SlideShare a Scribd company logo
1 of 56
Volumes By Cylindrical Shells
          ( slice || rotation )
Volumes By Cylindrical Shells
              ( slice || rotation )
   y      y = f ( x)



          x
Volumes By Cylindrical Shells
                   ( slice || rotation )
   y           y = f ( x)



       a   b   x
Volumes By Cylindrical Shells
                      ( slice || rotation )
   y              y = f ( x)



       a ∆x   b   x
Volumes By Cylindrical Shells
                      ( slice || rotation )
   y              y = f ( x)



       a ∆x   b   x
Volumes By Cylindrical Shells
                      ( slice || rotation )
   y              y = f ( x)



       a ∆x   b   x
Volumes By Cylindrical Shells
                      ( slice || rotation )
   y              y = f ( x)



       a ∆x   b   x
                                              ∆x
Volumes By Cylindrical Shells
                      ( slice || rotation )
   y              y = f ( x)

                          y
       a ∆x   b   x
                                              ∆x
Volumes By Cylindrical Shells
                      ( slice || rotation )
   y              y = f ( x)

                          y = f ( x)
       a ∆x   b   x
                                              ∆x
Volumes By Cylindrical Shells
                      ( slice || rotation )
   y              y = f ( x)

                          y = f ( x)
       a ∆x   b   x
                                                    ∆x
                                              2πx
Volumes By Cylindrical Shells
                      ( slice || rotation )
   y              y = f ( x)

                          y = f ( x)
       a ∆x   b   x
                                                                ∆x
                                                2πx

                                       A( x ) = 2πx ⋅ f ( x )
Volumes By Cylindrical Shells
                      ( slice || rotation )
   y              y = f ( x)

                          y = f ( x)
       a ∆x   b   x
                                                                ∆x
                                                2πx

                                       A( x ) = 2πx ⋅ f ( x )
                                         ∆V = 2πx ⋅ f ( x ) ⋅ ∆x
Volumes By Cylindrical Shells
                              ( slice || rotation )
   y                      y = f ( x)

                                  y = f ( x)
       a ∆x      b        x
                                                                        ∆x
                                                        2πx

                                               A( x ) = 2πx ⋅ f ( x )
                                                 ∆V = 2πx ⋅ f ( x ) ⋅ ∆x
                      b
        V = lim ∑ 2πx ⋅ f ( x ) ⋅ ∆x
              ∆x →0
                      x=a
Volumes By Cylindrical Shells
                              ( slice || rotation )
   y                      y = f ( x)

                                  y = f ( x)
       a ∆x      b        x
                                                                        ∆x
                                                        2πx

                                               A( x ) = 2πx ⋅ f ( x )
                                                 ∆V = 2πx ⋅ f ( x ) ⋅ ∆x
                      b
        V = lim ∑ 2πx ⋅ f ( x ) ⋅ ∆x
              ∆x →0
                      x=a
                  b
          = 2π ∫ xf ( x ) dx
                  a
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
       the x axis is rotated about the x axis
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
         the x axis is rotated about the x axis
            y
            4
                y = 4 − x2


                           x
    -2             2
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
       the x axis is rotated about the x axis
          y
          4
              y = 4 − x2
      ∆y

    -2           2       x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
       the x axis is rotated about the x axis
          y
          4
              y = 4 − x2
      ∆y

    -2           2       x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
       the x axis is rotated about the x axis
          y
          4
              y = 4 − x2
      ∆y

    -2           2       x

              ∆y
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
       the x axis is rotated about the x axis
          y
          4
              y = 4 − x2          1
                   ⇒ x = ( 4 − y) 2
      ∆y

    -2           2       x

              ∆y




    2x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
       the x axis is rotated about the x axis
          y
          4
              y = 4 − x2          1
                   ⇒ x = ( 4 − y) 2
      ∆y

    -2           2       x

              ∆y




    2x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
       the x axis is rotated about the x axis
          y
          4
              y = 4 − x2          1
                   ⇒ x = ( 4 − y) 2
      ∆y

    -2            2        x

                ∆y




                       1
    2 x = 2( 4 − y )   2
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
       the x axis is rotated about the x axis
          y
          4
              y = 4 − x2          1
                   ⇒ x = ( 4 − y) 2
      ∆y

    -2            2        x

                ∆y



               2πy


                       1
    2 x = 2( 4 − y )   2
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
       the x axis is rotated about the x axis
          y
          4
              y = 4 − x2          1
                   ⇒ x = ( 4 − y) 2
      ∆y

    -2            2              x

                ∆y
                                        2( 4 − y ) 1 
                           A( y ) = 2πy             2
                                                     
                                                     
               2πy


                       1
    2 x = 2( 4 − y )   2
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
       the x axis is rotated about the x axis
          y
          4
              y = 4 − x2          1
                   ⇒ x = ( 4 − y) 2
      ∆y

    -2            2        x

                ∆y
                                2( 4 − y ) 1 
                   A( y ) = 2πy             2
                                             
                                             
                                        1
               2πy ∆V = 4πy ( 4 − y ) 2 ⋅ ∆y


                       1
    2 x = 2( 4 − y )   2
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
       the x axis is rotated about the x axis                  4        1
                                                  V = lim ∑ 4πy ( 4 − y ) ⋅ ∆y
                                                                        2
          y                                           ∆y →0
                                                              x =0
          4
              y = 4 − x2          1
                   ⇒ x = ( 4 − y) 2
      ∆y

    -2            2        x

                ∆y
                                2( 4 − y ) 1 
                   A( y ) = 2πy             2
                                             
                                             
                                        1
               2πy ∆V = 4πy ( 4 − y ) 2 ⋅ ∆y


                       1
    2 x = 2( 4 − y )   2
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
       the x axis is rotated about the x axis                  4            1
                                                  V = lim ∑ 4πy ( 4 − y ) ⋅ ∆y
                                                                            2
          y                                           ∆y →0
                                                              x =0
          4                                               4
              y = 4 − x2                                             1
                                                    = 4π ∫ y ( 4 − y ) dy
                                  1
                   ⇒ x = ( 4 − y) 2
      ∆y                                                             2
                                                          0


    -2            2        x

                ∆y
                                2( 4 − y ) 1 
                   A( y ) = 2πy             2
                                             
                                             
                                        1
               2πy ∆V = 4πy ( 4 − y ) 2 ⋅ ∆y


                       1
    2 x = 2( 4 − y )   2
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
       the x axis is rotated about the x axis                     4          1
                                                  V = lim ∑ 4πy ( 4 − y ) ⋅ ∆y
                                                                             2
          y                                           ∆y →0
                                                              x =0
          4                                               4
              y = 4 − x2                                              1
                                                    = 4π ∫ y ( 4 − y ) dy
                                  1
                   ⇒ x = ( 4 − y) 2
      ∆y                                                              2
                                                          0
                                                           4          1
                                                     = 4π ∫ ( 4 − y ) y dy
                                                                      2
    -2            2        x
                                                              0

                ∆y
                                2( 4 − y ) 1 
                   A( y ) = 2πy             2
                                             
                                             
                                        1
               2πy ∆V = 4πy ( 4 − y ) 2 ⋅ ∆y


                       1
    2 x = 2( 4 − y )   2
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
       the x axis is rotated about the x axis                  4             1
                                                  V = lim ∑ 4πy ( 4 − y ) ⋅ ∆y
                                                                             2
          y                                           ∆y →0
                                                              x =0
          4                                               4
              y = 4 − x2                                             1
                                                    = 4π ∫ y ( 4 − y ) dy
                                  1
                   ⇒ x = ( 4 − y) 2
      ∆y                                                             2
                                                          0
                                                           4          1
                                                     = 4π ∫ ( 4 − y ) y dy
                                                                      2
    -2            2        x
                                                          0

                                                            1         
                                                          4          3
                ∆y                                   = 4π ∫  4 y − y dy
                                                                     2
                                                                 2
                                                            
                                                          0           
                                2( 4 − y ) 1 
                   A( y ) = 2πy             2
                                             
                                             
                                        1
               2πy ∆V = 4πy ( 4 − y ) 2 ⋅ ∆y


                       1
    2 x = 2( 4 − y )   2
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
       the x axis is rotated about the x axis                  4             1
                                                  V = lim ∑ 4πy ( 4 − y ) ⋅ ∆y
                                                                             2
          y                                           ∆y →0
                                                              x =0
          4                                               4
              y = 4 − x2                                             1
                                                    = 4π ∫ y ( 4 − y ) dy
                                  1
                   ⇒ x = ( 4 − y) 2
      ∆y                                                             2
                                                          0
                                                           4          1
                                                     = 4π ∫ ( 4 − y ) y dy
                                                                      2
    -2            2        x
                                                          0

                                                            1         
                                                          4          3
                ∆y                                   = 4π ∫  4 y − y dy
                                                                     2
                                                                 2
                                                            
                                                          0           4
                                2( 4 − y ) 1 
                   A( y ) = 2πy             2
                                                         8 3 2 5 
                                                   = 4π  y 2 − y 2 
                                        1
               2πy ∆V = 4πy ( 4 − y ) 2 ⋅ ∆y               3      5 0



                       1
    2 x = 2( 4 − y )   2
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
       the x axis is rotated about the x axis                  4             1
                                                  V = lim ∑ 4πy ( 4 − y ) ⋅ ∆y
                                                                             2
          y                                           ∆y →0
                                                              x =0
          4                                               4
              y = 4 − x2                                              1
                                                    = 4π ∫ y ( 4 − y ) dy
                                  1
                   ⇒ x = ( 4 − y) 2
      ∆y                                                              2
                                                          0
                                                           4          1
                                                     = 4π ∫ ( 4 − y ) y dy
                                                                      2
    -2            2        x
                                                           0

                                                            1            
                                                           4           3
                ∆y                                   = 4π ∫  4 y − y dy
                                                                       2
                                                                 2
                                                            
                                                          0              4
                                2( 4 − y ) 1 
                   A( y ) = 2πy             2
                                                         8 3 2 5 
                                                   = 4π  y 2 − y 2 
                                        1
               2πy ∆V = 4πy ( 4 − y ) 2 ⋅ ∆y               3       5 0
                                                           8 ( 8) − 2 ( 32 ) − 0
                                                      = 4π                      
                                                                                
                                                             3       5
                                                        512π
                       1
                                                      =        units 3
    2 x = 2( 4 − y )   2
                                                         15
( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated
    about the line x = 4
( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated
     about the line x = 4
             y
               2
x2 + y2 = 4

      -2              2                                  x

              -2
( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated
     about the line x = 4
             y
               2
x2 + y2 = 4

      -2              2        4                         x

              -2
( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated
     about the line x = 4
             y
              2
x2 + y2 = 4

      -2              2        4                         x

              -2 ∆x
( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated
     about the line x = 4
             y
              2
x2 + y2 = 4

      -2              2        4                         x

              -2 ∆x
( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated
     about the line x = 4
             y
              2
x2 + y2 = 4

      -2              2        4                         x

              -2 ∆x
( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated
     about the line x = 4
             y                                    torus
              2
x2 + y2 = 4

      -2              2        4                          x

              -2 ∆x
( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated
     about the line x = 4
             y                                    torus
              2
x2 + y2 = 4

      -2              2        4                          x

              -2 ∆x
( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated
     about the line x = 4
             y                                    torus
              2
x2 + y2 = 4

      -2              2        4                          x

              -2 ∆x




                                   ∆x
( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated
     about the line x = 4
             y                                    torus
              2
x2 + y2 = 4

      -2              2        4                          x

              -2 ∆x


       2y


                                   ∆x
( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated
     about the line x = 4
             y                                    torus
              2
x2 + y2 = 4

      -2              2        4                          x

              -2 ∆x


       2y
= 2 4 − x2
                                   ∆x
( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated
     about the line x = 4
             y                                    torus
              2
x2 + y2 = 4

      -2                 2       4                        x

              -2 ∆x


       2y
= 2 4 − x2
                                     ∆x
                  2π ( 4 − x )
( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated
     about the line x = 4
             y                                    torus
              2
x2 + y2 = 4

      -2                 2       4                        x

              -2 ∆x
                                           A( x ) = 2 4 − x 2 ⋅ 2π ( 4 − x )
       2y
= 2 4 − x2
                                     ∆x
                  2π ( 4 − x )
( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated
     about the line x = 4
             y                                    torus
              2
x2 + y2 = 4

      -2                 2       4                        x

              -2 ∆x
                                           A( x ) = 2 4 − x 2 ⋅ 2π ( 4 − x )
                                                 = 4π ( 4 − x ) 4 − x 2
       2y
= 2 4 − x2
                                     ∆x
                  2π ( 4 − x )
( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated
     about the line x = 4
             y                                    torus
              2
x2 + y2 = 4

      -2                 2       4                        x

              -2 ∆x
                                           A( x ) = 2 4 − x 2 ⋅ 2π ( 4 − x )
                                                 = 4π ( 4 − x ) 4 − x 2
       2y
= 2 4 − x2
                                             ∆V = 4π ( 4 − x ) 4 − x 2 ⋅ ∆x
                                     ∆x
                  2π ( 4 − x )
2

           ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x
V = lim
   ∆x →0
           x = −2
2

            ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x
V = lim
    ∆x →0
            x = −2
        2
  = 4π ∫ ( 4 − x ) 4 − x 2 dx
       −2
2

            ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x
V = lim
    ∆x →0
            x = −2
        2
  = 4π ∫ ( 4 − x ) 4 − x 2 dx
       −2
        2                       2
  = 4π ∫ 4 4 − x 2 dx − 4π ∫ x 4 − x 2 dx
       −2                       −2
2

            ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x
V = lim
    ∆x →0
            x = −2
        2
  = 4π ∫ ( 4 − x ) 4 − x 2 dx
       −2
        2                       2
  = 4π ∫ 4 4 − x 2 dx − 4π ∫ x 4 − x 2 dx
       −2                       −2
             2                  2
  = 16π ∫ 4 − x 2 dx − 4π ∫ x 4 − x 2 dx
            −2                  −2
2

            ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x
V = lim
    ∆x →0
            x = −2
        2
  = 4π ∫ ( 4 − x ) 4 − x 2 dx
       −2
        2                       2
  = 4π ∫ 4 4 − x 2 dx − 4π ∫ x 4 − x 2 dx
       −2                       −2
             2                  2
  = 16π ∫ 4 − x 2 dx − 4π ∫ x 4 − x 2 dx
            −2                  −2



          semi-circle
2

            ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x
V = lim
    ∆x →0
            x = −2
        2
  = 4π ∫ ( 4 − x ) 4 − x 2 dx
       −2
        2                       2
  = 4π ∫ 4 4 − x 2 dx − 4π ∫ x 4 − x 2 dx
       −2                       −2
             2                  2
  = 16π ∫ 4 − x 2 dx − 4π ∫ x 4 − x 2 dx
            −2                  −2



          semi-circle

  = 16π  π ( 2) 
          1     2
        2        
                 
2

            ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x
V = lim
    ∆x →0
            x = −2
        2
  = 4π ∫ ( 4 − x ) 4 − x 2 dx
       −2
        2                       2
  = 4π ∫ 4 4 − x 2 dx − 4π ∫ x 4 − x 2 dx
       −2                       −2
             2                  2
  = 16π ∫ 4 − x 2 dx − 4π ∫ x 4 − x 2 dx
            −2                  −2



                            odd × even = odd function
          semi-circle

  = 16π  π ( 2) 
          1     2
        2        
                 
2

            ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x
V = lim
    ∆x →0
            x = −2
        2
  = 4π ∫ ( 4 − x ) 4 − x 2 dx
       −2
        2                       2
  = 4π ∫ 4 4 − x 2 dx − 4π ∫ x 4 − x 2 dx
       −2                       −2
             2                  2
  = 16π ∫ 4 − x 2 dx − 4π ∫ x 4 − x 2 dx
            −2                  −2



                            odd × even = odd function
          semi-circle

  = 16π  π ( 2)  − 0
          1     2
        2        
                 
2

            ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x
V = lim
    ∆x →0
            x = −2
        2
  = 4π ∫ ( 4 − x ) 4 − x 2 dx
       −2
        2                       2
  = 4π ∫ 4 4 − x 2 dx − 4π ∫ x 4 − x 2 dx
       −2                       −2
             2                  2
  = 16π ∫ 4 − x 2 dx − 4π ∫ x 4 − x 2 dx
            −2                  −2



                            odd × even = odd function
          semi-circle

  = 16π  π ( 2)  − 0
          1     2
        2        
                 
  = 32π 2 units 3
2

            ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x
V = lim
    ∆x →0
            x = −2
        2
  = 4π ∫ ( 4 − x ) 4 − x 2 dx                       Exercise 3B;
                                                      3, 4, 6, 8
       −2
        2                       2
  = 4π ∫ 4 4 − x 2 dx − 4π ∫ x 4 − x 2 dx           Exercise 3C;
       −2                       −2
                                                    1, 3, 9, 12, 20
             2                  2
  = 16π ∫ 4 − x 2 dx − 4π ∫ x 4 − x 2 dx
            −2                  −2



                            odd × even = odd function
          semi-circle

  = 16π  π ( 2)  − 0
          1     2
        2        
                 
  = 32π 2 units 3

More Related Content

What's hot

Hw2sol
Hw2solHw2sol
Hw2soluxxdqq
 
Math refresher
Math refresherMath refresher
Math refresherdelilahnan
 
30 surface integrals
30 surface integrals30 surface integrals
30 surface integralsmath267
 
X2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsX2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsNigel Simmons
 
Pc12 sol c04_4-1
Pc12 sol c04_4-1Pc12 sol c04_4-1
Pc12 sol c04_4-1Garden City
 
Datamining 6th Svm
Datamining 6th SvmDatamining 6th Svm
Datamining 6th Svmsesejun
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553Destiny Nooppynuchy
 
Integrated Math 2 Section 9-1
Integrated Math 2 Section 9-1Integrated Math 2 Section 9-1
Integrated Math 2 Section 9-1Jimbo Lamb
 
Bresenham circle-algorithm
Bresenham circle-algorithmBresenham circle-algorithm
Bresenham circle-algorithmmindz2
 
Applications of derivatives
Applications of derivativesApplications of derivatives
Applications of derivativesTarun Gehlot
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating LimitsMatthew Leingang
 
Structured regression for efficient object detection
Structured regression for efficient object detectionStructured regression for efficient object detection
Structured regression for efficient object detectionzukun
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencialSIGIFREDO12222
 
138191 rvsp lecture notes
138191 rvsp lecture notes138191 rvsp lecture notes
138191 rvsp lecture notesAhmed Tayeh
 
ฟังก์ชัน(function)
ฟังก์ชัน(function)ฟังก์ชัน(function)
ฟังก์ชัน(function)Yodhathai Reesrikom
 
Integrated exercise a_(book_2_B)_Ans
Integrated exercise a_(book_2_B)_AnsIntegrated exercise a_(book_2_B)_Ans
Integrated exercise a_(book_2_B)_Ansken1470
 
Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization IMatthew Leingang
 

What's hot (20)

Hw2sol
Hw2solHw2sol
Hw2sol
 
Math refresher
Math refresherMath refresher
Math refresher
 
30 surface integrals
30 surface integrals30 surface integrals
30 surface integrals
 
X2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsX2 T05 06 Partial Fractions
X2 T05 06 Partial Fractions
 
Pc12 sol c04_4-1
Pc12 sol c04_4-1Pc12 sol c04_4-1
Pc12 sol c04_4-1
 
Datamining 6th Svm
Datamining 6th SvmDatamining 6th Svm
Datamining 6th Svm
 
Pc12 sol c04_cp
Pc12 sol c04_cpPc12 sol c04_cp
Pc12 sol c04_cp
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
 
Integrated Math 2 Section 9-1
Integrated Math 2 Section 9-1Integrated Math 2 Section 9-1
Integrated Math 2 Section 9-1
 
Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
 
Bresenham circle-algorithm
Bresenham circle-algorithmBresenham circle-algorithm
Bresenham circle-algorithm
 
Applications of derivatives
Applications of derivativesApplications of derivatives
Applications of derivatives
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating Limits
 
Structured regression for efficient object detection
Structured regression for efficient object detectionStructured regression for efficient object detection
Structured regression for efficient object detection
 
Chapter 16
Chapter 16Chapter 16
Chapter 16
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencial
 
138191 rvsp lecture notes
138191 rvsp lecture notes138191 rvsp lecture notes
138191 rvsp lecture notes
 
ฟังก์ชัน(function)
ฟังก์ชัน(function)ฟังก์ชัน(function)
ฟังก์ชัน(function)
 
Integrated exercise a_(book_2_B)_Ans
Integrated exercise a_(book_2_B)_AnsIntegrated exercise a_(book_2_B)_Ans
Integrated exercise a_(book_2_B)_Ans
 
Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization I
 

Viewers also liked

Viewers also liked (18)

Xad
XadXad
Xad
 
X2 T07 07 miscellaneous dynamics questions (2010)
X2 T07 07 miscellaneous dynamics questions (2010)X2 T07 07 miscellaneous dynamics questions (2010)
X2 T07 07 miscellaneous dynamics questions (2010)
 
X431 getting starter guide
X431 getting starter guideX431 getting starter guide
X431 getting starter guide
 
X2 T06 03 Parallel Crosssections
X2 T06 03 Parallel CrosssectionsX2 T06 03 Parallel Crosssections
X2 T06 03 Parallel Crosssections
 
X2 t06 06 banked curves (2012)
X2 t06 06 banked curves (2012)X2 t06 06 banked curves (2012)
X2 t06 06 banked curves (2012)
 
X2 t07 07 other graphs (2013)
X2 t07 07 other graphs (2013)X2 t07 07 other graphs (2013)
X2 t07 07 other graphs (2013)
 
Xarxees!
Xarxees!Xarxees!
Xarxees!
 
Xamarin+f#で操作する Raspberry Pi Robot
Xamarin+f#で操作する Raspberry Pi RobotXamarin+f#で操作する Raspberry Pi Robot
Xamarin+f#で操作する Raspberry Pi Robot
 
Xakea
XakeaXakea
Xakea
 
xa7o4.pdf
xa7o4.pdfxa7o4.pdf
xa7o4.pdf
 
Xandri
XandriXandri
Xandri
 
Xamarin2.0
Xamarin2.0Xamarin2.0
Xamarin2.0
 
X2 T07 01 features calculus (2011)
X2 T07 01 features calculus (2011)X2 T07 01 features calculus (2011)
X2 T07 01 features calculus (2011)
 
X3d....
X3d....X3d....
X3d....
 
Xalacapan informa
Xalacapan informaXalacapan informa
Xalacapan informa
 
X2 T07 05 conical pendulum (2010)
X2 T07 05 conical pendulum (2010)X2 T07 05 conical pendulum (2010)
X2 T07 05 conical pendulum (2010)
 
X24164167
X24164167X24164167
X24164167
 
Xadrez éLcio
Xadrez éLcioXadrez éLcio
Xadrez éLcio
 

Similar to X2 T06 02 Cylindrical Shells

11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
Section 6.3.pdf
Section 6.3.pdfSection 6.3.pdf
Section 6.3.pdfCalculusII
 
Equations of Tangents and Normals
Equations of Tangents and NormalsEquations of Tangents and Normals
Equations of Tangents and Normalscoburgmaths
 
7.3 volumes by cylindrical shells
7.3 volumes by cylindrical shells7.3 volumes by cylindrical shells
7.3 volumes by cylindrical shellsdicosmo178
 
7.1 area between curves
7.1 area between curves7.1 area between curves
7.1 area between curvesdicosmo178
 
Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)Matthew Leingang
 
V. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski topV. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski topSEENET-MTP
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating LimitsMatthew Leingang
 
Area and volume practice
Area and volume practiceArea and volume practice
Area and volume practicetschmucker
 
Area between curves
Area between curvesArea between curves
Area between curvesShaun Wilson
 
X2 t05 02 cylindrical shells (2012)
X2 t05 02 cylindrical shells (2012)X2 t05 02 cylindrical shells (2012)
X2 t05 02 cylindrical shells (2012)Nigel Simmons
 
X2 T06 02 cylindrical shells (2010)
X2 T06 02 cylindrical shells (2010)X2 T06 02 cylindrical shells (2010)
X2 T06 02 cylindrical shells (2010)Nigel Simmons
 
X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)Nigel Simmons
 
Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)MariaFaithDalay2
 
Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)Matthew Leingang
 

Similar to X2 T06 02 Cylindrical Shells (20)

11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
Section 6.3.pdf
Section 6.3.pdfSection 6.3.pdf
Section 6.3.pdf
 
Equations of Tangents and Normals
Equations of Tangents and NormalsEquations of Tangents and Normals
Equations of Tangents and Normals
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
7.3 volumes by cylindrical shells
7.3 volumes by cylindrical shells7.3 volumes by cylindrical shells
7.3 volumes by cylindrical shells
 
7.1 area between curves
7.1 area between curves7.1 area between curves
7.1 area between curves
 
Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)
 
V. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski topV. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski top
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating Limits
 
Area and volume practice
Area and volume practiceArea and volume practice
Area and volume practice
 
Area between curves
Area between curvesArea between curves
Area between curves
 
X2 t05 02 cylindrical shells (2012)
X2 t05 02 cylindrical shells (2012)X2 t05 02 cylindrical shells (2012)
X2 t05 02 cylindrical shells (2012)
 
X2 T06 02 cylindrical shells (2010)
X2 T06 02 cylindrical shells (2010)X2 T06 02 cylindrical shells (2010)
X2 T06 02 cylindrical shells (2010)
 
X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)
 
Lesson 11: The Chain Rule
Lesson 11: The Chain RuleLesson 11: The Chain Rule
Lesson 11: The Chain Rule
 
9-8 Notes
9-8 Notes9-8 Notes
9-8 Notes
 
Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)Volumes of solid (slicing, disc, washer, cylindrical shell)
Volumes of solid (slicing, disc, washer, cylindrical shell)
 
0201 ch 2 day 1
0201 ch 2 day 10201 ch 2 day 1
0201 ch 2 day 1
 
Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 

Recently uploaded

MICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxMICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxabhijeetpadhi001
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 

Recently uploaded (20)

MICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxMICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptx
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 

X2 T06 02 Cylindrical Shells

  • 1. Volumes By Cylindrical Shells ( slice || rotation )
  • 2. Volumes By Cylindrical Shells ( slice || rotation ) y y = f ( x) x
  • 3. Volumes By Cylindrical Shells ( slice || rotation ) y y = f ( x) a b x
  • 4. Volumes By Cylindrical Shells ( slice || rotation ) y y = f ( x) a ∆x b x
  • 5. Volumes By Cylindrical Shells ( slice || rotation ) y y = f ( x) a ∆x b x
  • 6. Volumes By Cylindrical Shells ( slice || rotation ) y y = f ( x) a ∆x b x
  • 7. Volumes By Cylindrical Shells ( slice || rotation ) y y = f ( x) a ∆x b x ∆x
  • 8. Volumes By Cylindrical Shells ( slice || rotation ) y y = f ( x) y a ∆x b x ∆x
  • 9. Volumes By Cylindrical Shells ( slice || rotation ) y y = f ( x) y = f ( x) a ∆x b x ∆x
  • 10. Volumes By Cylindrical Shells ( slice || rotation ) y y = f ( x) y = f ( x) a ∆x b x ∆x 2πx
  • 11. Volumes By Cylindrical Shells ( slice || rotation ) y y = f ( x) y = f ( x) a ∆x b x ∆x 2πx A( x ) = 2πx ⋅ f ( x )
  • 12. Volumes By Cylindrical Shells ( slice || rotation ) y y = f ( x) y = f ( x) a ∆x b x ∆x 2πx A( x ) = 2πx ⋅ f ( x ) ∆V = 2πx ⋅ f ( x ) ⋅ ∆x
  • 13. Volumes By Cylindrical Shells ( slice || rotation ) y y = f ( x) y = f ( x) a ∆x b x ∆x 2πx A( x ) = 2πx ⋅ f ( x ) ∆V = 2πx ⋅ f ( x ) ⋅ ∆x b V = lim ∑ 2πx ⋅ f ( x ) ⋅ ∆x ∆x →0 x=a
  • 14. Volumes By Cylindrical Shells ( slice || rotation ) y y = f ( x) y = f ( x) a ∆x b x ∆x 2πx A( x ) = 2πx ⋅ f ( x ) ∆V = 2πx ⋅ f ( x ) ⋅ ∆x b V = lim ∑ 2πx ⋅ f ( x ) ⋅ ∆x ∆x →0 x=a b = 2π ∫ xf ( x ) dx a
  • 15. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis
  • 16. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 x -2 2
  • 17. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 ∆y -2 2 x
  • 18. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 ∆y -2 2 x
  • 19. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 ∆y -2 2 x ∆y
  • 20. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 1 ⇒ x = ( 4 − y) 2 ∆y -2 2 x ∆y 2x
  • 21. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 1 ⇒ x = ( 4 − y) 2 ∆y -2 2 x ∆y 2x
  • 22. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 1 ⇒ x = ( 4 − y) 2 ∆y -2 2 x ∆y 1 2 x = 2( 4 − y ) 2
  • 23. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 1 ⇒ x = ( 4 − y) 2 ∆y -2 2 x ∆y 2πy 1 2 x = 2( 4 − y ) 2
  • 24. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 1 ⇒ x = ( 4 − y) 2 ∆y -2 2 x ∆y 2( 4 − y ) 1  A( y ) = 2πy 2     2πy 1 2 x = 2( 4 − y ) 2
  • 25. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 1 ⇒ x = ( 4 − y) 2 ∆y -2 2 x ∆y 2( 4 − y ) 1  A( y ) = 2πy 2     1 2πy ∆V = 4πy ( 4 − y ) 2 ⋅ ∆y 1 2 x = 2( 4 − y ) 2
  • 26. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis 4 1 V = lim ∑ 4πy ( 4 − y ) ⋅ ∆y 2 y ∆y →0 x =0 4 y = 4 − x2 1 ⇒ x = ( 4 − y) 2 ∆y -2 2 x ∆y 2( 4 − y ) 1  A( y ) = 2πy 2     1 2πy ∆V = 4πy ( 4 − y ) 2 ⋅ ∆y 1 2 x = 2( 4 − y ) 2
  • 27. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis 4 1 V = lim ∑ 4πy ( 4 − y ) ⋅ ∆y 2 y ∆y →0 x =0 4 4 y = 4 − x2 1 = 4π ∫ y ( 4 − y ) dy 1 ⇒ x = ( 4 − y) 2 ∆y 2 0 -2 2 x ∆y 2( 4 − y ) 1  A( y ) = 2πy 2     1 2πy ∆V = 4πy ( 4 − y ) 2 ⋅ ∆y 1 2 x = 2( 4 − y ) 2
  • 28. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis 4 1 V = lim ∑ 4πy ( 4 − y ) ⋅ ∆y 2 y ∆y →0 x =0 4 4 y = 4 − x2 1 = 4π ∫ y ( 4 − y ) dy 1 ⇒ x = ( 4 − y) 2 ∆y 2 0 4 1 = 4π ∫ ( 4 − y ) y dy 2 -2 2 x 0 ∆y 2( 4 − y ) 1  A( y ) = 2πy 2     1 2πy ∆V = 4πy ( 4 − y ) 2 ⋅ ∆y 1 2 x = 2( 4 − y ) 2
  • 29. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis 4 1 V = lim ∑ 4πy ( 4 − y ) ⋅ ∆y 2 y ∆y →0 x =0 4 4 y = 4 − x2 1 = 4π ∫ y ( 4 − y ) dy 1 ⇒ x = ( 4 − y) 2 ∆y 2 0 4 1 = 4π ∫ ( 4 − y ) y dy 2 -2 2 x 0 1  4 3 ∆y = 4π ∫  4 y − y dy 2 2  0  2( 4 − y ) 1  A( y ) = 2πy 2     1 2πy ∆V = 4πy ( 4 − y ) 2 ⋅ ∆y 1 2 x = 2( 4 − y ) 2
  • 30. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis 4 1 V = lim ∑ 4πy ( 4 − y ) ⋅ ∆y 2 y ∆y →0 x =0 4 4 y = 4 − x2 1 = 4π ∫ y ( 4 − y ) dy 1 ⇒ x = ( 4 − y) 2 ∆y 2 0 4 1 = 4π ∫ ( 4 − y ) y dy 2 -2 2 x 0 1  4 3 ∆y = 4π ∫  4 y − y dy 2 2  0 4 2( 4 − y ) 1  A( y ) = 2πy 2   8 3 2 5    = 4π  y 2 − y 2  1 2πy ∆V = 4πy ( 4 − y ) 2 ⋅ ∆y 3 5 0 1 2 x = 2( 4 − y ) 2
  • 31. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis 4 1 V = lim ∑ 4πy ( 4 − y ) ⋅ ∆y 2 y ∆y →0 x =0 4 4 y = 4 − x2 1 = 4π ∫ y ( 4 − y ) dy 1 ⇒ x = ( 4 − y) 2 ∆y 2 0 4 1 = 4π ∫ ( 4 − y ) y dy 2 -2 2 x 0 1  4 3 ∆y = 4π ∫  4 y − y dy 2 2  0 4 2( 4 − y ) 1  A( y ) = 2πy 2   8 3 2 5    = 4π  y 2 − y 2  1 2πy ∆V = 4πy ( 4 − y ) 2 ⋅ ∆y 3 5 0 8 ( 8) − 2 ( 32 ) − 0 = 4π     3 5 512π 1 = units 3 2 x = 2( 4 − y ) 2 15
  • 32. ( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated about the line x = 4
  • 33. ( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated about the line x = 4 y 2 x2 + y2 = 4 -2 2 x -2
  • 34. ( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated about the line x = 4 y 2 x2 + y2 = 4 -2 2 4 x -2
  • 35. ( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated about the line x = 4 y 2 x2 + y2 = 4 -2 2 4 x -2 ∆x
  • 36. ( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated about the line x = 4 y 2 x2 + y2 = 4 -2 2 4 x -2 ∆x
  • 37. ( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated about the line x = 4 y 2 x2 + y2 = 4 -2 2 4 x -2 ∆x
  • 38. ( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated about the line x = 4 y torus 2 x2 + y2 = 4 -2 2 4 x -2 ∆x
  • 39. ( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated about the line x = 4 y torus 2 x2 + y2 = 4 -2 2 4 x -2 ∆x
  • 40. ( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated about the line x = 4 y torus 2 x2 + y2 = 4 -2 2 4 x -2 ∆x ∆x
  • 41. ( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated about the line x = 4 y torus 2 x2 + y2 = 4 -2 2 4 x -2 ∆x 2y ∆x
  • 42. ( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated about the line x = 4 y torus 2 x2 + y2 = 4 -2 2 4 x -2 ∆x 2y = 2 4 − x2 ∆x
  • 43. ( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated about the line x = 4 y torus 2 x2 + y2 = 4 -2 2 4 x -2 ∆x 2y = 2 4 − x2 ∆x 2π ( 4 − x )
  • 44. ( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated about the line x = 4 y torus 2 x2 + y2 = 4 -2 2 4 x -2 ∆x A( x ) = 2 4 − x 2 ⋅ 2π ( 4 − x ) 2y = 2 4 − x2 ∆x 2π ( 4 − x )
  • 45. ( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated about the line x = 4 y torus 2 x2 + y2 = 4 -2 2 4 x -2 ∆x A( x ) = 2 4 − x 2 ⋅ 2π ( 4 − x ) = 4π ( 4 − x ) 4 − x 2 2y = 2 4 − x2 ∆x 2π ( 4 − x )
  • 46. ( ii ) Find the volume generated when x 2 + y 2 = 4 is rotated about the line x = 4 y torus 2 x2 + y2 = 4 -2 2 4 x -2 ∆x A( x ) = 2 4 − x 2 ⋅ 2π ( 4 − x ) = 4π ( 4 − x ) 4 − x 2 2y = 2 4 − x2 ∆V = 4π ( 4 − x ) 4 − x 2 ⋅ ∆x ∆x 2π ( 4 − x )
  • 47. 2 ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x V = lim ∆x →0 x = −2
  • 48. 2 ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x V = lim ∆x →0 x = −2 2 = 4π ∫ ( 4 − x ) 4 − x 2 dx −2
  • 49. 2 ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x V = lim ∆x →0 x = −2 2 = 4π ∫ ( 4 − x ) 4 − x 2 dx −2 2 2 = 4π ∫ 4 4 − x 2 dx − 4π ∫ x 4 − x 2 dx −2 −2
  • 50. 2 ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x V = lim ∆x →0 x = −2 2 = 4π ∫ ( 4 − x ) 4 − x 2 dx −2 2 2 = 4π ∫ 4 4 − x 2 dx − 4π ∫ x 4 − x 2 dx −2 −2 2 2 = 16π ∫ 4 − x 2 dx − 4π ∫ x 4 − x 2 dx −2 −2
  • 51. 2 ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x V = lim ∆x →0 x = −2 2 = 4π ∫ ( 4 − x ) 4 − x 2 dx −2 2 2 = 4π ∫ 4 4 − x 2 dx − 4π ∫ x 4 − x 2 dx −2 −2 2 2 = 16π ∫ 4 − x 2 dx − 4π ∫ x 4 − x 2 dx −2 −2 semi-circle
  • 52. 2 ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x V = lim ∆x →0 x = −2 2 = 4π ∫ ( 4 − x ) 4 − x 2 dx −2 2 2 = 4π ∫ 4 4 − x 2 dx − 4π ∫ x 4 − x 2 dx −2 −2 2 2 = 16π ∫ 4 − x 2 dx − 4π ∫ x 4 − x 2 dx −2 −2 semi-circle = 16π  π ( 2)  1 2 2   
  • 53. 2 ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x V = lim ∆x →0 x = −2 2 = 4π ∫ ( 4 − x ) 4 − x 2 dx −2 2 2 = 4π ∫ 4 4 − x 2 dx − 4π ∫ x 4 − x 2 dx −2 −2 2 2 = 16π ∫ 4 − x 2 dx − 4π ∫ x 4 − x 2 dx −2 −2 odd × even = odd function semi-circle = 16π  π ( 2)  1 2 2   
  • 54. 2 ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x V = lim ∆x →0 x = −2 2 = 4π ∫ ( 4 − x ) 4 − x 2 dx −2 2 2 = 4π ∫ 4 4 − x 2 dx − 4π ∫ x 4 − x 2 dx −2 −2 2 2 = 16π ∫ 4 − x 2 dx − 4π ∫ x 4 − x 2 dx −2 −2 odd × even = odd function semi-circle = 16π  π ( 2)  − 0 1 2 2   
  • 55. 2 ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x V = lim ∆x →0 x = −2 2 = 4π ∫ ( 4 − x ) 4 − x 2 dx −2 2 2 = 4π ∫ 4 4 − x 2 dx − 4π ∫ x 4 − x 2 dx −2 −2 2 2 = 16π ∫ 4 − x 2 dx − 4π ∫ x 4 − x 2 dx −2 −2 odd × even = odd function semi-circle = 16π  π ( 2)  − 0 1 2 2    = 32π 2 units 3
  • 56. 2 ∑ 4π ( 4 − x ) 4 − x 2 ⋅ ∆x V = lim ∆x →0 x = −2 2 = 4π ∫ ( 4 − x ) 4 − x 2 dx Exercise 3B; 3, 4, 6, 8 −2 2 2 = 4π ∫ 4 4 − x 2 dx − 4π ∫ x 4 − x 2 dx Exercise 3C; −2 −2 1, 3, 9, 12, 20 2 2 = 16π ∫ 4 − x 2 dx − 4π ∫ x 4 − x 2 dx −2 −2 odd × even = odd function semi-circle = 16π  π ( 2)  − 0 1 2 2    = 32π 2 units 3