SlideShare a Scribd company logo
Fundamentals of Microprocessor 
Based Protective Relays
Suhag Patel, P.E.
Industrial Electric Machinery
Carson, CA
IEEE Industrial & Commercial Power Systems Conference
Newport Beach, CA May 5, 2011
Objective
• Understand Commonly Used Protective 
Functions and Their ANSI Protective Device 
Numbers
• Understand Protection is Based on Power 
System Component
• Advantages of Grouping Protective Relay 
Functions in a Microprocessor Relay
ANSI Function Number
• Used to Easily Convey Information on 
Electrical Drawings
• Function Will Have a Number and Sometimes 
letter(s)
• Examples:
– 50N
– 67P
ANSI Function Numbers – Partial 
Listing
Feeder Protection
• The Following ANSI Device Numbers Are 
Used for Feeder Protection:
– 50 – Instantaneous Overcurrent
– 51 – Time Overcurrent
– 67 – Directional Overcurrent
– 79 – Reclosing Relay
– 81O/U – Under/Over Frequency
– 25 – Synchronism Check
Interrupting Methods
• Fuse
 Fusible element melts to disconnect faulty
zone/equipment
 I2T law
• Recloser
 Single or three-phase, 15 to 38kV
 Line or substation
• Circuit Breaker
• Indoor switchgear
• Outdoor breaker or switchgear
• Air, Oil, SF6, Vacuum, Magnetic blast
50 – Instantaneous OC
OPERATE
CURRENT
TIME
FAULT
CURRENT
PICKUP
50 – Instantaneous OC
Instantaneous Overcurrent (function 50)
• The instantaneous overcurrent protective element operates with no intentional time delay
when the current has exceeded the relay setting
• There is a pickup setting.
• 50P – phase inst. overcurrent. Pickup usually set at 25% higher than the maximum current
seen by the relay for a three-phase fault at the end of the circuit.
• 50N – neutral inst. overcurrent
(The phasor summation of phase currents Ia, Ib, Ic equals In)
• 50G – ground inst. overcurrent – low pickup setting
(Uses separate or zero sequence CT)
50 – Definite Time OC
OPERATE
CURRENT
TIME
FAULT
CURRENT
PICKUP
138 kV
52
M
R
52
1
R
52
2
R
52
3
R
R
52
U
F-1
12.5 kV
480v
• We Desire 
Selectivity, 
therefore 
Instantaneous 
Protection Alone is 
not Sufficient
• Definite Time does 
not Replicate Real 
Equipment Damage 
Curves
50 – Instantaneous OC
51 – Time Overcurrent
OPERATE
CURRENT
TIME
FAULT
CURRENT
PICKUP
OPERATING
TIME
51 – Time Overcurrent
• Where it is desired to have more time delay before the element operates for the purpose of 
coordinating with other protective relays or devices, the time overcurrent protective element is 
used.  The trip time varies inversely with current magnitude. 
• Characteristic curves most commonly used are called “inverse,””very inverse,” and “extremely 
inverse.”  The user must select the curve type.  They are said to be a family of curves and selected 
by the time dial.  
• Curve type and time dial are separate settings. Time dial adjusts the time delay of the characteristic 
to achieve coordination between downstream and upstream overcurrent devices.
• There is a minimum pickup setting.  The pickup setting should be chosen such that the protective 
device will be operating on the most inverse part of its time curve over the range of current for 
which must operate. 
• 51P – phase time overcurrent
• 51N – neutral time overcurrent 
(The phasor summation of phase currents Ia, Ib, Ic equals In) 
• 51G – ground time overcurrent  ‐ low pickup setting  (uses separate or zero sequence CT)
51 – Time Dial
51 – The Coordination Problem
138 kV
52
M
R
52
1
R
52
2
R
52
3
R
R
52
U
F-1
12.5 kV
480v
F1
F3
F2
F4
Fault magnitude
• F4 > F3 > F2 > F1
Why?
• Impedance
51 – Coordinating Time 
CURRENT
TIME
F1 F2 F3 F4PICKUP PICKUP
TIME
COORDINATION
INTERVAL
Main Feeder
Relay
Feeder 3
Relay
51 ‐ Fuses
• The time verses current characteristics of a fuse
has two curves.
• The first curve is called the minimum melt curve
• The minimum melt curve is the time between
the initiation of a current large enough to
cause the fusible element(s) to melt and the
instant when arcing occurs.
• The second curve is called the total clearing time.
• The total clearing time is the total time
elapsing from the beginning of an
overcurrent to the final circuit interruption.
• The time current characteristic curve of a fuse
follows a I2T characteristic - that is to say as the
current goes up, the time drops by the square of
the current increase.
Total clearing
time curve
Minimum
melt
Current
Time
51 – Coordinating Fuses
Load
Primary
Secondary
LoadSecondary
2I
1I 1I
Time
Current
• The operating time of a fuse is a function of the pre-arcing (melting) and arcing time
• For proper coordination, total I2T of secondary fuse shouldn’t exceed the pre-arcing
(melting) of primary fuse. This is established if current ratio of primary vs.
secondary fuse current rating is 2 or greater for fuses of the same type.
51 – Coordinating Fuses & Relays
Current
Time
Minimum TCI time of
0.4s
Time Over Current Curve
Fuse curve
• The time overcurrent relay should back
up the fuse over full current range.
The time overcurrent relay
characteristic curve best suited for
coordination with fuses is the
Extremely Inverse, which is similar to
the I2t fuse curves. For Extremely
Inverse relay curves, primary pickup
current setting should be 3-times fuse
rating. For other relay curves, up to 4-
times fuse rating should be considered.
Ensure no cross over of fuse or time
overcurrent relay curves.
• To account for CT saturation and
errors, electro-mechanical relay
overshoot, timing errors and fuse
errors a minimum TCI of 0.4s should
be used.
51 – Coordinating Relays
• The following is recommended TCI to ensure proper coordination.
0 1000 2000 3000 4000
0
0.5
1
1.5
2
2.5
3
Fault current at 11 kV
Timetooperate(s)
0.4 s between relay and fuse
0.3 s between digital relays
51 – Reset Curves
• Reset of Time Overcurrent Element
• There are (2) different types of resets within Time Overcurrent Protection:
• EM or Timed Delay Reset – this mimics the disc travel of an
electromechanical relay moving back to the reset position.
• If the disc has not yet completely traveled back to the reset position and the
time overcurrent element picks up again, the trip time will be shorter.
• If the current picks up and then dropouts many times, the disc will “ratchet”
itself to the operate position.
• Be careful when coordinating with upstream or downstream devices.
• Instantaneous Reset – once the time overcurrent element operates,
it will reset immediately
51 ‐ Custom                                 Curves
• Microprocessor 
Relays Allow You 
to Design Your 
Own Curves
67 – Directional Overcurrent
• In Loop‐Fed 
Systems, it is 
Desirable to 
Have Different 
Trip Times for 
Forward and 
Reverse Faults
• 50/51 Is Not 
Sufficient
1 5
2 4
3
A
B
E
D
C
c
e
d
a
b
L L
L L
Bus X Bus Y
67 – How it Works
(a) To determine the direction of
current we need a reference
voltage or current that will not
change direction during the
fault. To determine the
direction of current in phase A
we will use Vbc. Digital relays
allow an offset from the
reference voltage or current to
provide better protection.
(b) The protection engineer must
look back into the system from
the fault and determine the
current fault angle (in this case
a 600 lagging in current from
phase Van is determined the
typical fault angle).
67 – Transmission Line Angle
• Conductors (Trans. Line) mostly inductive.
• Load is heavily resistive.
Rload
Xline
Rload >>
Xline
67 – Transmission Line Angle
• Normal Current lags Voltage by small amount
• Fault Current lags Voltage by large amount.
V
I
V
I
67 –V & I During 3Ø Forward 
Directional Fault
• Prefault, Balanced Voltages and Currents
• Fault, Balanced Voltages and Currents, but
magnitude is much different.
Va
Vb
Vc
Ia
Ic
Ib
67 –V & I During 3Ø Reverse 
Directional Fault
• Prefault, Balanced Voltages and Currents
• Fault, Balanced Voltages and Currents, but
magnitude is much different.
Va
Vb
Vc
Ia
Ic
Ib
Va
Vb
Vc
Ia
Ic
Ib
67 – Electromechanical Directional 
Characteristic
Va
Vb
Vc
Ia
Ic
Ib
VabVca
Vbc
Va
3Ø forward fault at
60 degree line angle
Vbc
Restraint Region
Ia
Maximum
Torque Line
Zero Torque
Line
67 – Microprocessor Characteristic
79 – Reclosing Relay
• Not all Faults Are Permanent
– Most Industrial Facilities Use Insulated Cable, 
Which Results in Permanent Faults
– Utilities Often Use Non‐Insulated Overhead 
Conductors, Resulting in Many Temporary Faults:
• Wind Causing Conductors to Touch
• Fires Temporarily Breaking Down Air
79 – Reclosing Relay
• Automatically reclose a circuit breaker or recloser which has been tripped by protective 
relaying or recloser control
• Multi‐shot reclosing for distribution circuits
• Instantaneous shot (~0.25s)
• Delayed reclosures (typically two delayed , for example 3s & 15s, or 15s & 30s)
• Coordinate with branch fuses
• After initial reclose block instantaneous overcurrent functions to allow fuse to blow
• After successful reclose, the reclosing function will reset after some adjustable time delay 
(typically 60s).
• If the fault is permanent, the protective device will trip and reclose several times.  If 
unsuccessful, the protective device will go to LOCKOUT and keep the breaker open.  
Some devices have a separate reset time from lockout (for example 10s after the breaker 
is manually closed).   
79 – Reclosing & Fuses
52
R
• Two methods:
• Fuse blowing
• Fuse blows for any fault, including temporary fault
• Fuse saving
• Use automatic reclosing to try and save fuses for temporary faults
79 – Fuse Blowing
CURRENT
TIME
FAULT
TCI
> 0.4s typical
Fuse
Feeder
Relay
79 – Fuse Saving
CURRENT
TIME
FAULT
TCI
> 0.4s typical
Feeder
Relay
Inst active on
first reclose shot
only
Fuse
INST
PICKUP
Inverse time only
after first reclose
shot
81U – Frequency Protection
• Often Applied to Feeder for Load Shedding 
Purposes
– If system frequency is collapsing, this indicates a 
load‐generation imbalance. 
– Some feeders are designed to trip offline after 
frequency decays beyond a specific level, i.e. 59.8 
Hz with 2S delay and 59.5 Hz no time delay
81O – Frequency Protection
• Often Applied to Feeder for Automatic Load 
Restoration after Load Shed Event
– Once Frequency is above nominal for some time, 
feeder breaker is closed, restoring service back to 
load
• Frequency Elements typically work by 
measuring Zero Crossings of Voltage/Current
25 – Synchronism Check
• Synchronism check function is intended for 
supervising the paralleling or connection of 
two parts of a system which are to be joined 
by the closure of a circuit breaker. 
• Synchrocheck verifies that voltages (V1 and 
V2) on the two sides of the supervised circuit 
breaker are within set limits of magnitude, 
angle and frequency differences.
• V1 is typically acquired using 2 or 3 potential 
transformers
• V2 is typically a signal phase potential 
transformer measuring a phase‐to‐phase 
voltage, such as Vab or Vbc
G
Industrial
Utility
• Phase instantaneous and
time-delayed overcurrent
is used.
• Ground instantaneous
overcurrent is used.
• Optionally, ground time-
delayed overcurrent is
used
Typical Industrial Feeder CB
Typical Utility Feeder CB
• Phase and ground
overcurrent protection
with multi-shot
reclosing relay is used.
• Both instantaneous
and time-delayed
overcurrent are used.
• Reclosing is Often
Included for Overhead
Lines
79
Typical Medium Voltage Incoming 
Main Protection
Benefits of Microprocessor Relays
Motor Protection
• The Following ANSI Device Numbers Are 
Used for Motor Protection:
– 50 – Instantaneous Overcurrent
– 87M – Machine Differential
– 49 – Thermal Protection
– 46 – Current Unbalance Protection
– 27/59 – Under/Over Voltage
– 37 – Undercurrent
– 66 – Jogging
50 – Short Circuit Protection
• The short circuit element provides
protection for excessively high overcurrent
faults
• Phase-to-phase and phase-to-ground
faults are common types of short circuits
• To avoid nuisance tripping during starting,
set the the short circuit protection pick up
to a value at least 1.7 times the maximum
expected symmetrical starting current of
motor.
• The breaker or contactor must have an
interrupting capacity equal to or greater
then the maximum available fault current
or let an upstream protective device
interrupt fault current.
87 – Differential Protection
• If sufficient margin 
between starting 
current and short 
circuit value doesn’t 
exist, differential 
protection is required.
• Core Balance CT 
Connection Is 
Preferred
87 – Differential Protection
• In cases where 
conductors are too 
large, or window 
CT can not be 
mounted core 
balance 
connection can 
not be used
50G – Ground Fault Protection
• Many Industrial 
Plants use High 
Resistance Ground 
Schemes
• Need sensitivity, 
should use Zero 
Sequence CT
50G – Ground Fault Protection
• Not always possible to 
use Zero Sequence CT
• Use Residual 
Connection
• Acceptable for Solidly 
Grounded System, 
requires delay for HRG 
Scheme
49 – Thermal Protection
• Different then typical overcurrent characteristic. 
• Takes into account cooling characteristics of the motor. 
• Can also use physically measured temperatures (RTD)
• Very sophisticated, primary element that makes a motor 
relay a motor relay
A motor can run overloaded without a fault in motor or supply
A primary motor protective element of the motor protection relay is the
thermal overload element and this is accomplished through motor
thermal image modeling. This model must account for thermal process in
the motor while motor is starting, running at normal load, running
overloaded and stopped. Algorithm of the thermal model integrates both
stator and rotor heating into a single model.
• Main Factors and Elements Comprising
the Thermal Model are:
• Overload Pickup Level
• Overload Curve
• Running & Stopped Cooling Time Constants
• Hot/Cold Stall Time Ratio
• RTD & Unbalance Biasing
• Motor State Machine
49 – Overload Protection
49 - Motor Thermal Limit Curves
Thermal Limit Curves:
B. Hot Running Overload
B
A. Cold Running Overload
A
D. Hot Locked Rotor CurveD
C
C. Cold Locked Rotor Curve
F. Acceleration curve @100%
voltage
F
E. Acceleration curve @ 80% rated
voltageE
• Thermal Limit of the model is dictated by overload curve constructed in
the motor protection device in the reference to thermal damage curves
normally supplied by motor manufacturer.
• Motor protection device is equipped with set of standard curves and
capable to construct customized curves for any motor application.
49 - Thermal Overload Pickup
• Set to the maximum allowed by
the service factor of the motor.
• Set slightly above the motor
service factor by 8-10% to
account for measuring errors
• If RTD Biasing of Thermal Model
is used, thermal overload setting
can be set higher
• Note: motor feeder cables are
normally sized at 1.25 times
motor’s full load current rating,
which would limit the motor
overload pickup setting to a
maximum of 125%.
SF Thermal Overload Pickup
1.0 1.1
1.15 1.25
• Thermal Capacity Used (TCU) is a criterion selected in thermal model
to evaluate thermal condition of the motor.
• TCU is defined as percentage of motor thermal limit utilized during
motor operation.
• A running motor will have some level of thermal capacity used due
to Motor Losses.
• Thermal Trip when Thermal Capacity Used equals 100%
49 – Thermal Capacity Used
Overload Curve
Set the overload curve below cold thermal limit and above hot thermal limit
If only hot curve is provided by mfgr, then must set below hot thermal limit
49 - Overload Curve Selection
If the motor starting
current begins to
infringe on the thermal
damage curves or if the
motor is called upon to
drive a high inertia load
such that the
acceleration time
exceeds the safe stall
time, custom or voltage
dependent overload
curve may be required.
49 - Overload Curve Selection
49 - Overload Curve Selection
A custom overload curve
will allow the user to
tailor the relay’s thermal
damage curve to the
motor such that a
successful start can occur
without compromising
protection while at the
same time utilizing the
motor to its full potential
during the running
condition.
49 - Current Unbalance Bias
Negative sequence currents (or unbalanced phase currents) will cause
additional rotor heating that will be accounted for in Thermal Model.
Positive Sequence
Negative Sequence
• Main causes of current unbalance
• Blown fuses
• Loose connections
• Stator turn-to-turn faults
• System voltage distortion and unbalance
• Faults
49 - Current Unbalance Bias
• Equivalent heating motor current is employed to bias thermal model in
response to current unbalance.
• Im - real motor current; K - unbalance bias factor; I1 & I2 -
positive and negative sequence components of motor current.
• K factor reflects the degree of extra heating caused by the negative
sequence component of the motor current.
• IEEE guidelines for typical and conservative estimates of K.
Thermal Model - Motor Cooling
• Motor cooling is characterized by separate cooling time constants
(CTC) for running and stopped motor states. Typical ratio of the
stopped to running CTC is 2/1
• It takes the motor typically 5 time constants to cool.
Thermal Model Cooling100% load -
Running
Thermal Model Cooling Motor
Tripped
46 - Unbalance Protection
• Indication of unbalance  negative sequence current / voltage
• Unbalance causes motor stress and temperature rise
• Current unbalance in a motor is result of unequal line voltages
• Unbalanced supply, blown fuse, single-phasing
• Current unbalance can also be present due to:
• Loose or bad connections
• Incorrect phase rotation connection
• Stator turn-to-turn faults
• For a typical three-phase induction motor:
• 1% voltage unbalance (V2) relates to 6% current unbalance (I2)
• For small and medium sized motors, only current transformers (CTs) are available and
no voltage transformers (VTs). Measure current unbalance and protect motor.
• The heating effect caused by current unbalance will be protected by enabling the
unbalance input to the thermal model
• For example, a setting of 10% x FLA for the current unbalance alarm with a delay of
10 seconds and a trip level setting of 25% x FLA for the current unbalance trip with a
delay of 5 seconds would be appropriate.
Motor Relay
27 – Undervoltage Protection
• The overall result of an undervoltage condition is an increase
in current and motor heating and a reduction in overall motor
performance.
• The undervoltage protection element can be thought of as
backup protection for the thermal overload element. In some
cases, if an undervoltage condition exists it may be desirable
to trip the motor faster than thermal overload element.
• The undervoltage trip should be set to 90% of nameplate
unless otherwise stated on the motor data sheets.
• Motors that are connected to the same source/bus may
experience a temporary undervoltage, when one of motors
starts. To override this temporary voltage sags, a time delay
setpoint should be set greater than the motor starting time.
59 – Overvoltage Protection
• The overall result of an overvoltage condition is a
decrease in load current and poor power factor.
• Although old motors had robust design, new motors are
designed close to saturation point for better utilization of
core materials and increasing the V/Hz ratio cause
saturation of air gap flux leading to motor heating.
• The overvoltage element should be set to 110% of the
motors nameplate unless otherwise started in the data
sheets.
37 – Undercurrent
• Many times, it is desirable to protect the 
equipment driven by a motor
• In the case of a pump, for example, a sudden 
loss of load indicates a problem with the 
pump
• This condition won’t damage the motor but is 
catastrophic to the pump
66 – Jogging Protection
• Starting a motor multiple times in rapid 
succession is bad for the motor
• Starts/Hour limits can be applied
• Time Between Starts can also be applied
Typical Low Value MV Motor 
Protection Package
Typical High Value MV Motor 
Protection Package
Transformer Protection
• The Following ANSI Device Numbers Are 
Used for Transformer Protection:
– 50 – Instantaneous Overcurrent
– 51 – Time Overcurrent
– 87T – Main Transformer Differential
– 87RGF – Ground Differential 
– 63 – Sudden Pressure
– 59/81 – Volts Per Hertz
Size Matters
• Small 500 to 10,000 kVA
• Medium 10,000 kVA to 100 MVA
• Large 100 MVA and above
• Less than 500kVA not considered a power transformer
• Our Discussion is mainly applicable to Medium and Large 
Power Transformers
Transformer Zones of Protection
Phase
Fault
Ground
Fault
Breaker
Failure
Phase
Fault
Ground Fault
Breaker
Failure
Overexcitation
Undervoltage
Underfrequency
Overload
50/51 Protection
• Characteristics Similar to What Was Discussed 
for Feeder Protection
• Instantaneous Protection Applied on the High 
Side for Internal Fault Backup Protection
• Time Overcurrent Protection Applied on the 
High Side for Overload Protection
• Low Side TOC Protection Applied for 
Bus/Feeder Backup Protection
87T – Transformer Differential
• Similar to Machine Differential, but Special 
Considerations
• Need to Compensate for Phase & Magnitude 
Shifts As Well as CT Ratio Differences
• Need to Include Inrush Restraint Algorithm
• Microprocessor Much Less Complicated then 
EM Relays
Basic Transformer Connections
Transformer Phase Shifts
• H1 (A) leads X1 (a) by 30
• Currents on “H” bushings are
line-to-line quantities
• Subtract from reference
phase vector the connected
non-polarity vector
HV LV
H1
H2
H3
X1
X3
X2
A
B
C
a
b
c
a
b
c A
B
C
Assume 1:1 transformer
87 – EM Relays
87T – Microprocessor Relay
* *
* *
D/Y30
WYE connectionWYE connection
T60
Compensation Performed Internally By Relay
• Pick up set to 0.05 to 0.1 pu (based on phase CT primary)
• Slope 1 for “normal” errors:  10%
• Break 1 at IEEE calculated worse case remnance point (assume 80% flux)
• Break 2 at 5X times Break 1 (assume no DC offset)
• Slope 2 for large errors: 50‐80%
ID
= I1
+ I2
IR
= Max [I1
or I2
]
87T ‐ Differential Characteristic
87T ‐ Through Current: Perfect Waves
0
-4
+4
4 pu
87
0 2 4 6 8 10
2
4
6
8
10
BA
A
IR
= Max [I1
or I2
]
ID = I1 + I2
B
TRIP
RESTRAIN
87T ‐ Through Current: Imperfect Waves
0
-4
+4
4 pu
87
0 2 4 6 8 10
2
4
6
8
10
C
A
A
IR
= Max [I1
or I2
]
ID
= I1
+ I2
B
B (2, -4)
(0,0)
(1, -3)
C
TRIP
RESTRAIN
87T ‐ Internal Fault: Perfect Waves
0
-4
+4
4 pu
87
0 2 4 6 8 10
2
4
6
8
10
BA
A
IR
= Max [I1
or I2
]
ID
= I1
+ I2
B
TRIP
RESTRAIN
4 pu
87T ‐ Internal Fault: Imperfect Waves
0
-4
+4
4 pu
87
0 2 4 6 8 10
2
4
6
8
10
A B
A
IR
= Max [I1
or I2
]
ID = I1 + I2
B
TRIP
RESTRAIN
4 pu
(4, 1.5)
87T ‐ Inrush Detection
• Inrush Detection and Restraint
– 2nd harmonic restraint has been employed 
for years
– “Gap” detection has also been employed
– As transformers are designed to closer 
tolerances, the incidence of both 2nd
harmonic and low current gaps in waveform 
have decreased
– If 2nd harmonic restraint level is set too low, 
differential element may be blocked for 
internal fault due to generated harmonics
• When a transformer is energized, inrush current can be as high as 10 x FLC of 
the transformer
• Inrush lasts for only a few cycles but can cause the differential element to 
operate because it has the appearance of an internal fault (current flows into 
but not out of the unloaded transformer 
• Predominantly 2nd harmonic
• 2nd harmonic restraint is used to prevent misoperation of differential 
element during inrush.
Transformer Magnetizing Inrush Current
Traditional 2nd Harmonic
> Responds to the RATIO of magnitudes of 2nd Harmonic and
Fundamental Frequency Components
> Typical setting is 15-20% (dependent on transformer
construction)
Adaptive 2nd Harmonic
> Responds to both Magnitudes and Phase Angles of 2nd Harmonic
and Fundamental Frequency Component
> Use on transformers experiencing lower than normal 2nd
harmonic levels during magnetizing inrush conditions (say 5-
10%)
87T – Harmonic Restraint
CT Saturation & Inrush Restraint
CT Saturation & Inrush Restraint
Igd, pu
I= max( IR1, IR2,IR0 ), pu
Min. PKP
S lope
 Fast detection of winding ground faults
 Very secure performance on external ground
faults
 Configurable pickup, slope, and time delay
87TG - Restricted Ground Fault Protection
87TG ‐ Improved Ground Fault Sensitivity
IG
IA
IB
IC
IG
IA
IB
IC
Internal External
63 – Pressure Devices
• Two Main Types:
– Sudden Pressure Relay – Applied to transformers 
without a Conservator Tank, uses pressure Rate of 
Rise 
– Bucholtz Relays – Applied to Transformers with a 
Conservator Tank, uses accumulated gas pressure
• When an Arc occurs in oil, a release of various 
gasses occurs. 
• Sudden Pressure Increase is Detected by Relay
63 – Transformer with Conservator
63 – Transformer w/o Conservator
SUDDEN PRESSURE
RELAY
CHANGE PRESSURE RELIEF
DEVICE
63 - Sudden Pressure Relay (SPR)
•The SPR detects excessive rates of pressure rise within the
tank as result of internal arcing causing oil breakdown and
subsequent gas evolution
•They can operate on a change in oil or gas pressure
•Using a bellows and orifice to respond to rapid differential
pressure changes, they are an inverse-time characteristic
•The SPR should be an input on the digital transformer relay
for targeting, SOE and waveform capture
63 - Buchholtz Relay
•Used on conservator type oil preservation systems
as a protective device that senses gas accumulation
•If a low level fault results in arcing, the small
amount of gas that is produced will accumulate in
this relay resulting in an alarm
•The SPR should be an input on the digital
transformer relay for targeting, SOE and waveform
capture
59/81 – Volts/Hertz Protection
–Protects against overfluxing
• Excessive v/Hz
–Constant operational limits
• ANSI C37.106 & C57.12
–1.05 loaded, 1.10 unloaded
• Inverse curves typically available for values over the 
constant allowable maximum
59/81 – Overexcitation Causes
• Transmission Systems that Supply Distribution Substations
– High voltage from Generating Plants
– Voltage and Reactive Support Control Failures
• Runaway LTCs
• Capacitor banks in when they should be out
• Shunt reactors out when they should be in
• Near‐end breaker failures resulting in voltage rise on 
line (Ferranti effect)
59/81 – Example of Overexcitation
60 MVAR
30 MVAR
30 MVAR
Caps ON When They Should Be Off
Medium Power Transformer
87
T
50
51
51
G
High Side Low Side
ANSI / IEEEC37.91
“Guide for Protective Relay Applications
for Power Transformers”
Large Power Transformer
One Line Examples
M M
ST1
Other Loads
S1
SB1
MM M
S2
SB2
ST2
Tie Breaker
Microprocessor Benefits –
Redundancy/Reduction In Device Count
One Relay, 6 different independent CT input ratios
CB1
CB5CB4CB3CB2 CB6
800:5 600:5 1000:5 1200:5 400:5
3000:5
Microprocessor Benefits – Complete Small 
Sub Protection with Minimal Devices
87T
50/51
F3*
50/51
F4*
50/51
F1*
50/51
F2*
50/51
F3
50/51
F4
79
F3
79
F4
81
F1
W/
Var
W/
Var
50/51P
T
87B
**
50/51
F1
50/51
F2
79
F1
79
F2
W/
Var
W/
Var
51G
T
LTC
CTL
27B
81
F2
81
F3
81
F4
HVBUS
LTC
CS
LVBUS
F1 F2 F3 F4
3
1
T35
F35
Microprocessor Benefits – Separate Control 
Not Required
Thank You
Suhag Patel
suhag.patel@ge.com
562‐233‐1371

More Related Content

What's hot

Bus Bar Protection
Bus Bar ProtectionBus Bar Protection
Bus Bar Protection
Sumeet Ratnawat
 
Power system-protection-presentation-dated-03-10-2013-integrated-protection-c...
Power system-protection-presentation-dated-03-10-2013-integrated-protection-c...Power system-protection-presentation-dated-03-10-2013-integrated-protection-c...
Power system-protection-presentation-dated-03-10-2013-integrated-protection-c...
jbpatel7290
 
Protective relay
Protective relay Protective relay
Protective relay
Uday Wankar
 
Over current protection
Over current protectionOver current protection
Over current protection
SHUBHAM KUMAR
 
Under ground cables presention
Under ground cables presentionUnder ground cables presention
Under ground cables presention
Razu Khan
 
protection of transmission lines[distance relay protection scheme]
protection of transmission lines[distance relay protection scheme]protection of transmission lines[distance relay protection scheme]
protection of transmission lines[distance relay protection scheme]moiz89
 
BUS BAR PROTECTION PPT BY:-R.K.PANDIT
BUS BAR  PROTECTION PPT BY:-R.K.PANDITBUS BAR  PROTECTION PPT BY:-R.K.PANDIT
BUS BAR PROTECTION PPT BY:-R.K.PANDIT
RAGHVENDRA KUMAR PANDIT
 
Power system protection topic 1
Power system protection topic 1Power system protection topic 1
Power system protection topic 1
Siswoyo Edo
 
Ppt on protection of power transformers
Ppt on protection of power transformersPpt on protection of power transformers
Ppt on protection of power transformers
siddharam kantoli
 
PPT Fault Analysis
PPT Fault AnalysisPPT Fault Analysis
PPT Fault Analysis
Ankitkumaralwariya
 
POWER SYSTEM PROTECTION
POWER SYSTEM PROTECTION POWER SYSTEM PROTECTION
POWER SYSTEM PROTECTION moiz89
 
Protection of Transmission lines
Protection of Transmission linesProtection of Transmission lines
Protection of Transmission lines
Power System Operation
 
Power Transformer Differential protection
Power Transformer Differential protectionPower Transformer Differential protection
Power Transformer Differential protection
Rishi Tandon
 
Overcurrent Protection
Overcurrent ProtectionOvercurrent Protection
Overcurrent Protection
Mohammad Zishan Alam
 
final year project report
final year project reportfinal year project report
final year project reportAnuj Kumar
 
Er rahul sharma feeder protection
Er rahul sharma feeder protectionEr rahul sharma feeder protection
Er rahul sharma feeder protection
Rahul Ruddra
 
Lecture 7 Relay Coordination.pptx
Lecture 7 Relay Coordination.pptxLecture 7 Relay Coordination.pptx
Lecture 7 Relay Coordination.pptx
ssuserb444c3
 
Directional over current relay
Directional over current relayDirectional over current relay
Directional over current relay
CS V
 
Faults on Power System
Faults on Power SystemFaults on Power System
Faults on Power System
Vinod Srivastava
 
Protective relaying
Protective relayingProtective relaying
Protective relaying
Mark Anthony Enoy
 

What's hot (20)

Bus Bar Protection
Bus Bar ProtectionBus Bar Protection
Bus Bar Protection
 
Power system-protection-presentation-dated-03-10-2013-integrated-protection-c...
Power system-protection-presentation-dated-03-10-2013-integrated-protection-c...Power system-protection-presentation-dated-03-10-2013-integrated-protection-c...
Power system-protection-presentation-dated-03-10-2013-integrated-protection-c...
 
Protective relay
Protective relay Protective relay
Protective relay
 
Over current protection
Over current protectionOver current protection
Over current protection
 
Under ground cables presention
Under ground cables presentionUnder ground cables presention
Under ground cables presention
 
protection of transmission lines[distance relay protection scheme]
protection of transmission lines[distance relay protection scheme]protection of transmission lines[distance relay protection scheme]
protection of transmission lines[distance relay protection scheme]
 
BUS BAR PROTECTION PPT BY:-R.K.PANDIT
BUS BAR  PROTECTION PPT BY:-R.K.PANDITBUS BAR  PROTECTION PPT BY:-R.K.PANDIT
BUS BAR PROTECTION PPT BY:-R.K.PANDIT
 
Power system protection topic 1
Power system protection topic 1Power system protection topic 1
Power system protection topic 1
 
Ppt on protection of power transformers
Ppt on protection of power transformersPpt on protection of power transformers
Ppt on protection of power transformers
 
PPT Fault Analysis
PPT Fault AnalysisPPT Fault Analysis
PPT Fault Analysis
 
POWER SYSTEM PROTECTION
POWER SYSTEM PROTECTION POWER SYSTEM PROTECTION
POWER SYSTEM PROTECTION
 
Protection of Transmission lines
Protection of Transmission linesProtection of Transmission lines
Protection of Transmission lines
 
Power Transformer Differential protection
Power Transformer Differential protectionPower Transformer Differential protection
Power Transformer Differential protection
 
Overcurrent Protection
Overcurrent ProtectionOvercurrent Protection
Overcurrent Protection
 
final year project report
final year project reportfinal year project report
final year project report
 
Er rahul sharma feeder protection
Er rahul sharma feeder protectionEr rahul sharma feeder protection
Er rahul sharma feeder protection
 
Lecture 7 Relay Coordination.pptx
Lecture 7 Relay Coordination.pptxLecture 7 Relay Coordination.pptx
Lecture 7 Relay Coordination.pptx
 
Directional over current relay
Directional over current relayDirectional over current relay
Directional over current relay
 
Faults on Power System
Faults on Power SystemFaults on Power System
Faults on Power System
 
Protective relaying
Protective relayingProtective relaying
Protective relaying
 

Viewers also liked

ECNG 6503 #2
ECNG 6503  #2ECNG 6503  #2
ECNG 6503 #2
Chandrabhan Sharma
 
.........
..................
.........
malikovvich
 
ECNG 3015 Power System Protection
ECNG 3015    Power System ProtectionECNG 3015    Power System Protection
ECNG 3015 Power System Protection
Chandrabhan Sharma
 
Moulded Case Circuit Breaker MF2 Series (MCCB)
Moulded Case Circuit Breaker MF2 Series (MCCB)Moulded Case Circuit Breaker MF2 Series (MCCB)
Moulded Case Circuit Breaker MF2 Series (MCCB)
MEMF Electrical Industries Co.
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
IJERD Editor
 
Microprocessor Fundamentals
Microprocessor FundamentalsMicroprocessor Fundamentals
Microprocessor Fundamentals
Diwaker Pant
 
8085 micro processor
8085 micro processor8085 micro processor
8085 micro processor
Poojith Chowdhary
 
Time current curves
Time current curvesTime current curves
Time current curves
Rabah Zaimeddine
 
A Comparative Analysis Among PWM Control Z-source Inverter with Conventional ...
A Comparative Analysis Among PWM Control Z-source Inverter with Conventional ...A Comparative Analysis Among PWM Control Z-source Inverter with Conventional ...
A Comparative Analysis Among PWM Control Z-source Inverter with Conventional ...
Mustafa Xaved
 
Microcontroller based mho relay for distance protection
Microcontroller based mho relay for distance protectionMicrocontroller based mho relay for distance protection
Microcontroller based mho relay for distance protection
Mr_Mohan
 
Digital signal processing based on motor control ppt
Digital signal processing based on motor control pptDigital signal processing based on motor control ppt
Digital signal processing based on motor control ppt
boga manisha
 
Speed control of induction motor using vf ds
Speed control of induction motor using vf dsSpeed control of induction motor using vf ds
Speed control of induction motor using vf ds
Ali Hassan
 
Dc motor speed controller by pwm technique
Dc motor speed controller by pwm techniqueDc motor speed controller by pwm technique
Dc motor speed controller by pwm technique
Web Design & Development
 
Multi Static Routng & Default Routing
Multi Static Routng & Default RoutingMulti Static Routng & Default Routing
Multi Static Routng & Default Routing
Kishore Kumar
 
Speed Control of DC Motor
Speed Control of DC MotorSpeed Control of DC Motor
Speed Control of DC Motor
Mafaz Ahmed
 
Speed Control of DC Motor using Microcontroller
Speed Control of DC Motor using MicrocontrollerSpeed Control of DC Motor using Microcontroller
Speed Control of DC Motor using Microcontroller
Sudip Mondal
 
Introduction to Microprocessors
Introduction to MicroprocessorsIntroduction to Microprocessors
Introduction to Microprocessors
76 Degree Creative
 

Viewers also liked (20)

Protection primer
Protection primerProtection primer
Protection primer
 
ECNG 6503 #2
ECNG 6503  #2ECNG 6503  #2
ECNG 6503 #2
 
330 01
330 01330 01
330 01
 
.........
..................
.........
 
ECNG 3015 Power System Protection
ECNG 3015    Power System ProtectionECNG 3015    Power System Protection
ECNG 3015 Power System Protection
 
Moulded Case Circuit Breaker MF2 Series (MCCB)
Moulded Case Circuit Breaker MF2 Series (MCCB)Moulded Case Circuit Breaker MF2 Series (MCCB)
Moulded Case Circuit Breaker MF2 Series (MCCB)
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Microprocessor Fundamentals
Microprocessor FundamentalsMicroprocessor Fundamentals
Microprocessor Fundamentals
 
8085 micro processor
8085 micro processor8085 micro processor
8085 micro processor
 
Time current curves
Time current curvesTime current curves
Time current curves
 
PROJECT SEMINAR
PROJECT SEMINARPROJECT SEMINAR
PROJECT SEMINAR
 
A Comparative Analysis Among PWM Control Z-source Inverter with Conventional ...
A Comparative Analysis Among PWM Control Z-source Inverter with Conventional ...A Comparative Analysis Among PWM Control Z-source Inverter with Conventional ...
A Comparative Analysis Among PWM Control Z-source Inverter with Conventional ...
 
Microcontroller based mho relay for distance protection
Microcontroller based mho relay for distance protectionMicrocontroller based mho relay for distance protection
Microcontroller based mho relay for distance protection
 
Digital signal processing based on motor control ppt
Digital signal processing based on motor control pptDigital signal processing based on motor control ppt
Digital signal processing based on motor control ppt
 
Speed control of induction motor using vf ds
Speed control of induction motor using vf dsSpeed control of induction motor using vf ds
Speed control of induction motor using vf ds
 
Dc motor speed controller by pwm technique
Dc motor speed controller by pwm techniqueDc motor speed controller by pwm technique
Dc motor speed controller by pwm technique
 
Multi Static Routng & Default Routing
Multi Static Routng & Default RoutingMulti Static Routng & Default Routing
Multi Static Routng & Default Routing
 
Speed Control of DC Motor
Speed Control of DC MotorSpeed Control of DC Motor
Speed Control of DC Motor
 
Speed Control of DC Motor using Microcontroller
Speed Control of DC Motor using MicrocontrollerSpeed Control of DC Motor using Microcontroller
Speed Control of DC Motor using Microcontroller
 
Introduction to Microprocessors
Introduction to MicroprocessorsIntroduction to Microprocessors
Introduction to Microprocessors
 

Similar to Fundamentals of Microprocessor Based Relays

Selective Coodination
Selective CoodinationSelective Coodination
Selective Coodination
michaeljmack
 
Short Circuit, Protective Device Coordination
Short Circuit, Protective Device CoordinationShort Circuit, Protective Device Coordination
Short Circuit, Protective Device Coordination
michaeljmack
 
Short-Circuit Protective Device Coordination & Arc Flash Analysis
Short-Circuit Protective Device Coordination & Arc Flash AnalysisShort-Circuit Protective Device Coordination & Arc Flash Analysis
Short-Circuit Protective Device Coordination & Arc Flash Analysis
Power System Operation
 
Relay
RelayRelay
Ohiri-Principles-and-Philosophy-of-Protective-Relaying.pptx
Ohiri-Principles-and-Philosophy-of-Protective-Relaying.pptxOhiri-Principles-and-Philosophy-of-Protective-Relaying.pptx
Ohiri-Principles-and-Philosophy-of-Protective-Relaying.pptx
Godwin308555
 
FEEDER AND BUS BAR PROTECTION
FEEDER AND BUS BAR PROTECTIONFEEDER AND BUS BAR PROTECTION
FEEDER AND BUS BAR PROTECTION
Dr. Rohit Babu
 
Electrical Protection Schemes in detail
Electrical Protection Schemes in detailElectrical Protection Schemes in detail
Electrical Protection Schemes in detail
Slides Hub
 
Substation_equipment_ (1).pptx
Substation_equipment_ (1).pptxSubstation_equipment_ (1).pptx
Substation_equipment_ (1).pptx
Satish Pydimarla
 
Generator and Transformer Protection (PART 2)
Generator and Transformer Protection (PART 2)Generator and Transformer Protection (PART 2)
Generator and Transformer Protection (PART 2)
Dr. Rohit Babu
 
SGP-4 PROTECTION OF ALTRNTR.pptx
SGP-4 PROTECTION OF ALTRNTR.pptxSGP-4 PROTECTION OF ALTRNTR.pptx
SGP-4 PROTECTION OF ALTRNTR.pptx
SHIVANICHAUUHAN1
 
ETAP Training.pptx
ETAP Training.pptxETAP Training.pptx
ETAP Training.pptx
Hoshangs
 
Fusing Metering Voltages for High Capacity Circuits
Fusing Metering Voltages for High Capacity CircuitsFusing Metering Voltages for High Capacity Circuits
Fusing Metering Voltages for High Capacity Circuits
TESCO - The Eastern Specialty Company
 
Electromagnetic Protection (PART I)
Electromagnetic Protection (PART I)Electromagnetic Protection (PART I)
Electromagnetic Protection (PART I)
Dr. Rohit Babu
 
Protective relay.pptx
Protective relay.pptxProtective relay.pptx
Protective relay.pptx
BudhadityaBiswas5
 
Gate Pulse Triggering of Single Phase Thyristor Circuit through Opto-Coupling
Gate Pulse Triggering of Single Phase Thyristor Circuit through Opto-CouplingGate Pulse Triggering of Single Phase Thyristor Circuit through Opto-Coupling
Gate Pulse Triggering of Single Phase Thyristor Circuit through Opto-Coupling
Nusrat Mary
 
protection of feeders in distribution substation
protection of feeders in distribution substationprotection of feeders in distribution substation
protection of feeders in distribution substation
Panneerselvam Rathinam
 
Testing of Circuit Breakers.pptx
Testing of Circuit Breakers.pptxTesting of Circuit Breakers.pptx
Testing of Circuit Breakers.pptx
Tafhim Bin Nasir
 
Selective Coordination "The Rest of the Story"
Selective Coordination "The Rest of the Story"Selective Coordination "The Rest of the Story"
Selective Coordination "The Rest of the Story"
michaeljmack
 
3_Overcurrent Protection.pdf
3_Overcurrent Protection.pdf3_Overcurrent Protection.pdf
3_Overcurrent Protection.pdf
LiewChiaPing
 

Similar to Fundamentals of Microprocessor Based Relays (20)

Selective Coodination
Selective CoodinationSelective Coodination
Selective Coodination
 
Short Circuit, Protective Device Coordination
Short Circuit, Protective Device CoordinationShort Circuit, Protective Device Coordination
Short Circuit, Protective Device Coordination
 
Short-Circuit Protective Device Coordination & Arc Flash Analysis
Short-Circuit Protective Device Coordination & Arc Flash AnalysisShort-Circuit Protective Device Coordination & Arc Flash Analysis
Short-Circuit Protective Device Coordination & Arc Flash Analysis
 
Relay
RelayRelay
Relay
 
Ohiri-Principles-and-Philosophy-of-Protective-Relaying.pptx
Ohiri-Principles-and-Philosophy-of-Protective-Relaying.pptxOhiri-Principles-and-Philosophy-of-Protective-Relaying.pptx
Ohiri-Principles-and-Philosophy-of-Protective-Relaying.pptx
 
FEEDER AND BUS BAR PROTECTION
FEEDER AND BUS BAR PROTECTIONFEEDER AND BUS BAR PROTECTION
FEEDER AND BUS BAR PROTECTION
 
Electrical Protection Schemes in detail
Electrical Protection Schemes in detailElectrical Protection Schemes in detail
Electrical Protection Schemes in detail
 
Substation_equipment_ (1).pptx
Substation_equipment_ (1).pptxSubstation_equipment_ (1).pptx
Substation_equipment_ (1).pptx
 
Generator and Transformer Protection (PART 2)
Generator and Transformer Protection (PART 2)Generator and Transformer Protection (PART 2)
Generator and Transformer Protection (PART 2)
 
SGP-4 PROTECTION OF ALTRNTR.pptx
SGP-4 PROTECTION OF ALTRNTR.pptxSGP-4 PROTECTION OF ALTRNTR.pptx
SGP-4 PROTECTION OF ALTRNTR.pptx
 
ETAP Training.pptx
ETAP Training.pptxETAP Training.pptx
ETAP Training.pptx
 
Fusing Metering Voltages for High Capacity Circuits
Fusing Metering Voltages for High Capacity CircuitsFusing Metering Voltages for High Capacity Circuits
Fusing Metering Voltages for High Capacity Circuits
 
Electromagnetic Protection (PART I)
Electromagnetic Protection (PART I)Electromagnetic Protection (PART I)
Electromagnetic Protection (PART I)
 
Protective relay.pptx
Protective relay.pptxProtective relay.pptx
Protective relay.pptx
 
Gate Pulse Triggering of Single Phase Thyristor Circuit through Opto-Coupling
Gate Pulse Triggering of Single Phase Thyristor Circuit through Opto-CouplingGate Pulse Triggering of Single Phase Thyristor Circuit through Opto-Coupling
Gate Pulse Triggering of Single Phase Thyristor Circuit through Opto-Coupling
 
EIT_Presentation
EIT_PresentationEIT_Presentation
EIT_Presentation
 
protection of feeders in distribution substation
protection of feeders in distribution substationprotection of feeders in distribution substation
protection of feeders in distribution substation
 
Testing of Circuit Breakers.pptx
Testing of Circuit Breakers.pptxTesting of Circuit Breakers.pptx
Testing of Circuit Breakers.pptx
 
Selective Coordination "The Rest of the Story"
Selective Coordination "The Rest of the Story"Selective Coordination "The Rest of the Story"
Selective Coordination "The Rest of the Story"
 
3_Overcurrent Protection.pdf
3_Overcurrent Protection.pdf3_Overcurrent Protection.pdf
3_Overcurrent Protection.pdf
 

More from michaeljmack

Auburn, NY - 200 Years of History 1793-1993
Auburn, NY - 200 Years of History  1793-1993Auburn, NY - 200 Years of History  1793-1993
Auburn, NY - 200 Years of History 1793-1993
michaeljmack
 
Auburn High School, Auburn, NY, 1982 Yearbook
Auburn High School, Auburn, NY, 1982 YearbookAuburn High School, Auburn, NY, 1982 Yearbook
Auburn High School, Auburn, NY, 1982 Yearbook
michaeljmack
 
Auburn High School, Auburn, NY, 1980 Yearbook
Auburn High School, Auburn, NY, 1980 YearbookAuburn High School, Auburn, NY, 1980 Yearbook
Auburn High School, Auburn, NY, 1980 Yearbook
michaeljmack
 
Surge Protection
Surge ProtectionSurge Protection
Surge Protection
michaeljmack
 
Diesel Particulate Filters Control Systems
Diesel Particulate Filters Control SystemsDiesel Particulate Filters Control Systems
Diesel Particulate Filters Control Systems
michaeljmack
 
Understanding Arc Flash
Understanding Arc FlashUnderstanding Arc Flash
Understanding Arc Flash
michaeljmack
 
Siemens MV GIS Switchgear
Siemens MV GIS SwitchgearSiemens MV GIS Switchgear
Siemens MV GIS Switchgear
michaeljmack
 
Fundamentals of transformer inrush
Fundamentals of transformer inrushFundamentals of transformer inrush
Fundamentals of transformer inrush
michaeljmack
 
Building information modeling
Building information modelingBuilding information modeling
Building information modeling
michaeljmack
 
15 years of experience stator ground fault protection
15 years of experience stator ground fault protection15 years of experience stator ground fault protection
15 years of experience stator ground fault protection
michaeljmack
 
Emergency, Legally Required and Optional Standby Systems
Emergency, Legally Required and Optional Standby SystemsEmergency, Legally Required and Optional Standby Systems
Emergency, Legally Required and Optional Standby Systems
michaeljmack
 
Lighting Control Solutions for Daylit Spaces
Lighting Control Solutions for Daylit SpacesLighting Control Solutions for Daylit Spaces
Lighting Control Solutions for Daylit Spaces
michaeljmack
 
COPS: An Arresting Look at NEC Article 708
COPS: An Arresting Look at NEC Article 708COPS: An Arresting Look at NEC Article 708
COPS: An Arresting Look at NEC Article 708
michaeljmack
 
Seismic Compliance of Electrical Distribution
Seismic Compliance of Electrical DistributionSeismic Compliance of Electrical Distribution
Seismic Compliance of Electrical Distribution
michaeljmack
 
Generator Set Transient Performance
Generator Set Transient PerformanceGenerator Set Transient Performance
Generator Set Transient Performance
michaeljmack
 
Modeling of a digital protective relay in a RT Digital Simulator
Modeling of a digital protective relay in a RT Digital SimulatorModeling of a digital protective relay in a RT Digital Simulator
Modeling of a digital protective relay in a RT Digital Simulator
michaeljmack
 
Facts on Grid Friendly Wind Plants
Facts on Grid Friendly Wind PlantsFacts on Grid Friendly Wind Plants
Facts on Grid Friendly Wind Plants
michaeljmack
 
Power Plant Horror Stories
Power Plant Horror StoriesPower Plant Horror Stories
Power Plant Horror Stories
michaeljmack
 
Blackout Avoidance & Undervoltage Load Shedding
Blackout Avoidance & Undervoltage Load SheddingBlackout Avoidance & Undervoltage Load Shedding
Blackout Avoidance & Undervoltage Load Shedding
michaeljmack
 
Transformer Fundamentals
Transformer FundamentalsTransformer Fundamentals
Transformer Fundamentals
michaeljmack
 

More from michaeljmack (20)

Auburn, NY - 200 Years of History 1793-1993
Auburn, NY - 200 Years of History  1793-1993Auburn, NY - 200 Years of History  1793-1993
Auburn, NY - 200 Years of History 1793-1993
 
Auburn High School, Auburn, NY, 1982 Yearbook
Auburn High School, Auburn, NY, 1982 YearbookAuburn High School, Auburn, NY, 1982 Yearbook
Auburn High School, Auburn, NY, 1982 Yearbook
 
Auburn High School, Auburn, NY, 1980 Yearbook
Auburn High School, Auburn, NY, 1980 YearbookAuburn High School, Auburn, NY, 1980 Yearbook
Auburn High School, Auburn, NY, 1980 Yearbook
 
Surge Protection
Surge ProtectionSurge Protection
Surge Protection
 
Diesel Particulate Filters Control Systems
Diesel Particulate Filters Control SystemsDiesel Particulate Filters Control Systems
Diesel Particulate Filters Control Systems
 
Understanding Arc Flash
Understanding Arc FlashUnderstanding Arc Flash
Understanding Arc Flash
 
Siemens MV GIS Switchgear
Siemens MV GIS SwitchgearSiemens MV GIS Switchgear
Siemens MV GIS Switchgear
 
Fundamentals of transformer inrush
Fundamentals of transformer inrushFundamentals of transformer inrush
Fundamentals of transformer inrush
 
Building information modeling
Building information modelingBuilding information modeling
Building information modeling
 
15 years of experience stator ground fault protection
15 years of experience stator ground fault protection15 years of experience stator ground fault protection
15 years of experience stator ground fault protection
 
Emergency, Legally Required and Optional Standby Systems
Emergency, Legally Required and Optional Standby SystemsEmergency, Legally Required and Optional Standby Systems
Emergency, Legally Required and Optional Standby Systems
 
Lighting Control Solutions for Daylit Spaces
Lighting Control Solutions for Daylit SpacesLighting Control Solutions for Daylit Spaces
Lighting Control Solutions for Daylit Spaces
 
COPS: An Arresting Look at NEC Article 708
COPS: An Arresting Look at NEC Article 708COPS: An Arresting Look at NEC Article 708
COPS: An Arresting Look at NEC Article 708
 
Seismic Compliance of Electrical Distribution
Seismic Compliance of Electrical DistributionSeismic Compliance of Electrical Distribution
Seismic Compliance of Electrical Distribution
 
Generator Set Transient Performance
Generator Set Transient PerformanceGenerator Set Transient Performance
Generator Set Transient Performance
 
Modeling of a digital protective relay in a RT Digital Simulator
Modeling of a digital protective relay in a RT Digital SimulatorModeling of a digital protective relay in a RT Digital Simulator
Modeling of a digital protective relay in a RT Digital Simulator
 
Facts on Grid Friendly Wind Plants
Facts on Grid Friendly Wind PlantsFacts on Grid Friendly Wind Plants
Facts on Grid Friendly Wind Plants
 
Power Plant Horror Stories
Power Plant Horror StoriesPower Plant Horror Stories
Power Plant Horror Stories
 
Blackout Avoidance & Undervoltage Load Shedding
Blackout Avoidance & Undervoltage Load SheddingBlackout Avoidance & Undervoltage Load Shedding
Blackout Avoidance & Undervoltage Load Shedding
 
Transformer Fundamentals
Transformer FundamentalsTransformer Fundamentals
Transformer Fundamentals
 

Recently uploaded

DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
ongomchris
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 

Recently uploaded (20)

DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 

Fundamentals of Microprocessor Based Relays