The document provides an introduction to the finite element method (FEM). It discusses that FEM is a numerical technique used to approximate solutions to boundary value problems defined by partial differential equations. It can handle complex geometries, loadings, and material properties that have no analytical solution. The document outlines the historical development of FEM and describes different numerical methods like the finite difference method, variational method, and weighted residual methods that FEM evolved from. It also discusses key concepts in FEM like discretization into elements, node points, and interpolation functions.