SlideShare a Scribd company logo
Volumes of Solids
of Revolution
y
y = f(x)
x
Volumes of Solids
of Revolution
y
y = f(x)
a

b

x
Volumes of Solids
of Revolution
y
y = f(x)
a

b

x
Volumes of Solids
of Revolution
y
y = f(x)
a

Volume of a solid of revolution about;

b

x
Volumes of Solids
of Revolution
y
y = f(x)
a

b

x

Volume of a solid of revolution about; i x axis : V   y 2 dx

b

a
Volumes of Solids
of Revolution
y
y = f(x)
a

b

x

Volume of a solid of revolution about; i x axis : V   y 2 dx

b

a

ii  y axis : V   c x 2 dy
d
e.g. (i) cone
y

y  mx

h x
e.g. (i) cone
y

y  mx

h x
V    y 2 dx

e.g. (i) cone

h

y

y  mx

h x

   m 2 x 2 dx
0
V    y 2 dx

e.g. (i) cone

h

y

y  mx

h x

   m 2 x 2 dx
0

h

2 1 3 
 m  x 
3  0
V    y 2 dx

e.g. (i) cone

h

y

y  mx

h x

   m 2 x 2 dx
0

h

2 1 3 
 m  x 
3  0
1 2 3
 m h  0 
3
1 2 3
 m h
3
V    y 2 dx

e.g. (i) cone

h

y

y  mx
r
h x

   m 2 x 2 dx
0

h

2 1 3 
 m  x 
3  0
1 2 3
 m h  0 
3
1 2 3
 m h
3
V    y 2 dx

e.g. (i) cone

h

y

y  mx
r
h x

r
m
h

   m 2 x 2 dx
0

h

2 1 3 
 m  x 
3  0
1 2 3
 m h  0 
3
1 2 3
 m h
3
V    y 2 dx

e.g. (i) cone

h

y

y  mx
r
h x

r
m
h

   m 2 x 2 dx
0

h

2 1 3 
 m  x 
3  0
1 2 3
 m h  0 
3
1 2 3
 m h
3
2
1 r
    h3
3 h
r 2 h 3

3h 2
r 2 h

3
(ii) sphere
y
x2  y2  r 2

rx
(ii) sphere
y
x2  y2  r 2

rx
(ii) sphere
y
x2  y2  r 2

V    y 2 dx
r

 2  r 2  x 2 dx
0

rx
(ii) sphere

y
x2  y2  r 2

V    y 2 dx
r

 2  r 2  x 2 dx
0

r

rx

r 2 x  1 x 3 
 2 
3 0


(ii) sphere

y
x2  y2  r 2

V    y 2 dx
r

 2  r 2  x 2 dx
0

r

rx

r 2 x  1 x 3 
 2 
3 0


1


 2  r 2 r   r 3   0


3  

2 3
 2  r 
3 
4
 r 3
3
(iii) Find the volume of the solid generated when y  x 2 is revolved
around the y axis between y  0 and y  1.
(iii) Find the volume of the solid generated when y  x 2 is revolved
around the y axis between y  0 and y  1.

y

y  x2

x
(iii) Find the volume of the solid generated when y  x 2 is revolved
around the y axis between y  0 and y  1.
y  x2

y
1

x
(iii) Find the volume of the solid generated when y  x 2 is revolved
around the y axis between y  0 and y  1.
y  x2

y
1

x
(iii) Find the volume of the solid generated when y  x 2 is revolved
around the y axis between y  0 and y  1.
y  x2

y

V 


1


1

 ydy
0

x

x 2 dy
(iii) Find the volume of the solid generated when y  x 2 is revolved
around the y axis between y  0 and y  1.
y  x2

y

V 


1



x 2 dy

1

 ydy
0



x



y 
2

2 1
0
(iii) Find the volume of the solid generated when y  x 2 is revolved
around the y axis between y  0 and y  1.
y  x2

y

V 


1



x 2 dy

1

 ydy
0



x





y 
2


2



2

2 1
0

1

2

 0

units

3
(iv) Find the volume of the solid when the shaded region is rotated
about the x axis
y
y  5x
5

x
(iv) Find the volume of the solid when the shaded region is rotated
about the x axis
y
V    y 2 dx
y  5x
1
5
2
   52  5 x  dx





0

1

x

   25  25 x 2 dx
0
(iv) Find the volume of the solid when the shaded region is rotated
about the x axis
y
V    y 2 dx
y  5x
1
5
2
   52  5 x  dx





0

1

x

   25  25 x 2 dx
0

1

 x  1 x3 
 25 
 3 0

(iv) Find the volume of the solid when the shaded region is rotated
about the x axis
y
V    y 2 dx
y  5x
1
5
2
   52  5 x  dx





0

1

x

   25  25 x 2 dx
0

1

 x  1 x3 
 25 
 3 0

1 1 13 0
 25  
 
 3

50

unit 3
3
(iv) Find the volume of the solid when the shaded region is rotated
about the x axis
y
V    y 2 dx
y  5x
1
5
2
   52  5 x  dx





0

1

x

OR

   25  25 x 2 dx
0

1

 x  1 x3 
 25 
 3 0

1 1 13 0
 25  
 
 3

50

unit 3
3
(iv) Find the volume of the solid when the shaded region is rotated
about the x axis
y
V    y 2 dx
y  5x
1
5
2
   52  5 x  dx





0

1

x

1
OR V  r 2 h  r 2 h
3
2
2
  5 1
3
50

units 3
3

   25  25 x 2 dx
0

1

 x  1 x3 
 25 
 3 0

1 1 13 0
 25  
 
 3

50

unit 3
3
2005 HSC Question 6c)

The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the
diagram.
(i) Find the points of intersection of the two curves.

(1)
2005 HSC Question 6c)

The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the
diagram.
(i) Find the points of intersection of the two curves.
x 2  12  2 x 2

(1)
2005 HSC Question 6c)

The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the
diagram.
(i) Find the points of intersection of the two curves.
x 2  12  2 x 2
3 x 2  12
x2  4
x  2

(1)
2005 HSC Question 6c)

The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the
diagram.
(i) Find the points of intersection of the two curves.
x 2  12  2 x 2
3 x 2  12
x2  4
x  2
 meet at  2, 4 

(1)
(ii) The shaded region between the two curves and the y axis is
(3)
rotated about the y axis. By splitting the shaded region into two
parts, or otherwise, find the volume of the solid formed.
(ii) The shaded region between the two curves and the y axis is
(3)
rotated about the y axis. By splitting the shaded region into two
parts, or otherwise, find the volume of the solid formed.
(ii) The shaded region between the two curves and the y axis is
(3)
rotated about the y axis. By splitting the shaded region into two
parts, or otherwise, find the volume of the solid formed.

V    x 2 dy
(ii) The shaded region between the two curves and the y axis is
(3)
rotated about the y axis. By splitting the shaded region into two
parts, or otherwise, find the volume of the solid formed.

V    x 2 dy
(ii) The shaded region between the two curves and the y axis is
(3)
rotated about the y axis. By splitting the shaded region into two
parts, or otherwise, find the volume of the solid formed.
x2  y

V    x 2 dy
(ii) The shaded region between the two curves and the y axis is
(3)
rotated about the y axis. By splitting the shaded region into two
parts, or otherwise, find the volume of the solid formed.
x2  y

1
x  6 y
2
2

V    x 2 dy
(ii) The shaded region between the two curves and the y axis is
(3)
rotated about the y axis. By splitting the shaded region into two
parts, or otherwise, find the volume of the solid formed.
x2  y

1
x  6 y
2
2

V    x 2 dy
4

12

  1  
V   6
y  dy
 ydy
2 
0
4
(ii) The shaded region between the two curves and the y axis is
(3)
rotated about the y axis. By splitting the shaded region into two
parts, or otherwise, find the volume of the solid formed.
x2  y

1
x  6 y
2
2

V    x 2 dy
4

12

  1  
V   6
y  dy
 ydy
2 
0
4
4
12
1 2
1 2
  6 y  y     y 

 2 4
4 0


(ii) The shaded region between the two curves and the y axis is
(3)
rotated about the y axis. By splitting the shaded region into two
parts, or otherwise, find the volume of the solid formed.
x2  y

1
x  6 y
2
2

V    x 2 dy
4

12





  1  
V   6
y  dy
 ydy
2 
0
4
4
12
1 2
1 2
  6 y  y     y 

 2 4
4 0


1 2

2
2
  6  4    4   0  12    4 
4
2




(ii) The shaded region between the two curves and the y axis is
(3)
rotated about the y axis. By splitting the shaded region into two
parts, or otherwise, find the volume of the solid formed.
x2  y

1
x  6 y
2
2

V    x 2 dy
4

12





  1  
V   6
y  dy
 ydy
2 
0
4
4
12
1 2
1 2
  6 y  y     y 

 2 4
4 0


1 2

2
2
  6  4    4   0  12    4 
4
2
 84 units3




Exercise 11G; 3bdef, 4eg, 5cd, 6d, 8ad,
12, 16a, 19 to 22, 24*, 25*

More Related Content

What's hot

11 X1 T01 03 factorising (2010)
11 X1 T01 03 factorising (2010)11 X1 T01 03 factorising (2010)
11 X1 T01 03 factorising (2010)Nigel Simmons
 
1-1 Algebra Review HW
1-1 Algebra Review HW1-1 Algebra Review HW
1-1 Algebra Review HWnechamkin
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
Carlon Baird
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
Carlon Baird
 
Pure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookPure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - Textbook
Rushane Barnes
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
Co ordinate geometry
Co ordinate geometryCo ordinate geometry
Co ordinate geometry
indianeducation
 
Definite Integral Review
Definite Integral ReviewDefinite Integral Review
Definite Integral ReviewSharon Henry
 
Dobule and triple integral
Dobule and triple integralDobule and triple integral
Dobule and triple integral
sonendra Gupta
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)Nigel Simmons
 
April 14, 2015
April 14, 2015April 14, 2015
April 14, 2015khyps13
 
Tricky log graphs
Tricky log graphsTricky log graphs
Tricky log graphs
Shaun Wilson
 
Integration worksheet.
Integration worksheet.Integration worksheet.
Integration worksheet.skruti
 
3 Forms Of A Quadratic Function
3 Forms Of A Quadratic Function3 Forms Of A Quadratic Function
3 Forms Of A Quadratic Functionguestc8e5bb
 
Orthogonal Range Searching
Orthogonal Range SearchingOrthogonal Range Searching
Orthogonal Range Searching
Benjamin Sach
 
Exam ii(practice)
Exam ii(practice)Exam ii(practice)
Exam ii(practice)PublicLeaks
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
sialalsi
 
Unit 7 Review A
Unit 7 Review AUnit 7 Review A
Unit 7 Review A
Sedona Red Rock HS
 
Function graphs
Function graphsFunction graphs
Function graphs
Shaun Wilson
 

What's hot (20)

11 X1 T01 03 factorising (2010)
11 X1 T01 03 factorising (2010)11 X1 T01 03 factorising (2010)
11 X1 T01 03 factorising (2010)
 
1-1 Algebra Review HW
1-1 Algebra Review HW1-1 Algebra Review HW
1-1 Algebra Review HW
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
 
Pure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookPure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - Textbook
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
Co ordinate geometry
Co ordinate geometryCo ordinate geometry
Co ordinate geometry
 
Definite Integral Review
Definite Integral ReviewDefinite Integral Review
Definite Integral Review
 
Dobule and triple integral
Dobule and triple integralDobule and triple integral
Dobule and triple integral
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
 
April 14, 2015
April 14, 2015April 14, 2015
April 14, 2015
 
125 5.4
125 5.4125 5.4
125 5.4
 
Tricky log graphs
Tricky log graphsTricky log graphs
Tricky log graphs
 
Integration worksheet.
Integration worksheet.Integration worksheet.
Integration worksheet.
 
3 Forms Of A Quadratic Function
3 Forms Of A Quadratic Function3 Forms Of A Quadratic Function
3 Forms Of A Quadratic Function
 
Orthogonal Range Searching
Orthogonal Range SearchingOrthogonal Range Searching
Orthogonal Range Searching
 
Exam ii(practice)
Exam ii(practice)Exam ii(practice)
Exam ii(practice)
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
 
Unit 7 Review A
Unit 7 Review AUnit 7 Review A
Unit 7 Review A
 
Function graphs
Function graphsFunction graphs
Function graphs
 

Viewers also liked

Data-Driven Threat Intelligence: Metrics on Indicator Dissemination and Sharing
Data-Driven Threat Intelligence: Metrics on Indicator Dissemination and SharingData-Driven Threat Intelligence: Metrics on Indicator Dissemination and Sharing
Data-Driven Threat Intelligence: Metrics on Indicator Dissemination and Sharing
Alex Pinto
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
Beyond Matching: Applying Data Science Techniques to IOC-based Detection
Beyond Matching: Applying Data Science Techniques to IOC-based DetectionBeyond Matching: Applying Data Science Techniques to IOC-based Detection
Beyond Matching: Applying Data Science Techniques to IOC-based Detection
Alex Pinto
 
Measuring the IQ of your Threat Intelligence Feeds (#tiqtest)
Measuring the IQ of your Threat Intelligence Feeds (#tiqtest)Measuring the IQ of your Threat Intelligence Feeds (#tiqtest)
Measuring the IQ of your Threat Intelligence Feeds (#tiqtest)
Alex Pinto
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
Secure Because Math: A Deep-Dive on Machine Learning-Based Monitoring (#Secur...
Secure Because Math: A Deep-Dive on Machine Learning-Based Monitoring (#Secur...Secure Because Math: A Deep-Dive on Machine Learning-Based Monitoring (#Secur...
Secure Because Math: A Deep-Dive on Machine Learning-Based Monitoring (#Secur...
Alex Pinto
 
From Threat Intelligence to Defense Cleverness: A Data Science Approach (#tid...
From Threat Intelligence to Defense Cleverness: A Data Science Approach (#tid...From Threat Intelligence to Defense Cleverness: A Data Science Approach (#tid...
From Threat Intelligence to Defense Cleverness: A Data Science Approach (#tid...
Alex Pinto
 
The beauty of mathematics
The beauty of mathematicsThe beauty of mathematics
The beauty of mathematics
Tarun Gehlot
 
BSidesLV 2013 - Using Machine Learning to Support Information Security
BSidesLV 2013 - Using Machine Learning to Support Information SecurityBSidesLV 2013 - Using Machine Learning to Support Information Security
BSidesLV 2013 - Using Machine Learning to Support Information Security
Alex Pinto
 
Applying Machine Learning to Network Security Monitoring - BayThreat 2013
Applying Machine Learning to Network Security Monitoring - BayThreat 2013Applying Machine Learning to Network Security Monitoring - BayThreat 2013
Applying Machine Learning to Network Security Monitoring - BayThreat 2013
Alex Pinto
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
Tarun Gehlot
 
Graphing inverse functions
Graphing inverse functionsGraphing inverse functions
Graphing inverse functions
Tarun Gehlot
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
Tarun Gehlot
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
Tarun Gehlot
 

Viewers also liked (15)

Data-Driven Threat Intelligence: Metrics on Indicator Dissemination and Sharing
Data-Driven Threat Intelligence: Metrics on Indicator Dissemination and SharingData-Driven Threat Intelligence: Metrics on Indicator Dissemination and Sharing
Data-Driven Threat Intelligence: Metrics on Indicator Dissemination and Sharing
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
Beyond Matching: Applying Data Science Techniques to IOC-based Detection
Beyond Matching: Applying Data Science Techniques to IOC-based DetectionBeyond Matching: Applying Data Science Techniques to IOC-based Detection
Beyond Matching: Applying Data Science Techniques to IOC-based Detection
 
Measuring the IQ of your Threat Intelligence Feeds (#tiqtest)
Measuring the IQ of your Threat Intelligence Feeds (#tiqtest)Measuring the IQ of your Threat Intelligence Feeds (#tiqtest)
Measuring the IQ of your Threat Intelligence Feeds (#tiqtest)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
Secure Because Math: A Deep-Dive on Machine Learning-Based Monitoring (#Secur...
Secure Because Math: A Deep-Dive on Machine Learning-Based Monitoring (#Secur...Secure Because Math: A Deep-Dive on Machine Learning-Based Monitoring (#Secur...
Secure Because Math: A Deep-Dive on Machine Learning-Based Monitoring (#Secur...
 
From Threat Intelligence to Defense Cleverness: A Data Science Approach (#tid...
From Threat Intelligence to Defense Cleverness: A Data Science Approach (#tid...From Threat Intelligence to Defense Cleverness: A Data Science Approach (#tid...
From Threat Intelligence to Defense Cleverness: A Data Science Approach (#tid...
 
The beauty of mathematics
The beauty of mathematicsThe beauty of mathematics
The beauty of mathematics
 
BSidesLV 2013 - Using Machine Learning to Support Information Security
BSidesLV 2013 - Using Machine Learning to Support Information SecurityBSidesLV 2013 - Using Machine Learning to Support Information Security
BSidesLV 2013 - Using Machine Learning to Support Information Security
 
Applying Machine Learning to Network Security Monitoring - BayThreat 2013
Applying Machine Learning to Network Security Monitoring - BayThreat 2013Applying Machine Learning to Network Security Monitoring - BayThreat 2013
Applying Machine Learning to Network Security Monitoring - BayThreat 2013
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
 
Graphing inverse functions
Graphing inverse functionsGraphing inverse functions
Graphing inverse functions
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
 

Similar to 11 x1 t16 05 volumes (2013)

11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
X2 T06 03 Parallel Crosssections
X2 T06 03 Parallel CrosssectionsX2 T06 03 Parallel Crosssections
X2 T06 03 Parallel CrosssectionsNigel Simmons
 
X2 t05 03 parallel crosssections (2013)
X2 t05 03 parallel crosssections (2013)X2 t05 03 parallel crosssections (2013)
X2 t05 03 parallel crosssections (2013)Nigel Simmons
 
Area and volume practice
Area and volume practiceArea and volume practice
Area and volume practicetschmucker
 
X2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsX2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsNigel Simmons
 
7.3 volumes by cylindrical shells
7.3 volumes by cylindrical shells7.3 volumes by cylindrical shells
7.3 volumes by cylindrical shellsdicosmo178
 
7.1 area between curves
7.1 area between curves7.1 area between curves
7.1 area between curvesdicosmo178
 
Application of integration
Application of integrationApplication of integration
Application of integration
rricky98
 
X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)Nigel Simmons
 
X2 t05 02 cylindrical shells (2012)
X2 t05 02 cylindrical shells (2012)X2 t05 02 cylindrical shells (2012)
X2 t05 02 cylindrical shells (2012)Nigel Simmons
 
X2 T06 02 cylindrical shells (2010)
X2 T06 02 cylindrical shells (2010)X2 T06 02 cylindrical shells (2010)
X2 T06 02 cylindrical shells (2010)Nigel Simmons
 
X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)Nigel Simmons
 
11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)Nigel Simmons
 
Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)
MariaFaithDalay2
 
11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)Nigel Simmons
 
PERTEMUAN 9B APLIKASI INTEGRAL.ppt
PERTEMUAN 9B APLIKASI  INTEGRAL.pptPERTEMUAN 9B APLIKASI  INTEGRAL.ppt
PERTEMUAN 9B APLIKASI INTEGRAL.ppt
TiodoraSihombing
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)Nigel Simmons
 
11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two LinesNigel Simmons
 
11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves IINigel Simmons
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)Nigel Simmons
 

Similar to 11 x1 t16 05 volumes (2013) (20)

11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
X2 T06 03 Parallel Crosssections
X2 T06 03 Parallel CrosssectionsX2 T06 03 Parallel Crosssections
X2 T06 03 Parallel Crosssections
 
X2 t05 03 parallel crosssections (2013)
X2 t05 03 parallel crosssections (2013)X2 t05 03 parallel crosssections (2013)
X2 t05 03 parallel crosssections (2013)
 
Area and volume practice
Area and volume practiceArea and volume practice
Area and volume practice
 
X2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsX2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical Shells
 
7.3 volumes by cylindrical shells
7.3 volumes by cylindrical shells7.3 volumes by cylindrical shells
7.3 volumes by cylindrical shells
 
7.1 area between curves
7.1 area between curves7.1 area between curves
7.1 area between curves
 
Application of integration
Application of integrationApplication of integration
Application of integration
 
X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)
 
X2 t05 02 cylindrical shells (2012)
X2 t05 02 cylindrical shells (2012)X2 t05 02 cylindrical shells (2012)
X2 t05 02 cylindrical shells (2012)
 
X2 T06 02 cylindrical shells (2010)
X2 T06 02 cylindrical shells (2010)X2 T06 02 cylindrical shells (2010)
X2 T06 02 cylindrical shells (2010)
 
X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)
 
11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)
 
Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)
 
11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)
 
PERTEMUAN 9B APLIKASI INTEGRAL.ppt
PERTEMUAN 9B APLIKASI  INTEGRAL.pptPERTEMUAN 9B APLIKASI  INTEGRAL.ppt
PERTEMUAN 9B APLIKASI INTEGRAL.ppt
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)
 
11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines
 
11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)
 

More from Nigel Simmons

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 

11 x1 t16 05 volumes (2013)

  • 1. Volumes of Solids of Revolution y y = f(x) x
  • 2. Volumes of Solids of Revolution y y = f(x) a b x
  • 3. Volumes of Solids of Revolution y y = f(x) a b x
  • 4. Volumes of Solids of Revolution y y = f(x) a Volume of a solid of revolution about; b x
  • 5. Volumes of Solids of Revolution y y = f(x) a b x Volume of a solid of revolution about; i x axis : V   y 2 dx  b a
  • 6. Volumes of Solids of Revolution y y = f(x) a b x Volume of a solid of revolution about; i x axis : V   y 2 dx  b a ii  y axis : V   c x 2 dy d
  • 7. e.g. (i) cone y y  mx h x
  • 8. e.g. (i) cone y y  mx h x
  • 9. V    y 2 dx e.g. (i) cone h y y  mx h x    m 2 x 2 dx 0
  • 10. V    y 2 dx e.g. (i) cone h y y  mx h x    m 2 x 2 dx 0 h 2 1 3   m  x  3  0
  • 11. V    y 2 dx e.g. (i) cone h y y  mx h x    m 2 x 2 dx 0 h 2 1 3   m  x  3  0 1 2 3  m h  0  3 1 2 3  m h 3
  • 12. V    y 2 dx e.g. (i) cone h y y  mx r h x    m 2 x 2 dx 0 h 2 1 3   m  x  3  0 1 2 3  m h  0  3 1 2 3  m h 3
  • 13. V    y 2 dx e.g. (i) cone h y y  mx r h x r m h    m 2 x 2 dx 0 h 2 1 3   m  x  3  0 1 2 3  m h  0  3 1 2 3  m h 3
  • 14. V    y 2 dx e.g. (i) cone h y y  mx r h x r m h    m 2 x 2 dx 0 h 2 1 3   m  x  3  0 1 2 3  m h  0  3 1 2 3  m h 3 2 1 r     h3 3 h r 2 h 3  3h 2 r 2 h  3
  • 15. (ii) sphere y x2  y2  r 2 rx
  • 16. (ii) sphere y x2  y2  r 2 rx
  • 17. (ii) sphere y x2  y2  r 2 V    y 2 dx r  2  r 2  x 2 dx 0 rx
  • 18. (ii) sphere y x2  y2  r 2 V    y 2 dx r  2  r 2  x 2 dx 0 r rx r 2 x  1 x 3   2  3 0  
  • 19. (ii) sphere y x2  y2  r 2 V    y 2 dx r  2  r 2  x 2 dx 0 r rx r 2 x  1 x 3   2  3 0   1    2  r 2 r   r 3   0   3    2 3  2  r  3  4  r 3 3
  • 20. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1.
  • 21. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y y  x2 x
  • 22. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y  x2 y 1 x
  • 23. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y  x2 y 1 x
  • 24. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y  x2 y V   1  1  ydy 0 x x 2 dy
  • 25. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y  x2 y V   1  x 2 dy 1  ydy 0  x  y  2 2 1 0
  • 26. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y  x2 y V   1  x 2 dy 1  ydy 0  x    y  2  2  2 2 1 0 1 2  0 units 3
  • 27. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y y  5x 5 x
  • 28. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x 1 5 2    52  5 x  dx   0 1 x    25  25 x 2 dx 0
  • 29. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x 1 5 2    52  5 x  dx   0 1 x    25  25 x 2 dx 0 1  x  1 x3   25   3 0 
  • 30. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x 1 5 2    52  5 x  dx   0 1 x    25  25 x 2 dx 0 1  x  1 x3   25   3 0  1 1 13 0  25      3  50  unit 3 3
  • 31. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x 1 5 2    52  5 x  dx   0 1 x OR    25  25 x 2 dx 0 1  x  1 x3   25   3 0  1 1 13 0  25      3  50  unit 3 3
  • 32. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x 1 5 2    52  5 x  dx   0 1 x 1 OR V  r 2 h  r 2 h 3 2 2   5 1 3 50  units 3 3    25  25 x 2 dx 0 1  x  1 x3   25   3 0  1 1 13 0  25      3  50  unit 3 3
  • 33. 2005 HSC Question 6c) The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the diagram. (i) Find the points of intersection of the two curves. (1)
  • 34. 2005 HSC Question 6c) The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the diagram. (i) Find the points of intersection of the two curves. x 2  12  2 x 2 (1)
  • 35. 2005 HSC Question 6c) The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the diagram. (i) Find the points of intersection of the two curves. x 2  12  2 x 2 3 x 2  12 x2  4 x  2 (1)
  • 36. 2005 HSC Question 6c) The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the diagram. (i) Find the points of intersection of the two curves. x 2  12  2 x 2 3 x 2  12 x2  4 x  2  meet at  2, 4  (1)
  • 37. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed.
  • 38. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed.
  • 39. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. V    x 2 dy
  • 40. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. V    x 2 dy
  • 41. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y V    x 2 dy
  • 42. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 2 V    x 2 dy
  • 43. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 2 V    x 2 dy 4 12   1   V   6 y  dy  ydy 2  0 4
  • 44. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 2 V    x 2 dy 4 12   1   V   6 y  dy  ydy 2  0 4 4 12 1 2 1 2   6 y  y     y    2 4 4 0  
  • 45. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 2 V    x 2 dy 4 12     1   V   6 y  dy  ydy 2  0 4 4 12 1 2 1 2   6 y  y     y    2 4 4 0   1 2  2 2   6  4    4   0  12    4  4 2  
  • 46. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 2 V    x 2 dy 4 12     1   V   6 y  dy  ydy 2  0 4 4 12 1 2 1 2   6 y  y     y    2 4 4 0   1 2  2 2   6  4    4   0  12    4  4 2  84 units3  
  • 47. Exercise 11G; 3bdef, 4eg, 5cd, 6d, 8ad, 12, 16a, 19 to 22, 24*, 25*