SlideShare a Scribd company logo
1 of 40
Download to read offline
Forming Polynomials With
The Roots Of Another
Forming Polynomials With
The Roots Of Another
If  ,  ,  ,  are the roots of a polynomial, to form an equation
with roots;
Forming Polynomials With
The Roots Of Another
If  ,  ,  ,  are the roots of a polynomial, to form an equation
with roots;
1 1 1
(1) , , ,

  
Forming Polynomials With
The Roots Of Another
If  ,  ,  ,  are the roots of a polynomial, to form an equation
with roots;
1 1 1
(1) , , ,

  

let y 

1
1
and substitute x 
x
y
Forming Polynomials With
The Roots Of Another
If  ,  ,  ,  are the roots of a polynomial, to form an equation
with roots;
1 1 1
(1) , , ,

  

(2) k , k , k ,

let y 

1
1
and substitute x 
x
y
Forming Polynomials With
The Roots Of Another
If  ,  ,  ,  are the roots of a polynomial, to form an equation
with roots;
1 1 1
(1) , , ,

  

(2) k , k , k ,

let y 

1
1
and substitute x 
x
y

y
let y  kx and substitute x 
k
Forming Polynomials With
The Roots Of Another
If  ,  ,  ,  are the roots of a polynomial, to form an equation
with roots;
1 1 1
(1) , , ,

  

(2) k , k , k ,
(3)   c,   c,   c, 

let y 

1
1
and substitute x 
x
y

y
let y  kx and substitute x 
k
Forming Polynomials With
The Roots Of Another
If  ,  ,  ,  are the roots of a polynomial, to form an equation
with roots;
1 1 1
(1) , , ,

  

let y 

1
1
and substitute x 
x
y

(2) k , k , k ,

y
let y  kx and substitute x 
k

(3)   c,   c,   c, 

let y  x  c and substitute x  y  c
Forming Polynomials With
The Roots Of Another
If  ,  ,  ,  are the roots of a polynomial, to form an equation
with roots;
1 1 1
(1) , , ,

  

let y 

1
1
and substitute x 
x
y

(2) k , k , k ,

y
let y  kx and substitute x 
k

(3)   c,   c,   c, 

let y  x  c and substitute x  y  c

( 4)  2 ,  2 ,  2 , 
Forming Polynomials With
The Roots Of Another
If  ,  ,  ,  are the roots of a polynomial, to form an equation
with roots;
1 1 1
(1) , , ,

  

let y 

1
1
and substitute x 
x
y

(2) k , k , k ,

y
let y  kx and substitute x 
k

(3)   c,   c,   c, 

let y  x  c and substitute x  y  c

( 4)  ,  ,  , 
2

2

2

let y  x 2 and substitute x  y

1
2
e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation
whose roots are;
e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation
whose roots are;
a)

1 1 1
, ,

  
e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation
whose roots are;
a)

1 1 1
, ,

  

1
x
1
x
y

let y 
e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation
whose roots are;
a)

1 1 1
, ,

  

1
x
1
x
y

let y 

3

1 1
   20
 y y
e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation
whose roots are;
a)

1 1 1
, ,

  

1
x
1
x
y

let y 

3

1 1
   20
 y y
1  y 2  2 y3  0
b)   1,   1,   1
b)   1,   1,   1
let y  x  1
x  y 1
b)   1,   1,   1
let y  x  1
x  y 1

 y  13   y  1  2  0
b)   1,   1,   1
let y  x  1
x  y 1

 y  13   y  1  2  0
y3  3 y 2  3 y 1  y 1  2  0
y3  3 y2  4 y  0
b)   1,   1,   1
let y  x  1
x  y 1

 y  13   y  1  2  0
y3  3 y 2  3 y 1  y 1  2  0
y3  3 y2  4 y  0

c)  2 ,  2 ,  2
b)   1,   1,   1
let y  x  1
x  y 1

 y  13   y  1  2  0
y3  3 y 2  3 y 1  y 1  2  0
y3  3 y2  4 y  0

c)  2 ,  2 ,  2
let y  x 2
x y

1
2
b)   1,   1,   1

let y  x  1
x  y 1

 y  13   y  1  2  0
y3  3 y 2  3 y 1  y 1  2  0
y3  3 y2  4 y  0

c)  2 ,  2 ,  2
let y  x 2
x y

1
2


y



1
2

3

1

  y2  2  0


b)   1,   1,   1

let y  x  1
x  y 1

 y  13   y  1  2  0
y3  3 y 2  3 y 1  y 1  2  0
y3  3 y2  4 y  0

c)  2 ,  2 ,  2
let y  x 2
x y

1
2


y



1
2

3

1

  y2  2  0


3
2

1
2

y  y 20
b)   1,   1,   1

let y  x  1
x  y 1

 y  13   y  1  2  0
y3  3 y 2  3 y 1  y 1  2  0
y3  3 y2  4 y  0

c)  2 ,  2 ,  2
let y  x 2
x y

1
2


y



1
2

3

1

  y2  2  0


3
2

1
2

y  y 20
1
2

y  y  1  2
b)   1,   1,   1

let y  x  1
x  y 1

 y  13   y  1  2  0
y3  3 y 2  3 y 1  y 1  2  0
y3  3 y2  4 y  0

c)  2 ,  2 ,  2
let y  x 2
x y

1
2


y



1
2

3

1

  y2  2  0


3
2

1
2

y  y 20
1
2

y  y  1  2

y  y  1  4
2
b)   1,   1,   1
let y  x  1
x  y 1

 y  13   y  1  2  0
y3  3 y 2  3 y 1  y 1  2  0
y3  3 y2  4 y  0

c)  2 ,  2 ,  2
let y  x 2
x y

1
2


y



1
2

3

1

  y2  2  0


3
2

1
2

y  y 20
1
2

y  y  1  2
y  y  1  4
2

y3  2 y 2  y  4
y3  2 y 2  y  4  0
d)

1



2

,

1



2

,

1

2
d)

1



2

,

1



2

let y 

,

1

2

1
x2

x y



1
2
d)

1



2

,

1



2

,

1

2

1
let y  2
x
x y



y
1
2



3
2

y



1
2

20
d)

1



2

,

1



2

,

1

2

1
let y  2
x
x y

1

2

y



3
2

y

y



3
2



1
2

20

 y  1  2
d)

1



2

,

1



2

,

1

2

1
let y  2
x
x y

1

2

y



3
2

y

y



3
2



1
2

20

 y  1  2
 y  1  2 y

3
2
d)

1



2

,

1



2

,

1

2

1
let y  2
x
x y

1

2

y



3
2

y

y



3
2



1
2

20

 y  1  2
 y  1  2 y

 y  12  4 y 3

3
2
d)

1



2

,

1



2

,

1

2

1
let y  2
x
x y

1

2

y



3
2

y

y



3
2



1
2

20

 y  1  2
 y  1  2 y

 y  12  4 y 3
y 2  2 y 1  4 y3
4 y3  y2  2 y 1  0

3
2
e) Find  2   2   2
e) Find  2   2   2

2   2  2
     2 
2
e) Find  2   2   2

2   2  2
     2 
2

 0   21
 2
2
e) Find  2   2   2

2   2  2
     2 
2

 0   21
 2
2

OR using equation found in c)
e) Find  2   2   2

2   2  2
     2 
2

 0   21
 2
2

OR using equation found in c)
2   2  2
b

a
e) Find  2   2   2

2   2  2
     2 
2

 0   21
 2
2

OR using equation found in c)
2   2  2
b

a
2

1
 2
e) Find  2   2   2

2   2  2
     2 
2

 0   21
 2
2

OR using equation found in c)
2   2  2
b

a
2

1
 2

Cambridge: Exercise 5C; 1 to 11, 13, 14, 15
Patel: Exercise 5E; 9, 10, 11, 14, 16, 18, 19, 23, 24,
27, 30, 32, 34, 35

More Related Content

What's hot

X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
Toan on-thi-dai-hoc-chuyen-de-9-so-phuc
Toan on-thi-dai-hoc-chuyen-de-9-so-phucToan on-thi-dai-hoc-chuyen-de-9-so-phuc
Toan on-thi-dai-hoc-chuyen-de-9-so-phuc01652025412
 
Phep noi suy
Phep noi suy Phep noi suy
Phep noi suy anhbinpro
 
Luonggiac chuong2
Luonggiac chuong2Luonggiac chuong2
Luonggiac chuong2Huynh ICT
 
Copy of hpt mu va logarit www.mathvn.com
Copy of hpt mu va logarit   www.mathvn.comCopy of hpt mu va logarit   www.mathvn.com
Copy of hpt mu va logarit www.mathvn.comDennyTran89
 
Luonggiac chuong5
Luonggiac chuong5Luonggiac chuong5
Luonggiac chuong5Huynh ICT
 
ARTIFICIOS DE INTEGRACION
ARTIFICIOS DE INTEGRACIONARTIFICIOS DE INTEGRACION
ARTIFICIOS DE INTEGRACIONVictor Reyes
 

What's hot (14)

X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
Successive differentiation
Successive differentiationSuccessive differentiation
Successive differentiation
 
2. successive differentiation
2. successive differentiation2. successive differentiation
2. successive differentiation
 
Space time relations
Space time relationsSpace time relations
Space time relations
 
Luong giac
Luong giacLuong giac
Luong giac
 
Toan on-thi-dai-hoc-chuyen-de-9-so-phuc
Toan on-thi-dai-hoc-chuyen-de-9-so-phucToan on-thi-dai-hoc-chuyen-de-9-so-phuc
Toan on-thi-dai-hoc-chuyen-de-9-so-phuc
 
Phep noi suy
Phep noi suy Phep noi suy
Phep noi suy
 
математик
математик математик
математик
 
Partial differentiation
Partial differentiationPartial differentiation
Partial differentiation
 
Luonggiac chuong2
Luonggiac chuong2Luonggiac chuong2
Luonggiac chuong2
 
Copy of hpt mu va logarit www.mathvn.com
Copy of hpt mu va logarit   www.mathvn.comCopy of hpt mu va logarit   www.mathvn.com
Copy of hpt mu va logarit www.mathvn.com
 
Indefinite Integrals 13
Indefinite Integrals 13Indefinite Integrals 13
Indefinite Integrals 13
 
Luonggiac chuong5
Luonggiac chuong5Luonggiac chuong5
Luonggiac chuong5
 
ARTIFICIOS DE INTEGRACION
ARTIFICIOS DE INTEGRACIONARTIFICIOS DE INTEGRACION
ARTIFICIOS DE INTEGRACION
 

Viewers also liked

12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
11X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 211X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 2Nigel Simmons
 
11X1 T07 04 converse theorems
11X1 T07 04 converse theorems11X1 T07 04 converse theorems
11X1 T07 04 converse theoremsNigel Simmons
 
11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)Nigel Simmons
 
11X1 T07 05 tangent theorems 1
11X1 T07 05 tangent theorems 111X1 T07 05 tangent theorems 1
11X1 T07 05 tangent theorems 1Nigel Simmons
 
X2 t08 04 inequality techniques (2012)
X2 t08 04 inequality techniques (2012)X2 t08 04 inequality techniques (2012)
X2 t08 04 inequality techniques (2012)Nigel Simmons
 
11 x1 t13 05 tangent theorems 1 (2012)
11 x1 t13 05 tangent theorems 1 (2012)11 x1 t13 05 tangent theorems 1 (2012)
11 x1 t13 05 tangent theorems 1 (2012)Nigel Simmons
 
11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)Nigel Simmons
 
11 x1 t13 06 tangent theorems 2 (2012)
11 x1 t13 06 tangent theorems 2 (2012)11 x1 t13 06 tangent theorems 2 (2012)
11 x1 t13 06 tangent theorems 2 (2012)Nigel Simmons
 
11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)Nigel Simmons
 
11 x1 t05 05 perpendicular distance (2013)
11 x1 t05 05 perpendicular distance (2013)11 x1 t05 05 perpendicular distance (2013)
11 x1 t05 05 perpendicular distance (2013)Nigel Simmons
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)Nigel Simmons
 

Viewers also liked (20)

12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
Math14 lesson 3
Math14 lesson 3Math14 lesson 3
Math14 lesson 3
 
Math14 lesson 1
Math14 lesson 1Math14 lesson 1
Math14 lesson 1
 
11X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 211X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 2
 
11X1 T07 04 converse theorems
11X1 T07 04 converse theorems11X1 T07 04 converse theorems
11X1 T07 04 converse theorems
 
Math14 lesson 5
Math14 lesson 5Math14 lesson 5
Math14 lesson 5
 
LINES AND ANGLE PPT
LINES AND ANGLE PPTLINES AND ANGLE PPT
LINES AND ANGLE PPT
 
Geometry Review Lesson
Geometry Review LessonGeometry Review Lesson
Geometry Review Lesson
 
Math14 lesson 2
Math14 lesson 2Math14 lesson 2
Math14 lesson 2
 
11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)
 
11X1 T07 05 tangent theorems 1
11X1 T07 05 tangent theorems 111X1 T07 05 tangent theorems 1
11X1 T07 05 tangent theorems 1
 
X2 t08 04 inequality techniques (2012)
X2 t08 04 inequality techniques (2012)X2 t08 04 inequality techniques (2012)
X2 t08 04 inequality techniques (2012)
 
11 x1 t13 05 tangent theorems 1 (2012)
11 x1 t13 05 tangent theorems 1 (2012)11 x1 t13 05 tangent theorems 1 (2012)
11 x1 t13 05 tangent theorems 1 (2012)
 
11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)
 
11 x1 t13 06 tangent theorems 2 (2012)
11 x1 t13 06 tangent theorems 2 (2012)11 x1 t13 06 tangent theorems 2 (2012)
11 x1 t13 06 tangent theorems 2 (2012)
 
11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)11 x1 t05 02 gradient (2013)
11 x1 t05 02 gradient (2013)
 
11 x1 t05 05 perpendicular distance (2013)
11 x1 t05 05 perpendicular distance (2013)11 x1 t05 05 perpendicular distance (2013)
11 x1 t05 05 perpendicular distance (2013)
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)Nigel Simmons
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
 

Recently uploaded

30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...Nguyen Thanh Tu Collection
 
TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...
TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...
TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...Nguyen Thanh Tu Collection
 
أَسَانِيدُ كُتُبِ وَأُصُولِ النَّشْرِ لِابْنِ الْجَزَرِيِّ وَالْوَصْلُ بِهَا....
أَسَانِيدُ كُتُبِ وَأُصُولِ النَّشْرِ لِابْنِ الْجَزَرِيِّ وَالْوَصْلُ بِهَا....أَسَانِيدُ كُتُبِ وَأُصُولِ النَّشْرِ لِابْنِ الْجَزَرِيِّ وَالْوَصْلُ بِهَا....
أَسَانِيدُ كُتُبِ وَأُصُولِ النَّشْرِ لِابْنِ الْجَزَرِيِّ وَالْوَصْلُ بِهَا....سمير بسيوني
 
TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...
TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...
TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...Nguyen Thanh Tu Collection
 
French Revolution (फ्रेंच राज्यक्रांती)
French Revolution  (फ्रेंच राज्यक्रांती)French Revolution  (फ्रेंच राज्यक्रांती)
French Revolution (फ्रेंच राज्यक्रांती)Shankar Aware
 

Recently uploaded (6)

30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 
TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...
TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...
TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...
 
أَسَانِيدُ كُتُبِ وَأُصُولِ النَّشْرِ لِابْنِ الْجَزَرِيِّ وَالْوَصْلُ بِهَا....
أَسَانِيدُ كُتُبِ وَأُصُولِ النَّشْرِ لِابْنِ الْجَزَرِيِّ وَالْوَصْلُ بِهَا....أَسَانِيدُ كُتُبِ وَأُصُولِ النَّشْرِ لِابْنِ الْجَزَرِيِّ وَالْوَصْلُ بِهَا....
أَسَانِيدُ كُتُبِ وَأُصُولِ النَّشْرِ لِابْنِ الْجَزَرِيِّ وَالْوَصْلُ بِهَا....
 
TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...
TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...
TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...
 
French Revolution (फ्रेंच राज्यक्रांती)
French Revolution  (फ्रेंच राज्यक्रांती)French Revolution  (फ्रेंच राज्यक्रांती)
French Revolution (फ्रेंच राज्यक्रांती)
 
LAR MARIA MÃE DE ÁFRICA .
LAR MARIA MÃE DE ÁFRICA                 .LAR MARIA MÃE DE ÁFRICA                 .
LAR MARIA MÃE DE ÁFRICA .
 

X2 t02 04 forming polynomials (2013)

  • 1. Forming Polynomials With The Roots Of Another
  • 2. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots;
  • 3. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,   
  • 4. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    let y  1 1 and substitute x  x y
  • 5. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    (2) k , k , k , let y  1 1 and substitute x  x y
  • 6. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    (2) k , k , k , let y  1 1 and substitute x  x y y let y  kx and substitute x  k
  • 7. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    (2) k , k , k , (3)   c,   c,   c,  let y  1 1 and substitute x  x y y let y  kx and substitute x  k
  • 8. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    let y  1 1 and substitute x  x y (2) k , k , k , y let y  kx and substitute x  k (3)   c,   c,   c,  let y  x  c and substitute x  y  c
  • 9. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    let y  1 1 and substitute x  x y (2) k , k , k , y let y  kx and substitute x  k (3)   c,   c,   c,  let y  x  c and substitute x  y  c ( 4)  2 ,  2 ,  2 , 
  • 10. Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    let y  1 1 and substitute x  x y (2) k , k , k , y let y  kx and substitute x  k (3)   c,   c,   c,  let y  x  c and substitute x  y  c ( 4)  ,  ,  ,  2 2 2 let y  x 2 and substitute x  y 1 2
  • 11. e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are;
  • 12. e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; a) 1 1 1 , ,   
  • 13. e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; a) 1 1 1 , ,    1 x 1 x y let y 
  • 14. e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; a) 1 1 1 , ,    1 x 1 x y let y  3 1 1    20  y y
  • 15. e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; a) 1 1 1 , ,    1 x 1 x y let y  3 1 1    20  y y 1  y 2  2 y3  0
  • 16. b)   1,   1,   1
  • 17. b)   1,   1,   1 let y  x  1 x  y 1
  • 18. b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0
  • 19. b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0
  • 20. b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2
  • 21. b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2
  • 22. b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0  
  • 23. b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0   3 2 1 2 y  y 20
  • 24. b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0   3 2 1 2 y  y 20 1 2 y  y  1  2
  • 25. b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0   3 2 1 2 y  y 20 1 2 y  y  1  2 y  y  1  4 2
  • 26. b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0   3 2 1 2 y  y 20 1 2 y  y  1  2 y  y  1  4 2 y3  2 y 2  y  4 y3  2 y 2  y  4  0
  • 29. d) 1  2 , 1  2 , 1 2 1 let y  2 x x y  y 1 2  3 2 y  1 2 20
  • 30. d) 1  2 , 1  2 , 1 2 1 let y  2 x x y 1  2 y  3 2 y y  3 2  1 2 20  y  1  2
  • 31. d) 1  2 , 1  2 , 1 2 1 let y  2 x x y 1  2 y  3 2 y y  3 2  1 2 20  y  1  2  y  1  2 y 3 2
  • 32. d) 1  2 , 1  2 , 1 2 1 let y  2 x x y 1  2 y  3 2 y y  3 2  1 2 20  y  1  2  y  1  2 y  y  12  4 y 3 3 2
  • 33. d) 1  2 , 1  2 , 1 2 1 let y  2 x x y 1  2 y  3 2 y y  3 2  1 2 20  y  1  2  y  1  2 y  y  12  4 y 3 y 2  2 y 1  4 y3 4 y3  y2  2 y 1  0 3 2
  • 34. e) Find  2   2   2
  • 35. e) Find  2   2   2 2   2  2      2  2
  • 36. e) Find  2   2   2 2   2  2      2  2  0   21  2 2
  • 37. e) Find  2   2   2 2   2  2      2  2  0   21  2 2 OR using equation found in c)
  • 38. e) Find  2   2   2 2   2  2      2  2  0   21  2 2 OR using equation found in c) 2   2  2 b  a
  • 39. e) Find  2   2   2 2   2  2      2  2  0   21  2 2 OR using equation found in c) 2   2  2 b  a 2  1  2
  • 40. e) Find  2   2   2 2   2  2      2  2  0   21  2 2 OR using equation found in c) 2   2  2 b  a 2  1  2 Cambridge: Exercise 5C; 1 to 11, 13, 14, 15 Patel: Exercise 5E; 9, 10, 11, 14, 16, 18, 19, 23, 24, 27, 30, 32, 34, 35