Factorising
Factorising
1) Look for a common factor
Factorising
1) Look for a common factor
2) (i) 2 terms
       difference of two squares
Factorising
1) Look for a common factor
2) (i) 2 terms
       difference of two squares
       sum/difference of two cubes
Factorising
1) Look for a common factor
2) (i) 2 terms
       difference of two squares
       sum/difference of two cubes
  (ii) 3 terms
        quadratic trinomial
Factorising
1) Look for a common factor
2) (i) 2 terms
       difference of two squares
       sum/difference of two cubes
  (ii) 3 terms
        quadratic trinomial
  (iii) 4 terms
       grouping in pairs
1. Common Factor
                           factorising
                                =
                   dividing by common factor
1. Common Factor
                               factorising
   e.g. (i ) ax  bx
                                    =
                       dividing by common factor
1. Common Factor
                                             factorising
   e.g. (i ) ax  bx  x  a  b 
                                                  =
                                     dividing by common factor
1. Common Factor
                                             factorising
   e.g. (i ) ax  bx  x  a  b 
                                                  =
       (ii ) 5 x 2  10 x            dividing by common factor
1. Common Factor
                                                    factorising
   e.g. (i ) ax  bx  x  a  b 
                                                         =
       (ii ) 5 x 2  10 x  5 x  x  2    dividing by common factor
1. Common Factor
                                                    factorising
   e.g. (i ) ax  bx  x  a  b 
                                                         =
       (ii ) 5 x 2  10 x  5 x  x  2    dividing by common factor

       (iii ) mx  nx  my  ny
1. Common Factor
                                                         factorising
   e.g. (i ) ax  bx  x  a  b 
                                                              =
       (ii ) 5 x 2  10 x  5 x  x  2         dividing by common factor

       (iii ) mx  nx  my  ny  x  m  n   y  m  n 
1. Common Factor
                                                             factorising
   e.g. (i ) ax  bx  x  a  b 
                                                                  =
       (ii ) 5 x 2  10 x  5 x  x  2             dividing by common factor

       (iii ) mx  nx  my  ny  x  m  n   y  m  n 
                                       m  n  x  y 
1. Common Factor
                                                               factorising
    e.g. (i ) ax  bx  x  a  b 
                                                                    =
        (ii ) 5 x 2  10 x  5 x  x  2              dividing by common factor

        (iii ) mx  nx  my  ny  x  m  n   y  m  n 
                                        m  n  x  y 
2. Difference of Two Squares

                           a 2  b 2   a  b  a  b 
1. Common Factor
                                                              factorising
   e.g. (i ) ax  bx  x  a  b 
                                                                   =
       (ii ) 5 x 2  10 x  5 x  x  2              dividing by common factor

       (iii ) mx  nx  my  ny  x  m  n   y  m  n 
                                       m  n  x  y 
2. Difference of Two Squares

                          a 2  b 2   a  b  a  b 

 e.g. (i ) 16x 2  1
1. Common Factor
                                                               factorising
   e.g. (i ) ax  bx  x  a  b 
                                                                    =
       (ii ) 5 x 2  10 x  5 x  x  2               dividing by common factor

       (iii ) mx  nx  my  ny  x  m  n   y  m  n 
                                       m  n  x  y 
2. Difference of Two Squares

                           a 2  b 2   a  b  a  b 

 e.g. (i ) 16x 2  1 =  4 x  1 4 x  1
1. Common Factor
                                                               factorising
   e.g. (i ) ax  bx  x  a  b 
                                                                    =
       (ii ) 5 x 2  10 x  5 x  x  2               dividing by common factor

       (iii ) mx  nx  my  ny  x  m  n   y  m  n 
                                       m  n  x  y 
2. Difference of Two Squares

                           a 2  b 2   a  b  a  b 

 e.g. (i ) 16x 2  1 =  4 x  1 4 x  1
     (ii ) 3 y 2  75
1. Common Factor
                                                               factorising
   e.g. (i ) ax  bx  x  a  b 
                                                                    =
       (ii ) 5 x 2  10 x  5 x  x  2               dividing by common factor

       (iii ) mx  nx  my  ny  x  m  n   y  m  n 
                                       m  n  x  y 
2. Difference of Two Squares

                           a 2  b 2   a  b  a  b 

 e.g. (i ) 16x 2  1 =  4 x  1 4 x  1
     (ii ) 3 y 2  75 =3  y 2  25 
1. Common Factor
                                                               factorising
   e.g. (i ) ax  bx  x  a  b 
                                                                    =
       (ii ) 5 x 2  10 x  5 x  x  2               dividing by common factor

       (iii ) mx  nx  my  ny  x  m  n   y  m  n 
                                       m  n  x  y 
2. Difference of Two Squares

                           a 2  b 2   a  b  a  b 

 e.g. (i ) 16x 2  1 =  4 x  1 4 x  1
     (ii ) 3 y 2  75 =3  y 2  25 
                       =3  y  5  y  5 
1. Common Factor
                                                               factorising
   e.g. (i ) ax  bx  x  a  b 
                                                                    =
       (ii ) 5 x 2  10 x  5 x  x  2               dividing by common factor

       (iii ) mx  nx  my  ny  x  m  n   y  m  n 
                                       m  n  x  y 
2. Difference of Two Squares

                           a 2  b 2   a  b  a  b 

 e.g. (i ) 16x 2  1 =  4 x  1 4 x  1
     (ii ) 3 y 2  75 =3  y 2  25 
                       =3  y  5  y  5 
    (iii ) 5 x  5 y  x 2  y 2
1. Common Factor
                                                               factorising
   e.g. (i ) ax  bx  x  a  b 
                                                                    =
       (ii ) 5 x 2  10 x  5 x  x  2               dividing by common factor

       (iii ) mx  nx  my  ny  x  m  n   y  m  n 
                                       m  n  x  y 
2. Difference of Two Squares

                           a 2  b 2   a  b  a  b 

 e.g. (i ) 16x 2  1 =  4 x  1 4 x  1
     (ii ) 3 y 2  75 =3  y 2  25 
                       =3  y  5  y  5 
    (iii ) 5 x  5 y  x 2  y 2 =5  x  y    x  y  x  y 
1. Common Factor
                                                               factorising
   e.g. (i ) ax  bx  x  a  b 
                                                                    =
       (ii ) 5 x 2  10 x  5 x  x  2               dividing by common factor

       (iii ) mx  nx  my  ny  x  m  n   y  m  n 
                                       m  n  x  y 
2. Difference of Two Squares

                           a 2  b 2   a  b  a  b 

 e.g. (i ) 16x 2  1 =  4 x  1 4 x  1
     (ii ) 3 y 2  75 =3  y 2  25 
                       =3  y  5  y  5 
    (iii ) 5 x  5 y  x 2  y 2 =5  x  y    x  y  x  y 
                                 =  x  y  5  x  y 
3. Quadratic Trinomial
   a) Monic Quadratic

               x  a  x  b   x 2   a  b  x  ab
3. Quadratic Trinomial
   a) Monic Quadratic

                     x  a  x  b   x 2   a  b  x  ab

e.g. (i ) x 2  9 x  18
3. Quadratic Trinomial
   a) Monic Quadratic

                     x  a  x  b   x 2   a  b  x  ab

e.g. (i ) x 2  9 x  18       18
                             9
3. Quadratic Trinomial
   a) Monic Quadratic

                     x  a  x  b   x 2   a  b  x  ab

e.g. (i ) x 2  9 x  18       18
        x  6  x  3    9
3. Quadratic Trinomial
   a) Monic Quadratic

                     x  a  x  b   x 2   a  b  x  ab

e.g. (i ) x 2  9 x  18       18
        x  6  x  3    9


   (ii ) t 2  4t  3
3. Quadratic Trinomial
   a) Monic Quadratic

                     x  a  x  b   x 2   a  b  x  ab

e.g. (i ) x 2  9 x  18       18
        x  6  x  3    9


   (ii ) t 2  4t  3       3
                              4
3. Quadratic Trinomial
   a) Monic Quadratic

                     x  a  x  b   x 2   a  b  x  ab

e.g. (i ) x 2  9 x  18       18
        x  6  x  3    9


   (ii ) t 2  4t  3       3
        t  3 t  1      4
3. Quadratic Trinomial
   a) Monic Quadratic

                     x  a  x  b   x 2   a  b  x  ab

e.g. (i ) x 2  9 x  18        18
        x  6  x  3     9


   (ii ) t 2  4t  3         3
        t  3 t  1        4


  (iii ) x 2  5 xy  4 y 2
3. Quadratic Trinomial
   a) Monic Quadratic

                     x  a  x  b   x 2   a  b  x  ab

e.g. (i ) x 2  9 x  18       18
        x  6  x  3    9


   (ii ) t 2  4t  3       3
        t  3 t  1      4


  (iii ) x 2  5 xy  4 y 2   4 y 2
                              5 y
3. Quadratic Trinomial
   a) Monic Quadratic

                     x  a  x  b   x 2   a  b  x  ab

e.g. (i ) x 2  9 x  18       18
        x  6  x  3    9


   (ii ) t 2  4t  3       3
        t  3 t  1      4


  (iii ) x 2  5 xy  4 y 2   4 y 2
      x  y  x  4 y    5 y
b) Splitting the Middle
b) Splitting the Middle

e.g. (i ) 3x 2  4 x  7
b) Splitting the Middle
                                    Multiply the constant by the
e.g. (i ) 3x  4 x  7
           2                21
                                     coefficient of x squared
                          4                  7  3
b) Splitting the Middle
                                       Multiply the constant by the
e.g. (i ) 3x  4 x  7
          2                    21
                                        coefficient of x squared
        3x 2  3x  7 x  7   4                7  3
b) Splitting the Middle
                                           Multiply the constant by the
e.g. (i ) 3x  4 x  7
            2                      21
                                            coefficient of x squared
        3x 2  3x  7 x  7   4                    7  3
         3 x  x  1  7  x  1
b) Splitting the Middle
                                           Multiply the constant by the
e.g. (i ) 3x  4 x  7
            2                      21
                                            coefficient of x squared
        3x 2  3x  7 x  7   4                    7  3
         3 x  x  1  7  x  1
         x  1 3 x  7 
b) Splitting the Middle
                                           Multiply the constant by the
e.g. (i ) 3x  4 x  7
            2                      21
                                            coefficient of x squared
        3x 2  3x  7 x  7   4                    7  3
         3 x  x  1  7  x  1
         x  1 3 x  7 


    (ii ) 2 x 2  5 x  12
b) Splitting the Middle
                                           Multiply the constant by the
e.g. (i ) 3x  4 x  7
            2                      21
                                            coefficient of x squared
        3x 2  3x  7 x  7   4                    7  3
         3 x  x  1  7  x  1
         x  1 3 x  7 


    (ii ) 2 x 2  5 x  12        24
                                  5
b) Splitting the Middle
                                           Multiply the constant by the
e.g. (i ) 3x  4 x  7
            2                      21
                                            coefficient of x squared
        3x 2  3x  7 x  7   4                    7  3
         3 x  x  1  7  x  1
         x  1 3 x  7 


    (ii ) 2 x 2  5 x  12        24
        2 x 2  8 x  3 x  12   5
b) Splitting the Middle
                                           Multiply the constant by the
e.g. (i ) 3x  4 x  7
            2                      21
                                            coefficient of x squared
        3x 2  3x  7 x  7   4                    7  3
         3 x  x  1  7  x  1
         x  1 3 x  7 


    (ii ) 2 x 2  5 x  12        24
        2 x 2  8 x  3 x  12   5
        2 x  x  4  3 x  4
b) Splitting the Middle
                                           Multiply the constant by the
e.g. (i ) 3x  4 x  7
            2                      21
                                            coefficient of x squared
        3x 2  3x  7 x  7   4                    7  3
         3 x  x  1  7  x  1
         x  1 3 x  7 


    (ii ) 2 x 2  5 x  12        24
        2 x 2  8 x  3 x  12   5
        2 x  x  4  3 x  4
          x  4  2 x  3
b) Splitting the Middle
                                           Multiply the constant by the
e.g. (i ) 3x  4 x  7
            2                      21
                                            coefficient of x squared
        3x 2  3x  7 x  7   4                    7  3
         3 x  x  1  7  x  1
         x  1 3 x  7 


    (ii ) 2 x 2  5 x  12        24
        2 x 2  8 x  3 x  12   5
        2 x  x  4  3 x  4
          x  4  2 x  3


 Exercise 1C; 1e, 2f, 3d, 4ejo, 5adhkn, 6ace etc, 7ace etc, 8*bdfij

11 X1 T01 03 factorising (2010)

  • 1.
  • 2.
    Factorising 1) Look fora common factor
  • 3.
    Factorising 1) Look fora common factor 2) (i) 2 terms  difference of two squares
  • 4.
    Factorising 1) Look fora common factor 2) (i) 2 terms  difference of two squares  sum/difference of two cubes
  • 5.
    Factorising 1) Look fora common factor 2) (i) 2 terms  difference of two squares  sum/difference of two cubes (ii) 3 terms  quadratic trinomial
  • 6.
    Factorising 1) Look fora common factor 2) (i) 2 terms  difference of two squares  sum/difference of two cubes (ii) 3 terms  quadratic trinomial (iii) 4 terms  grouping in pairs
  • 7.
    1. Common Factor factorising = dividing by common factor
  • 8.
    1. Common Factor factorising e.g. (i ) ax  bx = dividing by common factor
  • 9.
    1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = dividing by common factor
  • 10.
    1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x dividing by common factor
  • 11.
    1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor
  • 12.
    1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny
  • 13.
    1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n 
  • 14.
    1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 
  • 15.
    1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b 
  • 16.
    1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1
  • 17.
    1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1
  • 18.
    1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75
  • 19.
    1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25 
  • 20.
    1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5 
  • 21.
    1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5  (iii ) 5 x  5 y  x 2  y 2
  • 22.
    1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5  (iii ) 5 x  5 y  x 2  y 2 =5  x  y    x  y  x  y 
  • 23.
    1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5  (iii ) 5 x  5 y  x 2  y 2 =5  x  y    x  y  x  y  =  x  y  5  x  y 
  • 24.
    3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab
  • 25.
    3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18
  • 26.
    3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   18 9
  • 27.
    3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   18   x  6  x  3 9
  • 28.
    3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   18   x  6  x  3 9 (ii ) t 2  4t  3
  • 29.
    3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   18   x  6  x  3 9 (ii ) t 2  4t  3 3   4
  • 30.
    3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   18   x  6  x  3 9 (ii ) t 2  4t  3 3   t  3 t  1   4
  • 31.
    3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   18   x  6  x  3 9 (ii ) t 2  4t  3 3   t  3 t  1   4 (iii ) x 2  5 xy  4 y 2
  • 32.
    3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   18   x  6  x  3 9 (ii ) t 2  4t  3 3   t  3 t  1   4 (iii ) x 2  5 xy  4 y 2   4 y 2   5 y
  • 33.
    3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   18   x  6  x  3 9 (ii ) t 2  4t  3 3   t  3 t  1   4 (iii ) x 2  5 xy  4 y 2   4 y 2   x  y  x  4 y    5 y
  • 34.
  • 35.
    b) Splitting theMiddle e.g. (i ) 3x 2  4 x  7
  • 36.
    b) Splitting theMiddle Multiply the constant by the e.g. (i ) 3x  4 x  7 2   21 coefficient of x squared 4 7  3
  • 37.
    b) Splitting theMiddle Multiply the constant by the e.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3
  • 38.
    b) Splitting theMiddle Multiply the constant by the e.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1
  • 39.
    b) Splitting theMiddle Multiply the constant by the e.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7 
  • 40.
    b) Splitting theMiddle Multiply the constant by the e.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7  (ii ) 2 x 2  5 x  12
  • 41.
    b) Splitting theMiddle Multiply the constant by the e.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7  (ii ) 2 x 2  5 x  12   24   5
  • 42.
    b) Splitting theMiddle Multiply the constant by the e.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7  (ii ) 2 x 2  5 x  12   24  2 x 2  8 x  3 x  12   5
  • 43.
    b) Splitting theMiddle Multiply the constant by the e.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7  (ii ) 2 x 2  5 x  12   24  2 x 2  8 x  3 x  12   5  2 x  x  4  3 x  4
  • 44.
    b) Splitting theMiddle Multiply the constant by the e.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7  (ii ) 2 x 2  5 x  12   24  2 x 2  8 x  3 x  12   5  2 x  x  4  3 x  4   x  4  2 x  3
  • 45.
    b) Splitting theMiddle Multiply the constant by the e.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7  (ii ) 2 x 2  5 x  12   24  2 x 2  8 x  3 x  12   5  2 x  x  4  3 x  4   x  4  2 x  3 Exercise 1C; 1e, 2f, 3d, 4ejo, 5adhkn, 6ace etc, 7ace etc, 8*bdfij