FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Introduction to the Finite
Element Method
Bars and Trusses
FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Bar Example (Ex. 4.5.2, p. 187)
• Consider the bar shown in the above figure.
• It is composed of two different parts. One steel tapered
part, and uniform Aluminum part.
• Calculate the displacement field using finite element
method.
FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Bar Example
• The bar may be represented by two
elements.
• The stiffness matrices of the two elements
may be obtained using the following
integration:
   































2
1
2
1
22
22
21
2
1
11
11
x
x
ee
ee
x
x
e dx
hh
hh
xEAdx
dx
d
dx
d
dx
d
dx
d
xEAK



FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Bar Example
• For the Aluminum bar: E=107 psi, and A=1
in2. we get:
• For the Steel bar: E=38107 psi, and
A=(1.5-0.5x/96) in2. we get:
















  11
11
120
10
11
11
120
10 7
2
7 2
1
x
x
Al dxK






















  11
11
96
10.75.4
11
11
96
5.0
5.1
96
10.3 7
2
7 2
1
x
x
Fe dx
x
K
FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Bar Example
• Assembling the Stiffness matrix and
utilizing the external forces, we get:
• The boundary conditions may be applied
and the system of equations solved.













































0
0
10
10.2
0
33.833.80
33.88.575.49
05.495.49
10
5
5
3
2
1
4
R
u
u
u
FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Bar Example
• Solving, we get:
• For the secondary
variables:
in
u
u













181.0
061.0
3
2
lbR 30000
FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Trusses
• A truss is a set of bars that are connected
at frictionless joints.
• The Truss bars are generally oriented in
the plain.
FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Trusses
• Now, the problem lies in the
transformation of the local displacements
of the bar, which are always in the
direction of the bar, to the global degrees
of freedom that are generally oriented in
the plain.
FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Equation of Motion











































0
0
0000
0101
0000
0101
2
1
2
2
1
1
F
F
v
u
v
u
h
EA
FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Transformation Matrix
   
   
   
    DOF
dTransforme
DOFLocal
v
u
v
u
CosSin
SinCos
CosSin
SinCos
v
u
v
u











































2
2
1
1
2
2
1
1
00
00
00
00




    DOF
dTransforme
DOFLocal T 
FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
The Equation of Motion Becomes
• Substituting into the
FEM:
• Transforming the
forces:
• Finally:
     FTK 
         FTTKT
TT

    FK 
FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Recall
      TKTK
T

 
   
   
   
   


















CosSin
SinCos
CosSin
SinCos
T
00
00
00
00
Where:
 















0000
0101
0000
0101
h
EA
K
FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Element Stiffness Matrix in Global
Coordinates
 
   
   
   
   
   
   
   
   



















































CosSin
SinCos
CosSin
SinCos
CosSin
SinCos
CosSin
SinCos
h
EA
K
00
00
00
00
0000
0101
0000
0101
00
00
00
00
FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Element Stiffness Matrix in Global
Coordinates
 
       
       
       
        




























22
22
22
22
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
SinSinSinSin
SinCosSinCos
SinSinSinSin
SinCosSinCos
h
EA
K
FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Example: 4.6.1 pp. 196-201
• Use the finite element analysis to find the
displacements of node C.
FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Element Equations
 















0000
0101
0000
0101
1
L
EA
K  















1010
0000
1010
0000
2
L
EA
K
 

















3536.03536.03536.03536.0
3536.03536.03536.03536.0
3536.03536.03536.03536.0
3536.03536.03536.03536.0
3
L
EA
K
FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Assembly Procedure
 



























3536.13536.0103536.03536.0
3536.03536.0003536.03536.0
101000
000101
3536.03536.0003536.03536.0
3536.03536.0013536.03536.1
L
EA
K
FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Global Force Vector
 











































P
P
F
F
F
F
F
F
F
F
F
F
F
y
x
y
x
y
x
y
x
y
x
2
2
2
1
1
3
3
2
2
1
1
Remember!
NO distributed load
is applied to a truss
FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Boundary Conditions
02211  VUVU
Remove the corresponding rows and columns




















P
P
V
U
L
EA
23536.13536.0
3536.03536.0
3
3
Continue! (as before)
FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Results
EA
PL
V
EA
PL
U
3
,828.5 33 
PFF
PFPF
yx
yx
3,0
,,
22
11


FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Postcomputation
e
e
e
e
e
A
P
A
P 21


























e
e
ee
e
e
u
u
L
EA
P
P
2
1
2
1
11
11
   
   
   
    










































2
2
1
1
2
2
1
1
00
00
00
00
v
u
v
u
CosSin
SinCos
CosSin
SinCos
v
u
v
u




FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Postcomputation
A
P
A
P
2,
3
,0 )3()2()1(
 
FEM: Bars and Trusses
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Summary
• In this lecture we learned how to apply the
finite element modeling technique to bar
problems with general orientation in a
plain.

FEM: Bars and Trusses

  • 1.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Introduction to the Finite Element Method Bars and Trusses
  • 2.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Bar Example (Ex. 4.5.2, p. 187) • Consider the bar shown in the above figure. • It is composed of two different parts. One steel tapered part, and uniform Aluminum part. • Calculate the displacement field using finite element method.
  • 3.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Bar Example • The bar may be represented by two elements. • The stiffness matrices of the two elements may be obtained using the following integration:                                    2 1 2 1 22 22 21 2 1 11 11 x x ee ee x x e dx hh hh xEAdx dx d dx d dx d dx d xEAK   
  • 4.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Bar Example • For the Aluminum bar: E=107 psi, and A=1 in2. we get: • For the Steel bar: E=38107 psi, and A=(1.5-0.5x/96) in2. we get:                   11 11 120 10 11 11 120 10 7 2 7 2 1 x x Al dxK                         11 11 96 10.75.4 11 11 96 5.0 5.1 96 10.3 7 2 7 2 1 x x Fe dx x K
  • 5.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Bar Example • Assembling the Stiffness matrix and utilizing the external forces, we get: • The boundary conditions may be applied and the system of equations solved.                                              0 0 10 10.2 0 33.833.80 33.88.575.49 05.495.49 10 5 5 3 2 1 4 R u u u
  • 6.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Bar Example • Solving, we get: • For the secondary variables: in u u              181.0 061.0 3 2 lbR 30000
  • 7.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Trusses • A truss is a set of bars that are connected at frictionless joints. • The Truss bars are generally oriented in the plain.
  • 8.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Trusses • Now, the problem lies in the transformation of the local displacements of the bar, which are always in the direction of the bar, to the global degrees of freedom that are generally oriented in the plain.
  • 9.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Equation of Motion                                            0 0 0000 0101 0000 0101 2 1 2 2 1 1 F F v u v u h EA
  • 10.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Transformation Matrix                 DOF dTransforme DOFLocal v u v u CosSin SinCos CosSin SinCos v u v u                                            2 2 1 1 2 2 1 1 00 00 00 00         DOF dTransforme DOFLocal T 
  • 11.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com The Equation of Motion Becomes • Substituting into the FEM: • Transforming the forces: • Finally:      FTK           FTTKT TT      FK 
  • 12.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Recall       TKTK T                                      CosSin SinCos CosSin SinCos T 00 00 00 00 Where:                  0000 0101 0000 0101 h EA K
  • 13.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Element Stiffness Matrix in Global Coordinates                                                                                      CosSin SinCos CosSin SinCos CosSin SinCos CosSin SinCos h EA K 00 00 00 00 0000 0101 0000 0101 00 00 00 00
  • 14.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Element Stiffness Matrix in Global Coordinates                                                                22 22 22 22 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 SinSinSinSin SinCosSinCos SinSinSinSin SinCosSinCos h EA K
  • 15.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Example: 4.6.1 pp. 196-201 • Use the finite element analysis to find the displacements of node C.
  • 16.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Element Equations                  0000 0101 0000 0101 1 L EA K                  1010 0000 1010 0000 2 L EA K                    3536.03536.03536.03536.0 3536.03536.03536.03536.0 3536.03536.03536.03536.0 3536.03536.03536.03536.0 3 L EA K
  • 17.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Assembly Procedure                              3536.13536.0103536.03536.0 3536.03536.0003536.03536.0 101000 000101 3536.03536.0003536.03536.0 3536.03536.0013536.03536.1 L EA K
  • 18.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Global Force Vector                                              P P F F F F F F F F F F F y x y x y x y x y x 2 2 2 1 1 3 3 2 2 1 1 Remember! NO distributed load is applied to a truss
  • 19.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Boundary Conditions 02211  VUVU Remove the corresponding rows and columns                     P P V U L EA 23536.13536.0 3536.03536.0 3 3 Continue! (as before)
  • 20.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Results EA PL V EA PL U 3 ,828.5 33  PFF PFPF yx yx 3,0 ,, 22 11  
  • 21.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Postcomputation e e e e e A P A P 21                           e e ee e e u u L EA P P 2 1 2 1 11 11                                                            2 2 1 1 2 2 1 1 00 00 00 00 v u v u CosSin SinCos CosSin SinCos v u v u    
  • 22.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Postcomputation A P A P 2, 3 ,0 )3()2()1(  
  • 23.
    FEM: Bars andTrusses Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Summary • In this lecture we learned how to apply the finite element modeling technique to bar problems with general orientation in a plain.