 2 2 ! 3 ! 2 4 ! p y y y yp p p p p y y p y y
  • 60.
    60 Numerical Techniques :Solu tion                       2 2 2 2 0 .0 3 7 2 8 0 .0 3 4 2 1 (0 .2) (1) 0 .3 1 7 8 8 (0 .2) ( 0 .0 0 3 0 7 ) 2 2 (0 .2) ((0 .2) 1) 0 .0 0 0 5 8 0 .0 0 0 4 5 (0 .2) ((0 .2) 1) ( 0 .0 0 0 1 3) 6 2 2 4 p y      0 .3 1 7 8 8 0 .0 0 7 1 5 0 .0 0 0 0 6 0 .0 0 0 0 0 2 0 .0 0 0 0 0 0 2p y   0 .3 2 4 9 7p y
  • 61.
    Semester :III Mr. TusharJ Bhatt 61 Numerical Techniques E x -2 : U sin g S tirlin g 's fo rm u la to co m p u t e tan 1 6 fro m th e fo llo w in g tab le 0 5 1 0 1 5 2 0 2 5 3 0 tan 0 0 .0 8 7 5 0 .1 7 6 3 0 .2 6 7 9 0 .3 6 4 0 0 .4 6 6 3 0 .5 7 7 4 x y x :Solu tion W e k n o w th a t th e S -C -I-F is g iv e n b y , 0 1 0 1 0 H e r e 1 6 is n e a r t o t h e t a b u la r v a lu e s = 1 5 A n d W h e r e ... 5 , 1 6 1 5 1 0 .2 5 5 n n x x h x x x x x x p h               3 32 2 2 2 2 40 1 1 2 0 1 2 5 52 2 2 2 2 62 3 3 ( 1) ( 1) 2 2 ! 3 ! 2 4 ! ( 1)( 4 ) ( 1)( 4 ) ... (1) 5 ! 2 6 ! p y y y yp p p p p y y p y y y yp p p p p p y                                               
  • 62.
    62 Numerical Techniques :Solu tion xy 0 0 5 0.0875 10 0.1763 15 0.2679 20 0.3640 25 0.4663 30 0.5774  2  3  4  5  6  0.0875 0.0888 0.0916 0.1023 0.1111 0.0961 0.0013 0.0028 0.0015 0.0062 0.0088 0.0045 0.0017 0.0017 0.0026 0.0002 0.0000 -0.0002 0.0009 0.0009 0.0011
  • 63.
    63 Numerical Techniques :Solu tion No w w e h a v e 0 .2 a n dp  S ubstitute all the above values in result ..............(1) w e get 3 5 2 4 61 2 3 0 1 2 33 3 0 1 2 0 .0 9 1 6 0 .0 0 1 7 0 .0 0 0 2 0 .2 6 7 9 0 .0 0 4 5 0 0 .0 0 1 1 0 .0 9 6 1 0 .0 0 1 7 0 .0 0 0 9 y y y y y y y y y y                             3 32 2 2 2 2 40 1 1 2 0 1 2 5 52 2 2 2 2 62 3 3 ( 1) ( 1) 2 2 ! 3 ! 2 4 ! ( 1)( 4 ) ( 1)( 4 ) ... (1) 5 ! 2 6 ! p y y y yp p p p p y y p y y y yp p p p p p y                                               
  • 64.
    64 Numerical Techniques :Solu tion            2 2 2 2 2 2 2 0 .0 9 6 1 0 .0 9 1 6 (0 .2) (1) 0 .2 6 7 9 (0 .2) (0 .0 0 4 5) 2 2 (0 .2) (0 .2) 1 (0 .2) (0 .2) 10 .0 0 1 7 0 .0 0 1 7 (0 ) 6 2 2 4 (0 .2) (0 .2) 1 (0 .2) 4 0 .0 0 0 9 0 .0 0 0 2 1 2 0 2 (0 .2) (0 .2) 1 (0 .2) 4 (0 .0 0 1 1) 7 2 0 p y                                          0 .2 6 7 9 0 .0 1 8 7 7 0 .0 0 0 0 9 0 .0 0 0 0 5 0 0 .0 0 0 0 0 2 0 .0 0 0 0 0 0 2p y        0 .2 8 6 7p y 
  • 65.
    Semester :III 65 Numerical Techniques Interpolationfor unequal intervals  The various interpolation formulae derived so far possess the disadvantage of being applicable only to equally spaced values of an interval. It is, therefore desirable to develop interpolation formulae for unequally spaced values of x.  Therefore we shall study the Lagrange’s interpolation formula. Lagrange’s interpolation formula 0 1 0 1 0 11 2 0 1 0 1 0 2 0 1 0 1 2 1 0 1 If y = f (x ) t a k e s t h e v a lu e y , , ..., c o r e s s p o n d in g t o , , ..., t h e n ( )( ) ( )( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( n n nn n n y y x x x x x x x x x xx x x x x x y f x y y x x x x x x x x x x x x x x x x x                      0 1 1 2 2 0 2 1 2 0 1 1 ) ( )( ) ( ) ... ( )( ) ( ) ( )( ) ( ) n n n n n n n n x x x x x x x y y x x x x x x x x x x x x               
  • 66.
    66 Numerical Techniques 1 :F o r th e g iv e n fo llo w in g ta b u la r v a lu e s e v a lu a te f(9 ), 5 7 1 1 1 3 u s in g L a g ra n g e 's fo rm u la ( ) 1 5 0 3 9 2 1 4 5 2 2 3 6 6 E x x y f x   :Solu tion          0 1 2 3 0 1 2 3 H e r e g iv e n t h a t 9, 5, 7 , 1 1, 1 3 a n d 1 5 0, 3 9 2, 1 4 5 2, 2 3 6 6 . x x x x x y y y y                                       1 2 3 0 2 3 0 1 3 0 1 0 1 0 2 0 3 1 0 1 2 1 3 2 0 2 1 2 3 W e know that the Lagrange's interp olatio n form ula is, ( )( )( ) ( )( )( ) ( )( )( ) y ( )( )( ) ( )( )( ) ( )( )( ) p x x x x x x x x x x x x x x x x x x y y x x x x x x x x x x x x x x x x x x                   0 1 2 2 3 3 0 3 1 3 2 ( )( )( ) .....(1) ( )( )( ) subtitute all the above values in equation ....(1) w e get x x x x x x y y x x x x x x N ow
  • 67.
    67 Numerical Techniques :Solu tion                                                   (9 7 )(9 1 1)(9 1 3) (9 5)(9 1 1)(9 1 3) (1 ) y 1 5 0 3 9 2 (5 7 )(5 1 1)(5 1 3) (7 5)(7 1 1)(7 1 3) (9 5)(9 7 )(9 1 3) (9 5)(9 7 )(9 1 1) 1 4 5 2 2 3 6 6 (1 1 5)(1 1 7 )(1 1 1 3) (1 3 5)(1 3 7 )(1 3 1 1) p                                                           2 ( 2) ( 4) 4 ( 2) ( 4) 4 2 ( 4) 4 2 ( 2) y 1 5 0 3 9 2 1 4 5 2 2 3 6 6 ( 2) ( 6) ( 8) 2 ( 4) ( 6) 6 4 ( 2) 8 6 2 p                                  1 2 2 ( 1) y 1 5 0 3 9 2 1 4 5 2 2 3 6 6 6 3 3 6 p                             1 5 0 7 8 4 9 6 8 2 3 6 6 y 6 3 1 6 p
  • 68.
    68 Numerical Techniques :Solu tion                   y 2 5 2 6 1 .3 3 9 6 8 3 9 4 .3 3p  y 8 1 0p                             1 5 0 7 8 4 9 6 8 2 3 6 6 y 6 3 1 6 p
  • 69.
    69 Numerical Techniques 2 :F o r th e g iv e n fo llo w in g ta b u la r v a lu e s e v a lu a te ( 4 ), 2 3 5 6 u s in g L a g ra n g e 's fo rm u la ( ) 1 5 3 0 4 5 6 0 E x f x y f x   :Solu tion          0 1 2 3 0 1 2 3 H e r e g i v e n t h a t 4 , 2, 3, 5, 6 a n d 1 5, 3 0, 4 5, 6 0 . x x x x x y y y y                                       1 2 3 0 2 3 0 1 3 0 1 0 1 0 2 0 3 1 0 1 2 1 3 2 0 2 1 2 3 W e kn o w th at th e Lagran ge's in terp o latio n fo rm u la is, ( )( )( ) ( )( )( ) ( )( )( ) y ( )( )( ) ( )( )( ) ( )( )( ) p x x x x x x x x x x x x x x x x x x y y x x x x x x x x x x x x x x x x x x                   0 1 2 2 3 3 0 3 1 3 2 ( )( )( ) .....(1) ( )( )( ) su b titu te all th e ab o v e v alu es in eq u atio n ....(1) w e get x x x x x x y y x x x x x x N ow
  • 70.
    70 Numerical Techniques :Solu tion                                                   (4 3)(4 5)(4 6 ) (4 2)(4 5)(4 6 ) (1 ) y 1 5 3 0 (2 3)(2 5)(2 6 ) (3 2)(3 5)(3 6 ) (4 2)(4 3)(4 6 ) (4 2)(4 3)(4 5) 4 5 6 0 (5 2)(5 3)(5 6 ) (6 2)(6 3)(6 5) p                                           (1)( 1)( 2) (2)( 1)( 2) (2)(1)( 2) (2)(1)( 1) (1 ) y 1 5 3 0 4 5 6 0 ( 1)( 3)( 4 ) (1)( 2)( 3) (3)(2)( 1) (4 )(3)(1) p                              5 2 0 3 0 1 0 (1 ) y 2 1 1 1 p
  • 71.
    71 Numerical Techniques :Solu tion y 3 7 .5p                    y 2 .5 2 0 3 0 1 0p   y 5 0 1 2 .5p
  • 72.
    Semester :III 72 Numerical Techniques InverseInterpolation method  For unequal intervals if we want to find the value of x corresponding given y then we will use following Lagrange’s interpolation formula Lagrange’s inverse interpolation formula 0 1 0 1 0 21 2 0 1 0 1 0 2 0 1 0 1 2 1 0 1 If x = f (y ) t a k e s t h e v a lu e , , ..., c o r e s s p o n d in g t o y , , ..., t h e n (y )(y ) (y )(y )(y ) (y ) (y ) (y )(y ) (y ) (y )(y ) (y ) (y )(y ) (y n n nn n n x x x x y y y y yy y y x f x x y y y y y y y y                      0 1 1 2 2 0 2 1 2 0 1 1 ) (y )(y ) (y ) ... (y )(y ) (y ) (y )(y ) (y ) n n n n n n n n y y y y x x y y y y y y               
  • 73.
    73 Numerical Techniques 1 :F o r th e g iv e n fo llo w in g ta b u la r v a lu e s fin d x c o rre s p o n d in g to y= 1 2 , u s in g 1 .2 2 .1 2 .8 4 .1 4 .9 6 .2 L a g ra n g e 's in v e rs e in te rp o la tio n fo rm u la 4 .2 6 .8 9 .8 1 3 .4 1 5 .5 1 9 .6 E x x y :Solu tion 0 1 2 3 4 5 0 1 2 3 4 5 H e r e g iv e n t h a t y 1 2, 1 .2, 2 .1, 2 .8, 4 .1, 4 .9 , 6 .2 a n d 4 .2, 6 .8, 9 .8, 1 3 .4 , 1 5 .5, 1 9 .6 . T a k in g y = 1 2 a n d a b o v e a ll t h e v a lu e s in L a g r a n g e 's in v e r s e in t e r p o la t io n f o r m u la ; x x x x x x y y y y y y             
  • 74.
    74 Numerical Techniques:Solution 1 23 4 5 1 2 3 4 5 0 1 0 1 0 2 0 3 0 4 0 5 1 0 1 2 1 3 1 4 1 5 0 1 3 4 5 2 0 2 1 2 3 2 (y ) (y )(y )(y )(y )(y ) (y )(y )(y )(y )(y ) (y )(y )(y )(y )(y ) (y )(y )(y )(y )(y ) (y )(y )(y )(y )(y ) (y )(y )(y )(y x f y y y y y y y y y y x x y y y y y y y y y y y y y y y y y y                                    0 1 2 4 5 2 3 4 2 5 3 0 3 1 3 2 3 4 3 5 0 1 2 3 5 0 1 2 3 4 4 4 0 4 1 4 2 4 3 4 5 5 0 5 1 5 (y )(y )(y )(y )(y ) )(y ) (y )(y )(y )(y )(y ) (y )(y )(y )(y )(y ) (y )(y )(y )(y )(y ) (y )(y )(y )(y )(y ) (y )(y )(y y y y y y x x y y y y y y y y y y y y y y y y y x y y y y y y y                                    5 2 5 3 5 4 )(y )(y ) x y y y   
  • 75.
    75 Numerical Techniques:Solution (y ) (12 6 .8 )(1 2 9 .8 )(1 2 1 3 .4 )(1 2 1 5 .5)(1 2 1 9 .6 ) 1 .2 (4 .2 6 .8 )(4 .2 9 .8 )(4 .2 1 3 .4 )(4 .2 1 5 .5)(4 .2 1 9 .6 ) (1 2 4 .2)(1 2 9 .8 )(1 2 1 3 .4 )(1 2 1 5 .5)(1 2 1 9 .6 ) 2 .1 (6 .8 4 .2)(6 .8 9 .8 )(6 .8 1 3 .4 )(6 .8 1 5 .5)(6 .8 1 9 .6 ) ( x f                          1 2 4 .2)(1 2 6 .8 )(1 2 1 3 .4 )(1 2 1 5 .5)(1 2 1 9 .6 ) 2 .8 (9 .8 4 .2)(9 .8 6 .8 )(9 .8 1 3 .4 )(9 .8 1 5 .5)(9 .8 1 9 .6 ) (1 2 4 .2)(1 2 6 .8 )(1 2 9 .8 )(1 2 1 5 .5)(1 2 1 9 .6 ) 4 .1 (1 3 .4 4 .2)(1 3 .4 6 .8 )(1 3 .4 9 .8 )(1 3 .4 1 5 .5)(1 3 .4 1 9 .6 ) (1 2 4 .                          2)(1 2 6 .8 )(1 2 9 .8 )(1 2 1 3 .4 )(1 2 1 9 .6 ) 4 .9 (1 5 .5 4 .2)(1 5 .5 6 .8 )(1 5 .5 9 .8 )(1 5 .5 1 3 .4 )(1 5 .5 1 9 .6 ) (1 2 4 .2)(1 2 6 .8 )(1 2 9 .8 )(1 2 1 3 .4 )(1 2 1 5 .5) 6 .2 (1 9 .6 4 .2)(1 9 .6 6 .8 )(1 9 .6 9 .8 )(1 9 .6 1 3 .4 )(1 9 .6 1 5 .5)                      
  • 76.
    76 Numerical Techniques :Solution 0.022 0.2341.252 3.419 0.964 0.055x       3.55x 
  • 77.
    77 Numerical Techniques 2 :A p p ly L an g ran g es fo rm u la in versely to o b tain a ro o t o f th e eq u atio n ( ) 0, g iven th at (3 0 ) -3 0, (3 4 ) 1 3, (3 8) 3 an d (4 2 ) 1 8 .        E x f x f f f f :Solu tion 0 1 2 3 0 1 2 3 H e r e g iv e n t h a t y 0, 3 0, 3 4 , 3 8, 4 2 a n d 3 0, 1 3, 3, 1 8 . T a k in g y = 0 a n d a b o v e a ll t h e v a lu e s in L a g r a n g e 's in v e r s e in t e r p o la t io n f o r m u la ; x x x x y y y y           
  • 78.
    78 Numerical Techniques:Solution 1 23 0 2 3 0 1 0 1 0 2 0 3 1 0 1 2 1 3 0 1 3 0 1 2 2 3 2 0 2 1 2 3 3 0 3 1 3 2 (y ) (y )(y )(y ) (y )(y )(y ) (y )(y )(y ) (y )(y )(y ) (y )(y )(y ) (y )(y )(y ) (y )(y )(y ) (y )(y )(y ) x f y y y y y y x x y y y y y y y y y y y y x x y y y y y y                                   (0 1 3)(0 3)(0 1 8 ) (0 3 0 )(0 3)(0 1 8 ) 3 0 3 4 ( 3 0 1 3)( 3 0 3)( 3 0 1 8 ) ( 1 3 3 0 )( 1 3 3)( 1 3 1 8 ) (0 3 0 )(0 1 3)(0 1 8 ) (0 3 0 )(0 1 3)(0 3) 3 8 4 2 (3 3 0 )(3 1 3)(3 1 8 ) (1 8 3 0 )(1 8 1 3)(1 8 3) x                                       
  • 79.
    79 Numerical Techniques :Solution (1 3)(3)( 1 8 ) (3 0 )( 3)( 1 8 ) 3 0 3 4 ( 1 7 )( 3 3)( 4 8 ) (1 7 )( 1 6 )( 3 1) (3 0 )(1 3)( 1 8 ) (3 0 )(1 3)( 3) 3 8 4 2 (3 3)(1 6 )( 1 5) (4 8 )(3 1)(1 5) x                      0.782 6.532 33.682 2.202x      3 7 .2 3x 
  • 80.
    80 Numerical Techniques N ewton - D evided D ifference Form ula 0 1 0 1 1 0 0 1 1 0 L e t f (x ) b e g iv e n a t (n + 1 ) d is t in c t p o in t s x , , ..., . W e d e f in e t h e f ir s t d iv id e d d if f e r e n c e o f f (x ) f o r t h e p o in t s x a n d x a s ( ) ( ) f (x , ) .........(1) n x x f x f x x x x    1 0 1 2 1 2 0 0 1 2 2 0 T h e s e c o n d d iv id e d d if f e r e n c e o f f (x ) f o r t h e p o in t s x , x a n d x is d e f in e a s ( , x ) ( , x ) f (x , , x ) ........(2) f x f x x x x    11 2 0 1 0 1 2 0 a n d in g e n e r a l th e n d iv id e d d if f e r e n c e is d e f in e a s ( , x ,..., x ) ( , x ,...., x ) f (x , , x ,...., x ) ........(3) th n n n n f x f x x x x    
  • 81.
    81 Numerical TechniquesDevided DifferenceTable 0 0 1 0 0 1 1 0 1 1 1 2 0 1 0 1 2 2 0 2 1 1 2 3 0 1 2 1 2 0 1 2 3 2 1 3 0 2 2 2 3 1 2 1 2 3 3 1 ( ) 1 2 3 ( ) ( ) ( , x ) ( ) ( , x ) ( , x ) ( , x , x ) ( ) ( ) ( , x , x ) ( , x , x ) ( , x ) ( , x , x , x ) ( ) ( , x ) ( , x ) ( , x , x ) ( st n d rd x f x D D D D D D f x f x f x x x x f x f x f x f x x x f x f x f x f x f x f x x x x x x f x f x f x f x x x f x                3 2 2 3 3 2 3 3 ( ) ( ) , x ) ( ) f x f x x x x f x   
  • 82.
    82 Numerical Techniques N ewton-D evided D ifference Form ula 0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3 0 1 2 1 0 1 2 3 ( ) ( ) (x x ) ( , x ) (x x )(x x ) ( , x , x ) (x x )(x x )(x x ) ( , x , x , x ) .... (x x )(x x )(x x )....(x x ) ( , x , x , x ,..., x )n n P x f x f x f x f x f x                 E x -1 : U s in g N e w to n 's d iv id e d d iffe re n c e in te rp o la tio n fo rm u la fin d 1 0 2 5 1 0 f(1 ) a n d f(9 ) fo rm th e fo llo w in g ta b le : . 2 1 7 1 2 4 9 9 9 x y    :Solution
  • 83.
    83 Numerical Techniques :Solu tion 12 3 4 1 2 1 2 1 0 1 0 1 4 1 1 2 1 7 1 7 1 4 1 2 0 5 1 2 7 3 9 4 1 1 7 0 5 0 1 0 1 1 2 4 7 1 7 7 3 9 1 5 2 1 0 0 5 1 2 4 1 7 5 3 9 1 7 1 0 2 9 9 9 1 2 4 1 7 5 1 0 5 1 0 9 9 9 s t n d r d th x y D D D D D D D D                                  
  • 84.
    84 Numerical Techniques :Solu tion 00 0 1 0 1 0 1 2 0 1 2 0 1 2 3 0 1 2 1 0 1 2 3 ( ) ( ) (x x ) ( , x ) (x x )(x x ) ( , x , x ) (x x )(x x )(x x ) ( , x , x , x ) .... (x x )(x x )(x x )....(x x ) ( , x , x , x ,..., x )n n P x f x f x f x f x f x                 ( ) 2 (x 1) (1) (x 1)(x 0) (1) (x 1)(x 0)(x 2) (1)P x               T o fin d : f(1 ) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (1) (1) 2 (1 1) (1) (1 1)(1 0 ) (1) (1 1)(1 0 )(1 2) (1) (1) (1) 2 2 2 2 (1) (1) 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ f P f P f P                           _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
  • 85.
    85 Numerical Techniques :Solu tion () 2 (x 1) (1) (x 1)(x 0) (1) (x 1)(x 0)(x 2) (1)P x               T o fin d : f(9 ) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (9) (9) 2 (9 1) (1) (9 1)(9 0 ) (1) (9 1)(9 0 )(9 2) (1) (9) (9) 2 1 0 1 1 0 9 1 1 0 9 7 1 (9) (9) 2 1 0 9 0 6 3 0 (9) f P f P f P f P                                       (9) 7 2 8 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
  • 86.
    86 Numerical Techniques E x-2 : U s in g N e w to n 's d iv id e d d iffe re n c e in te rp o la tio n fo rm u la fin d 1 0 1 3 th e p o ly n o m ia l s a tis fy in g th e d a ta : . ( ) 2 1 0 1 x f x y    :Solution
  • 87.
    87 Numerical Techniques:Solution 1 23 1 2 1 2 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 11 0 6 3 1 2 4 1 0 1 1 12 3 0 6 1 0 1 3 1 2 3 1 s t n d r d x y D D D D D D                          
  • 88.
    88 Numerical Techniques:Solution 0 00 1 0 1 0 1 2 0 1 2 0 1 2 3 0 1 2 1 0 1 2 3 ( ) ( ) (x x ) ( , x ) (x x )(x x ) ( , x , x ) (x x )(x x )(x x ) ( , x , x , x ) .... (x x )(x x )(x x )....(x x ) ( , x , x , x ,..., x )n n P x f x f x f x f x f x                 2 3 3 3 3 1 ( ) 2 ( x 1) ( 1) ( x 1) ( x 0 ) (0 ) ( x 1) ( x 0 ) ( x 1) 2 4 1 ( ) 2 1 0 ( 1) 2 4 1 ( ) 2 1 0 ( ) 2 4 ( ) 2 1 0 2 4 2 4 2 5 ( ) 1 2 4 2 4 2 5 2 4 ( ) 2 4 P x P x x x x P x x x x x x P x x x x P x x x P x                                             
  • 89.
    89 Numerical Techniques T heO p erators:  (1) D iffe re n c e O p e ra to rs ( , a n d ) : (a) T h e F o rw ard d ifferen ce o p erato r is d e n o ted b y , d efin ed as ( ) ( ) ( ). (b ) T h e B ack w ard d ifferen ce o p erato r is d en o ted b y , d efin ed as ( ) ( ) ( ). (c ) T h e C en tral d ifferen ce o p erato r i f x f x h f x f x f x f x h           s d en o ted b y , d efin ed as ( ) 2 2 W h ere 'h ' is th e d ifferen ce b etw een th e co n secu tive valu es o f th e in d ep en d en t va riab le "x " is called th e in terval o f d ifferen cin g . h h f x f x f x                
  • 90.
    90 Numerical Techniques 2 2 2 2 2 2 2 No w ( ) ( ( )) ( ) ( ) ( ) [ ( 1)] ( ......(1)) ( ) ( 1) [ ], ( 1 is c o n s ta n t ) ( ) ( 1) [ ( 1)] ( ......(1)) ( ) ( 1) [ ]..................( 2 ) x x x x h x h x h x h x h x h x f x f x e e e e e fr o m e e e e e e e e fr o m e e e                                  1 E x -1 : E v a lu a te th e fo llo w in g ( ) ( e ) ( ) (lo g ) ( ) (ta n ). : n x i ii x iii x S o lu tio n H ere w e k n o w th at h e d ifferen tial o p erato r ( ) ( ) ( ).f x f x h f x    ( ) ( ) ( ) x x h x h i L e t f x e th e r e fo r e f x h e e e      ( ) ( ) ( ) ( ) ( 1).................(1) x x h x x h f x f x h f x e e e e e e          
  • 91.
    91 Numerical Techniques 3 2 32 3 2 3 2 3 2 3 3 ( ) ( ( )) ( ) ( ) ( ) [( 1) [ ] ( ......( 2 )) ( ) ( 1) [ ], ( 1 is c o n s ta n t ) ( ) ( 1) [ ( 1)] ( ......( 2 )) ( ) ( 1) [ ]..................(3) x x x h x x h x h x h x h x h x S im ila r ly f x f x e e e e e fr o m e e e e e e e e fr o m e e e                              F ro m resu lt .......(1 ), (2 ) an d (3 ) w e g et in g en eral ( ) ( 1) [ ] n x h n x e e e   
  • 92.
    92 Numerical Techniques 3 2 32 3 2 3 2 3 2 3 3 ( ) ( ( )) ( ) ( ) ( ) [( 1) [ ] ( ......( 2 )) ( ) ( 1) [ ], ( 1 is c o n s ta n t ) ( ) ( 1) [ ( 1)] ( ......( 2 )) ( ) ( 1) [ ]..................(3) x x x h x x h x h x h x h x h x S im ila r ly f x f x e e e e e fr o m e e e e e e e e fr o m e e e                              F ro m resu lt .......(1 ), (2 ) an d (3 ) w e g et in g en eral ( ) ( 1) [ ] n x h n x e e e   
  • 93.
    93 Numerical Techniques ( )( ) lo g ( ) a n d ( ) lo g ( ) w e k n o w th a t ( ) ( ) - ( ) ( ) ( ) ( ) .........(1) ( ) ( ) - ( ) lo g ( ) lo g ( ) lo g ( ) ( ) lo g ( ) lo g ( ) ( ) lo g ( ) lo g ii L e t f x f x f x h f x h b u t f x f x h f x f x h f x f x N o w f x f x h f x f x f x h f x f x h f x f x f x f x                                   ( ) ( .......(1) ) ( ) ( ) lo g ( ) lo g 1 ( ) f x fr o m f x f x f x f x               
  • 94.
    94 Numerical Techniques 1 1 11 1 1 1 1 1 1 1 1 ( ) ( ) ta n a n d ( ) ta n ( ) ( ) ( ) - ( ) ta n ta n ( ) ta n ta n ta n ta n ta n ta n 1 ( ) 1 ta n ta n 1 ( ) iii L e t f x x f x h x h N o w f x f x h f x x x h x x h x x x x h h x x x h                                                               
  • 95.
    95 Numerical Techniques (2) Sh ift O p e ra to r (E ) : T h e sh ift o p erato r is d en o ted b y E , d efin ed as E ( ) ( ).f x f x h  2 N o w E ( ) ( ( )) ( ( )) ( ) ( 2 )f x E E f x E f x h f x h h f x h        3 2 S im ilarly E ( ) ( ( )) ( ( 2 )) ( 2 ) ( 3 )f x E E f x E f x h f x h h f x h        1 In g e n e ra l E ( ) ( ) E ( ) ( ) E ( ) ( ) n n f x f x n h f x f x h a n d f x f x n h            R e la tio n b e tw e e n D iffe re n c e o p e ra to r a n d S h ift o p e ra to r H ere w e k n o w th at h e d ifferen ce o p erato r ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( ) 1 1 f x f x h f x f x E f x f x f x E f x E o r E                   
  • 96.
    96 Numerical Techniques (3) Diffe re n tia l O p e ra to r (D ) : T h e D iffeen tial o p erato r is d en o ted b y D , d efin ed as D ( ) ( ) '( ). d f x f x f x d x   2 N o w D ( ) "( )f x f x 3 S im ilarly D ( ) "'( )f x f x In g en eral D ( ) ( ). n n f x f x  R elatio n b etw een D ifferen tial o p erato r a n d D ifferen ce o p erato r 2 3 2 3 2 3 T a ylo r's se rie s w e h a v e , ( ) ( ) '( ) "( ) "'( ) ... 2 ! 3 ! ( ) ( ) ( ( )) ( ( )) ( ( )) .... 2 ! 3 ! B y h h f x h f x h f x f x f x h h E f x f x h D f x D f x D f x            
  • 97.
    97 Numerical Techniques R elation b etw een D ifferen tial o p erato r a n d D ifferen ce o p erato r 2 2 3 3 2 2 3 3 2 2 3 3 ( ) ( ) 1 ..... 2 ! 3 ! 1 ..... 2 ! 3 ! 1 ..... 2 ! 3 ! 1 ( 1 ) . h D h x h D h D h D E f x f x h D h D h D E h D h x h x E e e h x o r e E                                   
  • 98.
    98 Numerical Techniques (4 )A v e ra g in g O p e ra to r ( ) : 1 T h e averan g in g o p erato r is d en o ted b y , d efin ed as ( ) . 2 2 2 h h f x f x f x                    R e la tio n b e tw e e n A v e ra n g in g o p e ra to r a n d S h ift o p e ra to r   1 1 2 2 1 1 2 2 1 ( ) 2 2 2 1 ( ) ( ) ( ) ( ) ( ) 2 1 2 n h h f x f x f x f x E f x E f x E f x f x n h E E                                          
  • 99.
    99 Numerical Techniques                1 1 1 1 2 2 2 E x -1 : P ro v e th a t (i) 1 ( ) ( ) ( )E ii E E iii E E iv E Proof: W e k n o w th at ( ) ( ) ( )......(1) ( ) ( ) ( )......( 2 ) ( ) ......(3) 2 2 f x f x h f x f x f x f x h h h f x f x f x                        E ( ) ( )......( 4 )f x f x h  1 ( ) ......(5 ) 2 2 2 h h f x f x f x                  
  • 100.
    100 Numerical Techniques    1 1 1 1 1 ( ) T o p ro v e : 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) 1 . i E f x f x f x h f x f x E f x E f x f x h f x E f x E                           
  • 101.
    101 Numerical Techniques 1 1 22 1 1 2 2 1 1 2 2 1 1 2 2 ( ) T o p ro v e : ( ) 2 2 ( ) ( ) ( ) ( ) ( ) ii E E h h f x f x f x f x E f x E f x f x E E f x E E                                         
  • 102.
    102 Numerical Techniques        ( ) T o p ro v e : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) iii a E E f x E f x E f x E f x f x h E f x E f x E f x h E f x f x h f x h h E f x f x h f x E f x f x E                                     
  • 103.
    103 Numerical Techniques    ( ) T o p ro v e : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) iii b E E f x E f x E f x f x h E f x f x h f x E f x f x E                        
  • 104.
    104 Numerical Techniques 1 2 1 1 22 1 2 1 2 1 2 1 2 1 2 ( ) T o p r o v e : ( ) ( ) ( ) 2 ( ) 2 2 2 2 ( ) ( ) ( ) ( ) ( ) . iv E E f x E f x h E f x f x h h h h E f x f x f x E f x f x h f x E f x f x E                                                          
  • 105.
    105 Numerical Techniques                       2 1 12 2 2 2 2 2 2 E x -2 : P ro v e th a t ( ) 1 1 ( ) 1 ( ) ( ) 2 4 2 2 i ii iii E iv E Proof:         1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 2 2 1 2 2 2 1 2 1 ( ) W e k n o w th at = an d 2 1 2 1 2 1 2 1 2 4 i E E E E E E E E E E E E E E E E                                                         
  • 106.
    106 Numerical Techniques  22 2 1 2 2 1 2 2 2 2 2 2 2 2 1 2 2 1 1 2 1 4 2 4 1 4 2 1 4 1 ......(1) 2 E E E E E E E E E E E E                                           2 1 12 2 2 2 1 2 1 2 1 N o w 1 1 1 2 2 1 1 1 2 2 2 2 2 1 2 2 1 ......( 2 ) 2 2 E E E E E E E E                                   2 1 2 2 2 2 2 2 F ro m ......(1 ) an d ......(2 ) w e h ave , 1 2 1 1 2 E E                       
  • 107.