SlideShare a Scribd company logo
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

 r n cos n  i sin n 
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

 r n cos n  i sin n 
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

 r n cos n  i sin n 

z  12   1

2

 2
  1
arg z  tan  
 1 
1




4
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n

this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2
  1
arg z  tan  
 1 
1




4
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5



z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
2  cis


 4 

4
1
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
  2  cis


 4 

4
3 
 4 2cis 

 4 
1
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
  2  cis


 4 

4
3 
 4 2cis 

 4 
1

1  i 

5

 cos 3  i sin 3 
 4 2

4
4 

De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
  2  cis


 4 

4
3 
 4 2cis 

 4 
1

1  i 

5

 cos 3  i sin 3 
 4 2

4
4 

1
1 
 4 2 

i

2
2 

 4  4i
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 
 n 

n

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 
 n 

n

e.g .i  z 2  4i

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2
 2k   

2
z  2cis 
2 





k  0,1

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2
 2k   

2
z  2cis 
2 




5

z  2cis ,2cis
4
4

k  0,1

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2
 2k   

2  k  0,1
z  2cis 
2 




5

z  2cis ,2cis
4
4
 1  1 i ,2  1  1 i 
z  2

 
2  
2
2 
 2

k  0,1,, n  1

z  2  2i, 2  2i
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

OR
2
z  4cis
2
 2k   

2  k  0,1
z  2cis 
2 




5

z  2cis ,2cis
4
4
 1  1 i ,2  1  1 i 
z  2

 
2  
2
2 
 2

k  0,1,, n  1
y

x

z  2  2i, 2  2i
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

OR
2
z  4cis
2
 2k   

2  k  0,1
z  2cis 
2 




5

z  2cis ,2cis
4
4
 1  1 i ,2  1  1 i 
z  2

 
2  
2
2 
 2

k  0,1,, n  1
y
2cis



x

z  2  2i, 2  2i

4
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

k  0,1,, n  1

e.g .i  z 2  4i

OR
2
y
z  4cis

2
2cis
4
 2k   

2  k  0,1
z  2cis 
2 
x




3
2cis 
5

z  2cis ,2cis
4
4
4
 1  1 i ,2  1  1 i 
z  2
z  2  2i, 2  2i

 
2  
2
2 
 2
 ii 

x 4  16  0
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 




k  0,1, 2,3

3
x  2cis 0, 2cis , 2cis , 2cis
2
2
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

x
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

2cis 0
x
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

2cis


2

2cis

2cis 0
x
2cis 


2
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

2cis

Patel: Exercise 4E;
1 to 4 ac


2

2cis

2cis 0
x
2cis 

Cambridge: Exercise 7A;
1, 2, 3 abef, 5, 6, 7,
9 to 14, 16 to 18


2

More Related Content

What's hot

The binomial theorem class 11 maths
The binomial theorem class 11 mathsThe binomial theorem class 11 maths
The binomial theorem class 11 maths
Dharmendra Dudi
 
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridge
alproelearning
 
Dobule and triple integral
Dobule and triple integralDobule and triple integral
Dobule and triple integral
sonendra Gupta
 
Complex numbers and quadratic equations
Complex numbers and quadratic equationsComplex numbers and quadratic equations
Complex numbers and quadratic equationsriyadutta1996
 
Solving Quadratic Equations by Factoring
Solving Quadratic Equations by FactoringSolving Quadratic Equations by Factoring
Solving Quadratic Equations by Factoring
Free Math Powerpoints
 
conicoid
conicoidconicoid
Notes ellipses
Notes   ellipsesNotes   ellipses
Notes ellipsesLori Rapp
 
Complex numbers And Quadratic Equations
Complex numbers And Quadratic EquationsComplex numbers And Quadratic Equations
Complex numbers And Quadratic Equations
Deepanshu Chowdhary
 
Volume of solid of revolution
Volume of solid of revolutionVolume of solid of revolution
Volume of solid of revolution
Kushal Gohel
 
Trigonometry Functions
Trigonometry FunctionsTrigonometry Functions
Trigonometry Functions
Siva Palanisamy
 
Finding the area under a curve using integration
Finding the area under a curve using integrationFinding the area under a curve using integration
Finding the area under a curve using integration
Christopher Chibangu
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficientSanjay Singh
 
1-06 Even and Odd Functions Notes
1-06 Even and Odd Functions Notes1-06 Even and Odd Functions Notes
1-06 Even and Odd Functions Notesnechamkin
 
Analytic geometry lecture2
Analytic geometry lecture2Analytic geometry lecture2
Analytic geometry lecture2
admercano101
 
3 2 Polynomial Functions And Their Graphs
3 2 Polynomial Functions And Their Graphs3 2 Polynomial Functions And Their Graphs
3 2 Polynomial Functions And Their Graphssilvia
 
Maxima and minima
Maxima and minimaMaxima and minima
Maxima and minima
Ganesh Vadla
 
Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpointcanalculus
 
Tangent and normal
Tangent and normalTangent and normal
Tangent and normal
sumanmathews
 
General equation of a circle
General equation of a circleGeneral equation of a circle
General equation of a circle
Janak Singh saud
 
Vector calculus
Vector calculusVector calculus
Vector calculusraghu ram
 

What's hot (20)

The binomial theorem class 11 maths
The binomial theorem class 11 mathsThe binomial theorem class 11 maths
The binomial theorem class 11 maths
 
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge2.hyperbolic functions  Further Mathematics Zimbabwe Zimsec Cambridge
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridge
 
Dobule and triple integral
Dobule and triple integralDobule and triple integral
Dobule and triple integral
 
Complex numbers and quadratic equations
Complex numbers and quadratic equationsComplex numbers and quadratic equations
Complex numbers and quadratic equations
 
Solving Quadratic Equations by Factoring
Solving Quadratic Equations by FactoringSolving Quadratic Equations by Factoring
Solving Quadratic Equations by Factoring
 
conicoid
conicoidconicoid
conicoid
 
Notes ellipses
Notes   ellipsesNotes   ellipses
Notes ellipses
 
Complex numbers And Quadratic Equations
Complex numbers And Quadratic EquationsComplex numbers And Quadratic Equations
Complex numbers And Quadratic Equations
 
Volume of solid of revolution
Volume of solid of revolutionVolume of solid of revolution
Volume of solid of revolution
 
Trigonometry Functions
Trigonometry FunctionsTrigonometry Functions
Trigonometry Functions
 
Finding the area under a curve using integration
Finding the area under a curve using integrationFinding the area under a curve using integration
Finding the area under a curve using integration
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
 
1-06 Even and Odd Functions Notes
1-06 Even and Odd Functions Notes1-06 Even and Odd Functions Notes
1-06 Even and Odd Functions Notes
 
Analytic geometry lecture2
Analytic geometry lecture2Analytic geometry lecture2
Analytic geometry lecture2
 
3 2 Polynomial Functions And Their Graphs
3 2 Polynomial Functions And Their Graphs3 2 Polynomial Functions And Their Graphs
3 2 Polynomial Functions And Their Graphs
 
Maxima and minima
Maxima and minimaMaxima and minima
Maxima and minima
 
Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpoint
 
Tangent and normal
Tangent and normalTangent and normal
Tangent and normal
 
General equation of a circle
General equation of a circleGeneral equation of a circle
General equation of a circle
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 

Viewers also liked

X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)Nigel Simmons
 
X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)Nigel Simmons
 
1 complex numbers
1 complex numbers 1 complex numbers
1 complex numbers
gandhinagar
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
Sequencias e series
Sequencias e series Sequencias e series
Sequencias e series
antonio alves dos santos neto
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)Nigel Simmons
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)Nigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
Unit 6.6
Unit 6.6Unit 6.6
Unit 6.6
Mark Ryder
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)Nigel Simmons
 
Powers and Roots of Complex numbers
Powers and Roots of Complex numbersPowers and Roots of Complex numbers
Powers and Roots of Complex numbersLeo Crisologo
 
Power Series,Taylor's and Maclaurin's Series
Power Series,Taylor's and Maclaurin's SeriesPower Series,Taylor's and Maclaurin's Series
Power Series,Taylor's and Maclaurin's Series
Shubham Sharma
 
Taylor and maclaurian series
Taylor and maclaurian seriesTaylor and maclaurian series
Taylor and maclaurian series
Nishant Patel
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbersswartzje
 
Taylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesTaylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesHernanFula
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbersitutor
 

Viewers also liked (20)

X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 
X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)
 
1 complex numbers
1 complex numbers 1 complex numbers
1 complex numbers
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
Sequencias e series
Sequencias e series Sequencias e series
Sequencias e series
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
Unit 6.6
Unit 6.6Unit 6.6
Unit 6.6
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 
Powers and Roots of Complex numbers
Powers and Roots of Complex numbersPowers and Roots of Complex numbers
Powers and Roots of Complex numbers
 
Chap4
Chap4Chap4
Chap4
 
Power Series,Taylor's and Maclaurin's Series
Power Series,Taylor's and Maclaurin's SeriesPower Series,Taylor's and Maclaurin's Series
Power Series,Taylor's and Maclaurin's Series
 
Taylor and maclaurian series
Taylor and maclaurian seriesTaylor and maclaurian series
Taylor and maclaurian series
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 
Taylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesTaylor series and maclaurin with exercices
Taylor series and maclaurin with exercices
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
 

X2 t01 09 de moivres theorem

  • 1. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n
  • 2. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n  r n cos n  i sin n 
  • 3. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5  r n cos n  i sin n 
  • 4. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5  r n cos n  i sin n  z  12   1 2  2   1 arg z  tan    1  1   4
  • 5. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan    1  1   4
  • 6. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5  z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5  2  cis    4   4 1
  • 7. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5    2  cis    4   4 3   4 2cis    4  1
  • 8. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5    2  cis    4   4 3   4 2cis    4  1 1  i  5  cos 3  i sin 3   4 2  4 4  
  • 9. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5    2  cis    4   4 3   4 2cis    4  1 1  i  5  cos 3  i sin 3   4 2  4 4   1 1   4 2   i  2 2    4  4i
  • 10. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis   n   n k  0,1,, n  1
  • 11. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis   n   n e.g .i  z 2  4i k  0,1,, n  1
  • 12. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2 k  0,1,, n  1
  • 13. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2  2k     2 z  2cis  2      k  0,1 k  0,1,, n  1
  • 14. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2  2k     2 z  2cis  2      5  z  2cis ,2cis 4 4 k  0,1 k  0,1,, n  1
  • 15. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2  2k     2  k  0,1 z  2cis  2      5  z  2cis ,2cis 4 4  1  1 i ,2  1  1 i  z  2    2   2 2   2 k  0,1,, n  1 z  2  2i, 2  2i
  • 16. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  OR 2 z  4cis 2  2k     2  k  0,1 z  2cis  2      5  z  2cis ,2cis 4 4  1  1 i ,2  1  1 i  z  2    2   2 2   2 k  0,1,, n  1 y x z  2  2i, 2  2i
  • 17. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  OR 2 z  4cis 2  2k     2  k  0,1 z  2cis  2      5  z  2cis ,2cis 4 4  1  1 i ,2  1  1 i  z  2    2   2 2   2 k  0,1,, n  1 y 2cis  x z  2  2i, 2  2i 4
  • 18. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n k  0,1,, n  1 e.g .i  z 2  4i  OR 2 y z  4cis  2 2cis 4  2k     2  k  0,1 z  2cis  2  x     3 2cis  5  z  2cis ,2cis 4 4 4  1  1 i ,2  1  1 i  z  2 z  2  2i, 2  2i    2   2 2   2
  • 19.  ii  x 4  16  0
  • 20.  ii  x 4  16  0 x 4  16 x 4  16cis 0
  • 21.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3
  • 22.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4    k  0,1, 2,3 3 x  2cis 0, 2cis , 2cis , 2cis 2 2
  • 23.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i
  • 24.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y x
  • 25.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y 2cis 0 x
  • 26.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y 2cis  2 2cis 2cis 0 x 2cis   2
  • 27.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y 2cis Patel: Exercise 4E; 1 to 4 ac  2 2cis 2cis 0 x 2cis  Cambridge: Exercise 7A; 1, 2, 3 abef, 5, 6, 7, 9 to 14, 16 to 18  2