INTRODUCTION TO FINITE ELEMENT METHOD
(FEM)
1. INTRODUCTION
ENGINEERING DEPARTMENT:
To develop new
products and/or manufacturing processes

Product calculation:
- Component dimensioning
- Design verification
- Material selection

Preliminary
design: concept
design

INDUSTRIALISATION:
- Development of manufacturing

Process calculation:
- Process parameters

drawings
- Manufacturing process
definition
- Development of manufacturing
tools
- Production

- Tooling design

2
1. INTRODUCTION: CALCULATION METHODS
- Analytic method:
- Consists on the use of analytic equation to represent the behaviour of a
physical problem (As exercises solved by hand in previous chapters or other
subjects, heat transfer, material resistance, dynamics, vibrations,…)
- Advantages: relatively fast to be solved
- Limitations: Hard to represent complex phenomena in real components, not
always applicable.

3
1. INTRODUCTION: CALCULATION METHODS
- Numeric methods (Finite Element Methods FEM)

- To divide a complex problem into many
simple problems (elements)
- Problem solution by numeric methods
(Newton-Raphson) by using iterations and
increments.
- Advantages: Capability to solve complex
problems.
- Limitations: Time expensive resolution
method, the use of computers is required.

4
1. INTRODUCTION: FORMULATION TYPES
- Implicit:
- Tries to obtain the structural equilibrium for each time increment.
- More sophisticate algorithms
higher time increments (FASTER).
- High precision
- Convergence problems when solving non-linear phenomena: hard
variations in boundary condition, material behaviour, loads, contacts,…

- Explicit:
- Does not need iterations, just time increments (Does not try to get the
exact solution)
- No convergence problems
- Utilizes constant time increments
- High calculation time
- Recommendable to solve non-linear problems.

5
1. INTRODUCTION: APLICATIONS
Solid mechanics:
- Structural linear calculations (linear static, linear dynamics) IMPLICIT
- Plasticity range calculation (no-linear quasi-static or dynamics) EXPLICIT

Fluid mechanics:
- Linear calculation (wind tunnel example) IMPLICIT
- Non-linear calculations (atmospheric phenomena, turbulence, wind,...) EXPLICIT

Thermodynamics: (linear problems-IMPLICIT)
Multiphysics: thermo mechanic, thermo fluidic, fluid structure
interaction…

6
1. INTRODUCTION: APLICATIONS
Solid mechanics: Structural static calculation

Design
vs.
FEM

Set-up

IMPLICIT
Aluminium sheet bulge-test

7
1. INTRODUCTION: APLICATIONS
Solid mechanics: eigenvalues
Trunk door

IMPLIT

First mode17Hz

Solid mechanics: Forming processes

Punching

EXPLICIT
8
1. INTRODUCTION: APLICATIONS
Solid mechanics: Forming processes

9
1. INTRODUCTION: APLICATIONS
Solid mechanics: Machining process

Vc=300 m.min-1

Vc≥600 m.min-1

EXPLICIT
10
1. INTRODUCTION: APLICATIONS
Fluid mechanics: linear and non-linear examples

Hurricane
simulation
Air flow simulation F1

IMPLICIT

EXPLICIT
11
1. INTRODUCTION: APLICATIONS
Thermodynamics:

Turbine heat transfer
simulation

IMPLICIT

Tube and die temperature
pattern simulation

IMPLICIT

12
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
- Definition of a finite element
Geometrical definition (element shape):
- Composed by nodes
Physic definition (element type):
- Degrees of freedom (DOF)
- Analytic formulation of the element
(mechanical field resolution, thermal fields,…)
z

6 Degrees of
Freedom
(DOF)

u
v
w

θx
θy
θz

θz
u
x

θx

w

θy
v

y

u: Linear displacement in X
v: Linear displacement in y
w: Linear displacement in z
θx: Rotation with respect X
θy : Rotation with respect Y
θz : Rotation with respect Z

13
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
- Element types:










Interpolation order: linear (1st order) y quadratic (2nd order)
Linear interpolation

v2 v
1

v1
v1

Nodal displacement vector of a first * θ1
δ= v
order beam element in 2D de
2

Quadratic interpolation

x
V(x)=mx+b

v3

v2

x
V(x)=ax2+bx+c

θ2
14
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
- Mechanical field calculation: Motion differential equation
.
..
[M]{δ} + [C]{δ}+[k]{δ} ={Fext}

[M]: Mass matrix
[C]: Damping matrix
[k]: Stiffness matrix

- Mechanical field: STATIC
Acceleration = 0
Velocity = 0
.
..
[M]{δ} + [C]{δ}+[k]{δ} ={Fext}

{δ}: Displacement vector
.
{δ}: Velocity vector
..
{δ}: Acceleration vector
{Fext}: External load vector

[k]{δ} ={Fext}

5 unknowns and 5 equations
15
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
- Stress field calculation through nodal displacement.

Strain through local displacement

INTERPOLATION  displacement at
any point of the structure
 δ1 
 
 .
{ δ }e = [ N 1 , N 2 ,...., N n ]  
 .
 
δn 

Generalised Hooke’s law  Stress
calculation through local strain
(1 − ν)
 ν
σx 

σ 
 ν
 y

σz 
E
 
 0
 =
τ xy  (1 − 2 ⋅ ν) ⋅ (1 + ν) 
 0
τ yz 

 

τ zx 
 
 0


ν

(1 − ν)

ν
ν

0

0

0
0
(1 − 2ν)
2

0
0

ν

(1 − ν)

0

0

0

0

0

0

0

0

0

(1 − 2ν)
2
0


ε
0  x 
 ε 
0  y 
 ε 
0  z 
 
 γxy 
0  γyz 
 
(1 − 2ν) γzx 
 

2 
0






 εx  
 

 εy  
 

 εz  
 

=

γ xy  


 

 γ yz  
 

 γ zx  









∂
∂x

0

0

∂
∂y

0

0

∂
∂y

∂
∂x

0

∂
∂z

∂
∂z

0

0 



0 



∂ 
u
∂z  

 . v
0  
w
 


∂ 
∂y 


∂ 
∂x 








{ ε }= [ ∂ ] { δ }

ε3
ε1

ε2

16
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
- INTERPOLATION FUNCTIONS: Determination of the displacement at any
point of the structure.

{δ }e = displacement vector at any point in a

{δ}e = [N]{δ* }e

determined element

{δ } = nodal displacement vector of a determined
*

e

{δ }e

 δ1 
= [N1 , N 2 ,..., N n ]  
δ n 

element

[N ] = interpolation function matrix
[Ni ] = interpolation function of the nodal
displacement a determined node i.

{δ i }

= displacement vector at a determined
node i.

So, the displacement at any point of a determined element is obtained:

{δ } = [N1 ]{δ1}+ [N 2 ]{δ 2 }+ ... + [N n ]{δ n }
Where [Nk] represents the contribution of node k’s displacement in the total displacement of
any determined point.

17
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
- STIFFNESS MATRIX:

{ }
{ }

In order to cause the nodal displacements δ * and consequently deform the element
it is necessary the presence of nodal forces f *
Definition: The stiffness coefficient Kij represents the necessary force to apply to a
certain degree of freedom i to obtain an unitary displacement of the degree of
freedom j being 0 the influence in the displacement of the rest of the degrees of
freedom
n

f i = ∑ K ij ⋅ δ j
j =1

n= number of DOF

K11 ⋅ δ1 + K12 ⋅ δ 2 + ... + K1n ⋅ δ n = f1

K n1 ⋅ δ1 + K n 2 ⋅ δ 2 + ... + K nn ⋅ δ n = f n

{ } = [K ] {δ }

Writing in matrix form: f

*

*

e

e

e

[K]e = Stiffness matrix of the element

18
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
DETERMINATION OF THE STIFFNESS MATRIX OF A FINITE ELEMENT
Relation between nodal forces an nodal displacements:

{f }= [K ]{δ }
*

*

Based on CAPLEYRON theory, the external work of the nodal forces is represented:

w=

1 *T *
{δ } {f }
2

w=

1 *T
{δ } [K ]{δ * }
2

1
T
σ
The internal deformation energy caused by the nodal displacements: u = ∫ {ε } { }⋅ dv
2
As: {ε } = ∂{δ } = ∂[N ]{ * }= [B]{ * }
1
δ
δ
}T   δ *
u = ∫ { [T [D ][ }⋅ dv
δ * B]  B]{ 
2v T
{σ } = [D]{ε } = [D][B]{δ * }
T
{ε }

Being  w = u

{ } [K ]{δ }

1 *
δ
2

T

*

{ }

1
= δ*
2

[K ] = ∫ [B ]T [D][B ]⋅ dv

T

{σ }


 *
T
 ∫ [B ] [D ][B ]⋅ dv  δ


v


{ }

STIFFNESS MATRIX

v

19
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
- DETERMINATION OF THE STIFFNESS MATRIX IN GLOBAL COORDINATES
Transformation matrix
a x
[T ] = bx

 cx


az 

bz 
cz 


ay
by
cy

From local coordinate
system of the element

To global coordinate system

{δ }= [T ]{δ }
*

{f }= [T ]{f }
{f }= [T ] {f }
*

*

{f }= [K ]{δ }

*

*

T

*

*

{f }= [K ]{δ }

*

*

*

{f }= [T ] {f }= [T ] [K ]{δ }= [T ] [K ][T ]{δ }
*

T

*

T

[K ] = [T ]T [K ][T ]

*

T

*

[K] in GLOBAL coord. system
20
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
- INTERPOLATION FUNCTION OF A TRUSS ELEMENT
Truss element:

y

- 2 node one-dimensional element (2DOF)

u1

- Only allows to calculate tractive-compressive condition
Nodal displacement vector

{δ }= {u ,u }
T

1

1
i

u (x )
L

u2
2

j

x

x , y , z Local axis
i, j
Element nodes

2

Determination of the interpolation function

u1 , u2 Nodal displacements

2 G.D.L  1st order equation u ( x ) = a0 + a1.x
u (0) = u1
u (l ) = u2

}u = a + a l}
u1 = a0
2

a0 = u1
1
1
a1 = − u1 + u2
l
l

}

0

u1 
u = [N1 , N 2 ] 
u2 

u1  1 0  a0 
 =
 
u 2  1 l  a1 



1

a0  1 l
 = 
a1  l − 1

0 u1 
 
1 u2 


N1 = 1 −

x
l

0
1
 − 1 1  u1  = 1 − x , x  u1 
u = [1, x ]


 
 u2  

l  l  u2 

  
 l l

N2 =

x
l
21
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
- STIFFNESS MATRIX OF A TRUSS ELEMENT
Truss element: 2DOF

y
u1

u2

1

2

L

{δ }
*

x ,y

x

u1 
= 
u2  x ,y

u   x
ux ,y = [N1 N2 ] 1  = 1 −
u2   l

u1   ∂N1 ∂N2  u1   1 1  u1 
∂u  ∂ 
,
ε x = =  [N1 , N2 ]  = 
 = − ,  
u2   ∂x ∂x  u2   l l  u2 
∂x  ∂x 

 



[B ]

x
N2 =
l

x
l

Local coordinate system

[B ]

Stiffness matrix obtaining formula:

[k ] = ∫ [B] [D][B].dv

[N ] = [N1 ,N2 ]
N1 = 1 −

x  u1 
 
l  u2 


T

v

1
 1
 1
− 
− 2
l
 l  1 1
 l2
l dx = E.S 1 − 1
K = ∫  E − , .dv = S.E ∫ 
.
1
1
1   l l
l − 1 1


v 
0 −
2
2 
 l 

l 
 
 l

[]

22
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
- STIFFNESS MATRIX OF A TRUSS ELEMENT

[k ] = EL.S −11

e



− 1
1


Stiffness matrix of TRUSS element
in local coordinate system

- RIGIDITY MATRIX OF A TRUSS ELEMENT IN GLOBAL COORD. SYSTEM

y

y

Displacement vector in global axis:


u1


x

ϑ
x

cosθ
u1 
 sinθ
v 
 1
u  = 
 0
 2
v2  X ,Y  0
 


− sinθ
cosθ
0

0
cosθ

0

sinθ

0

0

 u1 
0  0 
 
 
− sinθ  v1 

cosθ  0  x ,y
 

23
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
- STIFFNESS MATRIX OF A TRUSS ELEMENT IN GLOBAL COORD. SYSTEM
Naming

µ = senϑ 

λ = cosϑ 

[K ]e = [T ]T [K ] [T ]
λ − µ 0 0  1


E.S  µ λ 0 0  0
[K ]e =
l 0 0 λ − µ   − 1


0 0 µ λ  0


λ2
λµ

µ2
E.S  µλ
[K ]e =  2
l −λ
− λµ

− λµ − µ 2


− λ2
− λµ

λ2
µλ

− λµ 
2
−µ 
λµ 

2
µ 


0 − 1 0  λ
0 0 0  − µ

0 1 0  0

0 0 0  0

µ 0
λ 0
0 λ
0 −µ

0
0

µ

λ

Stiffness matrix of a TRUSS
element in GLOBAL coordinate
system

24
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
- INTERPOLATION FUNCTION OF A BEAM ELEMENT
Beam element:

y

- 2 node unidimensional element (4DOF)

v1

- Only allows to calculate behind loading condition
z

Beam element interpolation function:
N
v   1
  =  dN1
ϑ  
 dx
2
3

 x
 x
1 − 3  + 2  ,
v  
l
l
 =
ϑ  
x
x2
 −6 2 +6 ,
l
l


N2

N3

dN 2 dN 3
dx
dx

v1 
N4  
ϑ1 
dN 4   
 v2

dx   
ϑ2 
 

x 2 x3
x−2 + 2 ,
l l
x
x2
1− 4 + 3 2 ,
l
l

v2
ϑ1

ϑ2


x

v1 
ϑ 
 
=  1
v2 
ϑ2 
 

{δ }
T

2
3
x 2 x 3  v1 
 x
 x
3  − 2  , − + 2   
l l  ϑ1 
l
l
 
x
x2
x
x 2  v2 
6 2 −6 3 ,
− 2 + 3 2  
l
l
l
l  ϑ2 

25
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
- INTERPOLATION FUNCTION OF A COMPLETE BEAM ELEMENT
Complete Beam element:

y

- 2 node one-dimensional element (6DOF)

v1

- Only allows to calculate behind loading condition
Complete Beam element interpolation function:

u  N1
  
v  =  0
ϑ  
 
0



 x
1 − l
u  
  
v  = 0
ϑ  
  
 0


0
N3
dN3
dx

0
2

x
x
1 − 3  + 2 
l
l
x
x2
−6 2 +6
l
l

0
N4
dN4
dx

N2
0
0

0
3

x2 x3
x −2 + 2
l
l
x
x2
1−4 +3 3
l
l

v2
ϑ1

ϑ2 u
2

u1

x

z

u1 
 v1 
0  
 
ϑ1 
N6   

dN6  u2 
dx  v2 
 
ϑ2 
 

0
N5
dN5
dx

x
l
0
0

{δ }
T

0
2

x
x
3  − 2 
l
l
x
x2
6 2 −6 3
l
l

u1 
v 
 1
ϑ 
 
=  1
u2 
v2 
 
 
ϑ2 

3

u 
 1 
0
 v1 

x 2 x 3  ϑ1 
 
− + 2  
l
l  u2 
x
x 2  v 
− 2 + 3 2  2 
l
l  ϑ 
 2
26
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
- STIFFNESS MATRIX OF A BEAM ELEMENT
BEAM element: 4 DOF

dv
dθ
d 2v
εx = −y
= − y 2 being θ =
dx
dx
dx

Beam deflection

( { })

{ }

d 2v
d2
ε x = − y 2 = − y 2 [N ] δ * = [B ] δ *
dx
dx

{δ }
*

x, y

 v1 
θ 
 
=  1
v
 2
θ 2  x , y
 

[N ] = [N1 , N2 , N3 , N4 ]

Local coordinate system

[B] = − y − 62 + 12 x3 , − 4 + 6 x2 ,

 l

l

l

l

6
x
2
x
− 12 3 , − + 6 2 
l2
l
l
l 

[k ] = ∫ [B]T [D][B]dv =

v
x
 6
− l 2 + 12 l 3 


− 4 + 6 x 
l
 l
x 4
x 6
x 2
x
l 2  6
2
= E∫ 
 − 2 + 12 3 , − + 6 2 , 2 − 12 3 ,− + 6 2  dx ∫ y ds
6
x
l
l
l
l l
l
l
l  s
0 
− 12 3  
l 2
l 
 2
x 
− + 6 2 
l 
 l

27
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
- STIFFNESS MATRIX OF A BEAM ELEMENT
Stiffness matrix of BEAM element
in local coordinate system

- STIFFNESS MATRIX OF A BEAM ELEMENT IN GLOBAL COORD. SYSTEM

y

y

Displacement vector in global axis:


u1


x

ϑ
x

cosθ
u1 
 sinθ
v 
 1
u  = 
 0
 2
v2  X ,Y  0
 


− sinθ
cosθ
0
0

0
0
cosθ
sinθ

0  u1 
 
0  v 1 
 
− sinθ  u2 

cosθ  v2 
  x ,y

28
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
- STIFFNESS MATRIX OF A BEAM ELEMENT IN GLOBAL COORD. SYSTEM
Naming

µ = senϑ 

λ = cosϑ 

λ
− µ

0
[k ]e = E.Iz 
0
0


0

12 2
 l3 µ

 − 12 λ
 l3

− 6 µ
2
[k ]e = E.I z  l
 − 12
 3 µ2
 l
12
 3 λµ
l
− 6
 l3 µ


12 2
λ
l3
6
λ
l2
12
λµ
l3
− 12 2
λ
l3
6
l2

µ 0 0 0
λ 0 0 0
0
0
0
0

1 0
0λ
0− µ
0 0

0

µ
λ
0

0

0  0

0 
 0
0 

0  0

0 
 0
1 


0


4
l
6
12 2
µ
µ
2
l
l3
−6
− 12
λ
λµ
2
l
l3
2
−6
µ
l
l

0
12
l3
6
l2
0
− 12
l3
6
l2

12 2
λ
l3
−6
µ
l2

0 0 0
− 12
6
0 3
2
l
l
−6
4
0
l2
l
0 0 0
−6
12
0 3
l2
l
−6
2
0 2
l
l














4

l

0 
6 

l2  
2 

l 

0 

−6 

l2  

4 

l 

λ −µ 0 0 0 0
µ λ 0 0 0 0

0
0
0
0

0
0
0
0

1
0
0
0

0 0 0

λ − µ 0
µ λ 0

0 0 1


Stiffness matrix of a BEAM
element in GLOBAL coordinate
system

29
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
- STIFFNESS MATRIX OF A COMPLETE BEAM ELEMENT IN GLOBAL
COORD. SYSTEM
Naming

µ = senϑ 

λ = cosϑ 

12 EI 2 EA 2
µ +
λ
L3
L
−

12 EI
EA
µλ +
µλ
3
L
L
−

12 EI 2 EA 2
λ +
µ
L3
L

6 EI
µ
L2

6 EI
λ
L2

sy.

4 EI
L

= TT k e T
Ke =
−

12 EI 2 EA 2
µ −
λ
L3
L

12 EI
EA
µλ −
µλ
L3
L
−

6 EI
µ
L2

12 EI
EA
µλ −
µλ
L3
L
−

12 EI 2 EA 2
λ −
µ
L3
L
6 EI
λ
L2

6 EI
µ
L2
−

6 EI
λ
L2

2 EI
L

12 EI 2 EA 2
µ +
λ
L3
L
−

12 EI
EA
µλ +
µλ
L3
L
6 EI
µ
L2

12 EI 2 EA 2
λ +
µ
L3
L
−

6 EI
λ
L2

4 EI
L

λ = cos θ
µ = sin θ

30
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
- DETERMINATION THE EQUIVALENT NODAL LOAD VECTOR
In a real problem different type of external loads can be found:
- Punctual forces
- Moments
- Distributed loads

For FEM modelling all
external load should be
applied in the element
nodes




- Punctual forces
- Moments

- Distributed loads

NECESITY TO OBTAIN AN EQUIVALENT SYSTEM BASED
IN NODAL LOADS
f
=
f*

31
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
- DETERMINATION THE EQUIVALENT NODAL LOAD VECTOR
The external work due to all the external load applied to the system is given by

1
T
w1 = ∫ {δ } { f }⋅ ds
2s
By using the interpolation functions:

w1 =

{ } [N ] { f }⋅ ds = 1 {δ } ∫ [N ] { f }⋅ ds
2

1
δ*
2∫
s

T

* T

T

T

s

Thus the work of the equivalent system can be written as:

w2 =

w1 = w2

{ } {f }

1 *
δ
2

T

*

{ } ∫ [N ] { f }⋅ ds = 1 {δ } {f }
2

1 *
δ
2

T

* T

T

*

s

{f }= ∫ [N ] { f }⋅ ds
T

*

s

32
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
DETERMINATION OF THE STRESS/STRAIN CONDITION:
Once, the nodal displacement vector of the studied system is solved the stress/strain
condition at any point can be obtained.
STEP 1: STRAIN DETERMINATION AT A CERTAIN POINT

 δ1 
 
 .
{ δ }e = [ N 1 , N 2 ,...., N n ]  
 .
 
δn 

Determination of
the elongation at
the selected point

{ε } = [∂ ]{δ }

{ε } = ∂[N ]{δ * }= [B]{δ * }



εx  
ε  
 y 
εz  
 
 =
γ xy  
γ yz  
  
γ zx  
 



∂

∂x
0
0

∂

∂y

0
∂

∂z

0
∂

∂y

0
∂
∂

∂x
∂z

0

0 

0 

∂ u 
∂ z  
 v 
0  
  w
∂ 
∂y

∂ 
∂x 

Strain vector determination

33
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
DETERMINATION OF THE STRESS/STRAIN CONDITION:
STEP 2: STRESS DETERMINATION AT A CERTAIN POINT
The relation between the strain and the stress in the linear elastic domain is given by
the generalised Hooke’s law:

[

]

[

]

[

]

1
σ x − υ (σ y + σ z )
E
1
ε y = σ y − υ (σ z + σ x )
E
1
ε z = σ z − υ (σ x + σ y )
E

εx =

2(1 + υ )
τ xy
G
E
τ
2(1 + υ )
τ yz
γ yz = yz =
G
E
τ
2(1 + υ )
γ zx = zx =
τ zx
G
E

γ xy =

τ xy

=

Generalized Hooke’s law

LAMÉ ' s _ law : G =

E
 For isotropic materials
2(1 + υ )
34
2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION
DETERMINATION OF THE STRESS/STRAIN CONDITION:
STEP 2: STRESS DETERMINATION AT A CERTAIN POINT
The relation between the strain and the stress in the linear elastic domain is given by
the generalized Hooke’s law:
0
0
0 
υ
(1 − υ ) υ
 υ (1 − υ ) υ
0
0
0  ε
 x 

σ x 
 υ
σ 
0
0  ε 
υ (1 − υ ) 0
y
 y 


 1 − 2υ 
 0
σ z 
0
0 
0  ε z 
E
 0
 
 

 
 =
 2 
τ xy  (1 − 2υ )(1 + υ ) 
 γ xy 

 1 − 2υ 

 0
τ yz 
0
0
0
 0  γ yz 


 
 
 2 
 γ 

τ zx 
 
 1 − 2υ   zx 

0
0
0
0 

 0
2 




{σ } = [D]{ε }
35

Introduction to FEM

  • 1.
    INTRODUCTION TO FINITEELEMENT METHOD (FEM)
  • 2.
    1. INTRODUCTION ENGINEERING DEPARTMENT: Todevelop new products and/or manufacturing processes Product calculation: - Component dimensioning - Design verification - Material selection Preliminary design: concept design INDUSTRIALISATION: - Development of manufacturing Process calculation: - Process parameters drawings - Manufacturing process definition - Development of manufacturing tools - Production - Tooling design 2
  • 3.
    1. INTRODUCTION: CALCULATIONMETHODS - Analytic method: - Consists on the use of analytic equation to represent the behaviour of a physical problem (As exercises solved by hand in previous chapters or other subjects, heat transfer, material resistance, dynamics, vibrations,…) - Advantages: relatively fast to be solved - Limitations: Hard to represent complex phenomena in real components, not always applicable. 3
  • 4.
    1. INTRODUCTION: CALCULATIONMETHODS - Numeric methods (Finite Element Methods FEM) - To divide a complex problem into many simple problems (elements) - Problem solution by numeric methods (Newton-Raphson) by using iterations and increments. - Advantages: Capability to solve complex problems. - Limitations: Time expensive resolution method, the use of computers is required. 4
  • 5.
    1. INTRODUCTION: FORMULATIONTYPES - Implicit: - Tries to obtain the structural equilibrium for each time increment. - More sophisticate algorithms higher time increments (FASTER). - High precision - Convergence problems when solving non-linear phenomena: hard variations in boundary condition, material behaviour, loads, contacts,… - Explicit: - Does not need iterations, just time increments (Does not try to get the exact solution) - No convergence problems - Utilizes constant time increments - High calculation time - Recommendable to solve non-linear problems. 5
  • 6.
    1. INTRODUCTION: APLICATIONS Solidmechanics: - Structural linear calculations (linear static, linear dynamics) IMPLICIT - Plasticity range calculation (no-linear quasi-static or dynamics) EXPLICIT Fluid mechanics: - Linear calculation (wind tunnel example) IMPLICIT - Non-linear calculations (atmospheric phenomena, turbulence, wind,...) EXPLICIT Thermodynamics: (linear problems-IMPLICIT) Multiphysics: thermo mechanic, thermo fluidic, fluid structure interaction… 6
  • 7.
    1. INTRODUCTION: APLICATIONS Solidmechanics: Structural static calculation Design vs. FEM Set-up IMPLICIT Aluminium sheet bulge-test 7
  • 8.
    1. INTRODUCTION: APLICATIONS Solidmechanics: eigenvalues Trunk door IMPLIT First mode17Hz Solid mechanics: Forming processes Punching EXPLICIT 8
  • 9.
    1. INTRODUCTION: APLICATIONS Solidmechanics: Forming processes 9
  • 10.
    1. INTRODUCTION: APLICATIONS Solidmechanics: Machining process Vc=300 m.min-1 Vc≥600 m.min-1 EXPLICIT 10
  • 11.
    1. INTRODUCTION: APLICATIONS Fluidmechanics: linear and non-linear examples Hurricane simulation Air flow simulation F1 IMPLICIT EXPLICIT 11
  • 12.
    1. INTRODUCTION: APLICATIONS Thermodynamics: Turbineheat transfer simulation IMPLICIT Tube and die temperature pattern simulation IMPLICIT 12
  • 13.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION - Definition of a finite element Geometrical definition (element shape): - Composed by nodes Physic definition (element type): - Degrees of freedom (DOF) - Analytic formulation of the element (mechanical field resolution, thermal fields,…) z 6 Degrees of Freedom (DOF) u v w θx θy θz θz u x θx w θy v y u: Linear displacement in X v: Linear displacement in y w: Linear displacement in z θx: Rotation with respect X θy : Rotation with respect Y θz : Rotation with respect Z 13
  • 14.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION - Element types:      Interpolation order: linear (1st order) y quadratic (2nd order) Linear interpolation v2 v 1 v1 v1 Nodal displacement vector of a first * θ1 δ= v order beam element in 2D de 2 Quadratic interpolation x V(x)=mx+b v3 v2 x V(x)=ax2+bx+c θ2 14
  • 15.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION - Mechanical field calculation: Motion differential equation . .. [M]{δ} + [C]{δ}+[k]{δ} ={Fext} [M]: Mass matrix [C]: Damping matrix [k]: Stiffness matrix - Mechanical field: STATIC Acceleration = 0 Velocity = 0 . .. [M]{δ} + [C]{δ}+[k]{δ} ={Fext} {δ}: Displacement vector . {δ}: Velocity vector .. {δ}: Acceleration vector {Fext}: External load vector [k]{δ} ={Fext} 5 unknowns and 5 equations 15
  • 16.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION - Stress field calculation through nodal displacement. Strain through local displacement INTERPOLATION  displacement at any point of the structure  δ1     . { δ }e = [ N 1 , N 2 ,...., N n ]    .   δn  Generalised Hooke’s law  Stress calculation through local strain (1 − ν)  ν σx   σ   ν  y  σz  E    0  = τ xy  (1 − 2 ⋅ ν) ⋅ (1 + ν)   0 τ yz      τ zx     0  ν (1 − ν) ν ν 0 0 0 0 (1 − 2ν) 2 0 0 ν (1 − ν) 0 0 0 0 0 0 0 0 0 (1 − 2ν) 2 0  ε 0  x   ε  0  y   ε  0  z     γxy  0  γyz    (1 − 2ν) γzx     2  0       εx       εy       εz      =  γ xy         γ yz       γ zx           ∂ ∂x 0 0 ∂ ∂y 0 0 ∂ ∂y ∂ ∂x 0 ∂ ∂z ∂ ∂z 0 0     0     ∂  u ∂z     . v 0   w     ∂  ∂y    ∂  ∂x        { ε }= [ ∂ ] { δ } ε3 ε1 ε2 16
  • 17.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION - INTERPOLATION FUNCTIONS: Determination of the displacement at any point of the structure. {δ }e = displacement vector at any point in a {δ}e = [N]{δ* }e determined element {δ } = nodal displacement vector of a determined * e {δ }e  δ1  = [N1 , N 2 ,..., N n ]   δ n  element [N ] = interpolation function matrix [Ni ] = interpolation function of the nodal displacement a determined node i. {δ i } = displacement vector at a determined node i. So, the displacement at any point of a determined element is obtained: {δ } = [N1 ]{δ1}+ [N 2 ]{δ 2 }+ ... + [N n ]{δ n } Where [Nk] represents the contribution of node k’s displacement in the total displacement of any determined point. 17
  • 18.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION - STIFFNESS MATRIX: { } { } In order to cause the nodal displacements δ * and consequently deform the element it is necessary the presence of nodal forces f * Definition: The stiffness coefficient Kij represents the necessary force to apply to a certain degree of freedom i to obtain an unitary displacement of the degree of freedom j being 0 the influence in the displacement of the rest of the degrees of freedom n f i = ∑ K ij ⋅ δ j j =1 n= number of DOF K11 ⋅ δ1 + K12 ⋅ δ 2 + ... + K1n ⋅ δ n = f1  K n1 ⋅ δ1 + K n 2 ⋅ δ 2 + ... + K nn ⋅ δ n = f n { } = [K ] {δ } Writing in matrix form: f * * e e e [K]e = Stiffness matrix of the element 18
  • 19.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION DETERMINATION OF THE STIFFNESS MATRIX OF A FINITE ELEMENT Relation between nodal forces an nodal displacements: {f }= [K ]{δ } * * Based on CAPLEYRON theory, the external work of the nodal forces is represented: w= 1 *T * {δ } {f } 2 w= 1 *T {δ } [K ]{δ * } 2 1 T σ The internal deformation energy caused by the nodal displacements: u = ∫ {ε } { }⋅ dv 2 As: {ε } = ∂{δ } = ∂[N ]{ * }= [B]{ * } 1 δ δ }T   δ * u = ∫ { [T [D ][ }⋅ dv δ * B]  B]{  2v T {σ } = [D]{ε } = [D][B]{δ * } T {ε } Being  w = u { } [K ]{δ } 1 * δ 2 T * { } 1 = δ* 2 [K ] = ∫ [B ]T [D][B ]⋅ dv T {σ }   * T  ∫ [B ] [D ][B ]⋅ dv  δ   v  { } STIFFNESS MATRIX v 19
  • 20.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION - DETERMINATION OF THE STIFFNESS MATRIX IN GLOBAL COORDINATES Transformation matrix a x [T ] = bx   cx  az   bz  cz   ay by cy From local coordinate system of the element To global coordinate system {δ }= [T ]{δ } * {f }= [T ]{f } {f }= [T ] {f } * * {f }= [K ]{δ } * * T * * {f }= [K ]{δ } * * * {f }= [T ] {f }= [T ] [K ]{δ }= [T ] [K ][T ]{δ } * T * T [K ] = [T ]T [K ][T ] * T * [K] in GLOBAL coord. system 20
  • 21.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION - INTERPOLATION FUNCTION OF A TRUSS ELEMENT Truss element: y - 2 node one-dimensional element (2DOF) u1 - Only allows to calculate tractive-compressive condition Nodal displacement vector {δ }= {u ,u } T 1 1 i u (x ) L u2 2 j x x , y , z Local axis i, j Element nodes 2 Determination of the interpolation function u1 , u2 Nodal displacements 2 G.D.L  1st order equation u ( x ) = a0 + a1.x u (0) = u1 u (l ) = u2 }u = a + a l} u1 = a0 2 a0 = u1 1 1 a1 = − u1 + u2 l l } 0 u1  u = [N1 , N 2 ]  u2  u1  1 0  a0   =   u 2  1 l  a1    1 a0  1 l  =  a1  l − 1 0 u1    1 u2   N1 = 1 − x l 0 1  − 1 1  u1  = 1 − x , x  u1  u = [1, x ]      u2    l  l  u2       l l N2 = x l 21
  • 22.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION - STIFFNESS MATRIX OF A TRUSS ELEMENT Truss element: 2DOF y u1 u2 1 2 L {δ } * x ,y x u1  =  u2  x ,y u   x ux ,y = [N1 N2 ] 1  = 1 − u2   l u1   ∂N1 ∂N2  u1   1 1  u1  ∂u  ∂  , ε x = =  [N1 , N2 ]  =   = − ,   u2   ∂x ∂x  u2   l l  u2  ∂x  ∂x        [B ] x N2 = l x l Local coordinate system [B ] Stiffness matrix obtaining formula: [k ] = ∫ [B] [D][B].dv [N ] = [N1 ,N2 ] N1 = 1 − x  u1    l  u2   T v 1  1  1 −  − 2 l  l  1 1  l2 l dx = E.S 1 − 1 K = ∫  E − , .dv = S.E ∫  . 1 1 1   l l l − 1 1   v  0 − 2 2   l   l     l [] 22
  • 23.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION - STIFFNESS MATRIX OF A TRUSS ELEMENT [k ] = EL.S −11  e  − 1 1  Stiffness matrix of TRUSS element in local coordinate system - RIGIDITY MATRIX OF A TRUSS ELEMENT IN GLOBAL COORD. SYSTEM  y y Displacement vector in global axis:  u1  x ϑ x cosθ u1   sinθ v   1 u  =   0  2 v2  X ,Y  0    − sinθ cosθ 0 0 cosθ 0 sinθ 0 0  u1  0  0      − sinθ  v1   cosθ  0  x ,y   23
  • 24.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION - STIFFNESS MATRIX OF A TRUSS ELEMENT IN GLOBAL COORD. SYSTEM Naming µ = senϑ   λ = cosϑ  [K ]e = [T ]T [K ] [T ] λ − µ 0 0  1   E.S  µ λ 0 0  0 [K ]e = l 0 0 λ − µ   − 1   0 0 µ λ  0  λ2 λµ  µ2 E.S  µλ [K ]e =  2 l −λ − λµ  − λµ − µ 2  − λ2 − λµ λ2 µλ − λµ  2 −µ  λµ   2 µ   0 − 1 0  λ 0 0 0  − µ  0 1 0  0  0 0 0  0 µ 0 λ 0 0 λ 0 −µ 0 0  µ  λ Stiffness matrix of a TRUSS element in GLOBAL coordinate system 24
  • 25.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION - INTERPOLATION FUNCTION OF A BEAM ELEMENT Beam element: y - 2 node unidimensional element (4DOF) v1 - Only allows to calculate behind loading condition z Beam element interpolation function: N v   1   =  dN1 ϑ    dx 2 3   x  x 1 − 3  + 2  , v   l l  = ϑ   x x2  −6 2 +6 , l l  N2 N3 dN 2 dN 3 dx dx v1  N4   ϑ1  dN 4     v2  dx    ϑ2    x 2 x3 x−2 + 2 , l l x x2 1− 4 + 3 2 , l l v2 ϑ1 ϑ2  x v1  ϑ    =  1 v2  ϑ2    {δ } T 2 3 x 2 x 3  v1   x  x 3  − 2  , − + 2    l l  ϑ1  l l   x x2 x x 2  v2  6 2 −6 3 , − 2 + 3 2   l l l l  ϑ2  25
  • 26.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION - INTERPOLATION FUNCTION OF A COMPLETE BEAM ELEMENT Complete Beam element: y - 2 node one-dimensional element (6DOF) v1 - Only allows to calculate behind loading condition Complete Beam element interpolation function:  u  N1    v  =  0 ϑ     0    x 1 − l u      v  = 0 ϑ       0  0 N3 dN3 dx 0 2 x x 1 − 3  + 2  l l x x2 −6 2 +6 l l 0 N4 dN4 dx N2 0 0 0 3 x2 x3 x −2 + 2 l l x x2 1−4 +3 3 l l v2 ϑ1 ϑ2 u 2 u1 x z u1   v1  0     ϑ1  N6     dN6  u2  dx  v2    ϑ2    0 N5 dN5 dx x l 0 0 {δ } T 0 2 x x 3  − 2  l l x x2 6 2 −6 3 l l u1  v   1 ϑ    =  1 u2  v2      ϑ2  3 u   1  0  v1   x 2 x 3  ϑ1    − + 2   l l  u2  x x 2  v  − 2 + 3 2  2  l l  ϑ   2 26
  • 27.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION - STIFFNESS MATRIX OF A BEAM ELEMENT BEAM element: 4 DOF dv dθ d 2v εx = −y = − y 2 being θ = dx dx dx Beam deflection ( { }) { } d 2v d2 ε x = − y 2 = − y 2 [N ] δ * = [B ] δ * dx dx {δ } * x, y  v1  θ    =  1 v  2 θ 2  x , y   [N ] = [N1 , N2 , N3 , N4 ] Local coordinate system [B] = − y − 62 + 12 x3 , − 4 + 6 x2 ,   l l l l 6 x 2 x − 12 3 , − + 6 2  l2 l l l  [k ] = ∫ [B]T [D][B]dv = v x  6 − l 2 + 12 l 3    − 4 + 6 x  l  l x 4 x 6 x 2 x l 2  6 2 = E∫   − 2 + 12 3 , − + 6 2 , 2 − 12 3 ,− + 6 2  dx ∫ y ds 6 x l l l l l l l l  s 0  − 12 3   l 2 l   2 x  − + 6 2  l   l 27
  • 28.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION - STIFFNESS MATRIX OF A BEAM ELEMENT Stiffness matrix of BEAM element in local coordinate system - STIFFNESS MATRIX OF A BEAM ELEMENT IN GLOBAL COORD. SYSTEM  y y Displacement vector in global axis:  u1  x ϑ x cosθ u1   sinθ v   1 u  =   0  2 v2  X ,Y  0    − sinθ cosθ 0 0 0 0 cosθ sinθ 0  u1    0  v 1    − sinθ  u2   cosθ  v2    x ,y 28
  • 29.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION - STIFFNESS MATRIX OF A BEAM ELEMENT IN GLOBAL COORD. SYSTEM Naming µ = senϑ   λ = cosϑ  λ − µ  0 [k ]e = E.Iz  0 0   0 12 2  l3 µ   − 12 λ  l3  − 6 µ 2 [k ]e = E.I z  l  − 12  3 µ2  l 12  3 λµ l − 6  l3 µ  12 2 λ l3 6 λ l2 12 λµ l3 − 12 2 λ l3 6 l2 µ 0 0 0 λ 0 0 0 0 0 0 0 1 0 0λ 0− µ 0 0 0 µ λ 0 0  0  0  0   0 0   0  0  0   0 1    0  4 l 6 12 2 µ µ 2 l l3 −6 − 12 λ λµ 2 l l3 2 −6 µ l l 0 12 l3 6 l2 0 − 12 l3 6 l2 12 2 λ l3 −6 µ l2 0 0 0 − 12 6 0 3 2 l l −6 4 0 l2 l 0 0 0 −6 12 0 3 l2 l −6 2 0 2 l l               4  l 0  6   l2   2   l   0   −6   l2    4   l  λ −µ 0 0 0 0 µ λ 0 0 0 0  0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  λ − µ 0 µ λ 0  0 0 1  Stiffness matrix of a BEAM element in GLOBAL coordinate system 29
  • 30.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION - STIFFNESS MATRIX OF A COMPLETE BEAM ELEMENT IN GLOBAL COORD. SYSTEM Naming µ = senϑ   λ = cosϑ  12 EI 2 EA 2 µ + λ L3 L − 12 EI EA µλ + µλ 3 L L − 12 EI 2 EA 2 λ + µ L3 L 6 EI µ L2 6 EI λ L2 sy. 4 EI L = TT k e T Ke = − 12 EI 2 EA 2 µ − λ L3 L 12 EI EA µλ − µλ L3 L − 6 EI µ L2 12 EI EA µλ − µλ L3 L − 12 EI 2 EA 2 λ − µ L3 L 6 EI λ L2 6 EI µ L2 − 6 EI λ L2 2 EI L 12 EI 2 EA 2 µ + λ L3 L − 12 EI EA µλ + µλ L3 L 6 EI µ L2 12 EI 2 EA 2 λ + µ L3 L − 6 EI λ L2 4 EI L λ = cos θ µ = sin θ 30
  • 31.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION - DETERMINATION THE EQUIVALENT NODAL LOAD VECTOR In a real problem different type of external loads can be found: - Punctual forces - Moments - Distributed loads For FEM modelling all external load should be applied in the element nodes   - Punctual forces - Moments - Distributed loads NECESITY TO OBTAIN AN EQUIVALENT SYSTEM BASED IN NODAL LOADS f = f* 31
  • 32.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION - DETERMINATION THE EQUIVALENT NODAL LOAD VECTOR The external work due to all the external load applied to the system is given by 1 T w1 = ∫ {δ } { f }⋅ ds 2s By using the interpolation functions: w1 = { } [N ] { f }⋅ ds = 1 {δ } ∫ [N ] { f }⋅ ds 2 1 δ* 2∫ s T * T T T s Thus the work of the equivalent system can be written as: w2 = w1 = w2 { } {f } 1 * δ 2 T * { } ∫ [N ] { f }⋅ ds = 1 {δ } {f } 2 1 * δ 2 T * T T * s {f }= ∫ [N ] { f }⋅ ds T * s 32
  • 33.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION DETERMINATION OF THE STRESS/STRAIN CONDITION: Once, the nodal displacement vector of the studied system is solved the stress/strain condition at any point can be obtained. STEP 1: STRAIN DETERMINATION AT A CERTAIN POINT  δ1     . { δ }e = [ N 1 , N 2 ,...., N n ]    .   δn  Determination of the elongation at the selected point {ε } = [∂ ]{δ } {ε } = ∂[N ]{δ * }= [B]{δ * }   εx   ε    y  εz      = γ xy   γ yz      γ zx       ∂ ∂x 0 0 ∂ ∂y 0 ∂ ∂z 0 ∂ ∂y 0 ∂ ∂ ∂x ∂z 0 0   0   ∂ u  ∂ z    v  0     w ∂  ∂y  ∂  ∂x  Strain vector determination 33
  • 34.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION DETERMINATION OF THE STRESS/STRAIN CONDITION: STEP 2: STRESS DETERMINATION AT A CERTAIN POINT The relation between the strain and the stress in the linear elastic domain is given by the generalised Hooke’s law: [ ] [ ] [ ] 1 σ x − υ (σ y + σ z ) E 1 ε y = σ y − υ (σ z + σ x ) E 1 ε z = σ z − υ (σ x + σ y ) E εx = 2(1 + υ ) τ xy G E τ 2(1 + υ ) τ yz γ yz = yz = G E τ 2(1 + υ ) γ zx = zx = τ zx G E γ xy = τ xy = Generalized Hooke’s law LAMÉ ' s _ law : G = E  For isotropic materials 2(1 + υ ) 34
  • 35.
    2. FEM THEORY:STATIC IMPLICIT LINEAR CALCULATION DETERMINATION OF THE STRESS/STRAIN CONDITION: STEP 2: STRESS DETERMINATION AT A CERTAIN POINT The relation between the strain and the stress in the linear elastic domain is given by the generalized Hooke’s law: 0 0 0  υ (1 − υ ) υ  υ (1 − υ ) υ 0 0 0  ε  x   σ x   υ σ  0 0  ε  υ (1 − υ ) 0 y  y     1 − 2υ   0 σ z  0 0  0  ε z  E  0         =  2  τ xy  (1 − 2υ )(1 + υ )   γ xy    1 − 2υ    0 τ yz  0 0 0  0  γ yz         2   γ   τ zx     1 − 2υ   zx   0 0 0 0    0 2     {σ } = [D]{ε } 35