SlideShare a Scribd company logo
nth Roots Of Unity  z

n

 1
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
 2 k  0 
z  cis 
 k  0, 1, 2
 5 
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
 2 k  0 
z  cis 
 k  0, 1, 2
 5 
2
2
4
4
z  cis 0, cis
, cis 
, cis
, cis 
5
5
5
5
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
 2 k  0 
z  cis 
 k  0, 1, 2
 5 
2
2
4
4
z  cis 0, cis
, cis 
, cis
, cis 
y
5
5
5
5

cis 0
x
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
 2 k  0 
z  cis 
 k  0, 1, 2
 5 
2
2
4
4
z  cis 0, cis
, cis 
, cis
, cis 
y
2
cis
5
5
5
5
5
cis 0
x
2
cis 
5
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
 2 k  0 
z  cis 
 k  0, 1, 2
 5 
2
2
4
4
z  cis 0, cis
, cis 
, cis
, cis 
y
2
4
cis
5
5
5
5
cis
5
5
cis 0
x
4
cis 
5

2
cis 
5
nth Roots Of Unity  z

n

 1

The solutions of equations of the form, z n  1, are the nth roots of unity
When placed on an Argand Diagram, they form a regular n sided
polygon, with vertices on the unit circle.
e.g . z 5  1
 2 k  0 
z  cis 
 k  0, 1, 2
 5 
2
2
4
4
z  cis 0, cis
, cis 
, cis
, cis 
y
2
4
cis
5
5
5
5
cis
5
5
cis 0
x
4
cis 
5

2
cis 
5
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
z5  1

If  is a solution then  5  1
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
z5  1

If  is a solution then  5  1
5 5
    15
 5 is a solution
1
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
z5  1

If  is a solution then  5  1
5 5
    15
 5 is a solution
1

    
2 5

5 2

 12
1
 2 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
z5  1

If  is a solution then  5  1
5 5
    15
 5 is a solution
1

    
2 5

5 2

 12
1
 2 is a solution

    
3 5

5 3

 13
1
 3 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
z5  1

If  is a solution then  5  1
5 5
    15
 5 is a solution
1

    
2 5

5 2

 12
1
 2 is a solution

    
3 5

5 3

 13
1
 3 is a solution

    
4 5

5 4

 14
1
 4 is a solution
b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are
the other roots.
z5  1

If  is a solution then  5  1
5 5
    15
 5 is a solution
1

    
2 5

5 2

 12
1
 2 is a solution

    
3 5

5 3

 13
1
 3 is a solution

    
4 5

5 4

 14
1
 4 is a solution

Thus if  is a root then  2 ,  3 ,  4 and  5 are also roots
ii  Prove that 1     2   3   4  0
ii  Prove that 1     2   3   4  0
b
      
a
1   2  3  4  0
2

3

4

5

sum of the roots 



5

 1
ii  Prove that 1     2   3   4  0
b
      
a
1   2  3  4  0
2

3

4

5

5
OR   1  0
  11     2   3   4   0
1     2   3   4  0   1

sum of the roots 



 1
 NOTE :

 n

 1  0


  11     2     n1   0


5
ii  Prove that 1     2   3   4  0
b
      
a
1   2  3  4  0
2

3

4

sum of the roots 

5



5
OR   1  0
  11     2   3   4   0
1     2   3   4  0   1

OR

1   2  3  4 



a  r n  1
r 1
1 5  1

 1

 1
 NOTE :

 n

 1  0


  11     2     n1   0


5

GP: a  1, r   , n  5

0



5

1  0
ii  Prove that 1     2   3   4  0
b
      
a
1   2  3  4  0
2

3

4

5

sum of the roots 



5
OR   1  0
  11     2   3   4   0
1     2   3   4  0   1

OR

1   2  3  4 

a  r n  1
r 1
1 5  1

 1
 NOTE :

 n

 1  0


  11     2     n1   0


5

GP: a  1, r   , n  5



1  0

0
 1
iii  Find the quadratic equation whose roots are    4 and  2   3
5
ii  Prove that 1     2   3   4  0
b
      
a
1   2  3  4  0
2

3

4

5

sum of the roots 



5
OR   1  0
  11     2   3   4   0
1     2   3   4  0   1

OR

1   2  3  4 

a  r n  1
r 1
1 5  1

 1
 NOTE :

 n

 1  0


  11     2     n1   0


5

GP: a  1, r   , n  5



1  0

0
 1
iii  Find the quadratic equation whose roots are    4 and  2   3
4
2
3
     4  2   3 
       
 3  4  6  7
 1
 3  4    2
 1
5
ii  Prove that 1     2   3   4  0
b
      
a
1   2  3  4  0
2

3

4

5

sum of the roots 



5
OR   1  0
  11     2   3   4   0
1     2   3   4  0   1

OR

1   2  3  4 

a  r n  1
r 1
1 5  1

 1
 NOTE :

 n

 1  0


  11     2     n1   0


5

GP: a  1, r   , n  5



1  0

0
 1
iii  Find the quadratic equation whose roots are    4 and  2   3
4
2
3
     4  2   3 
       
 3  4  6  7
 1
 3  4    2
 equation is x 2  x  1  0
 1
5
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
(i ) Evaluate 1  



2 3
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
(i ) Evaluate 1  
   



2 3

3
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
(i ) Evaluate 1  
   

3

  3
 1



2 3
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
  3
 1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
1 1
 2 
3
 
 
 1



1  

2
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
1 1
 2 
3
 
 
 1



1  

2
2
 2

1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
1 1
 2 
3
 
 
 1
(iii) Form the cubic equation with roots 1, 1   , 1   2



1  

2
2
 2

1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
1 1
 2 
3
 
 
 1
(iii) Form the cubic equation with roots 1, 1   , 1   2
 z  1z 2  2     2 z  1     2   3   0



1  

2
2
 2

1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
1 1
 2 
3
 
 
 1
(iii) Form the cubic equation with roots 1, 1   , 1   2
 z  1z 2  2     2 z  1     2   3   0

 z  1z 2  z  1  0



1  

2
2
 2

1
c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to;
1
1
2 3

(ii ) Evaluate
(i ) Evaluate 1   
1  1 2
3
   
1 1
 2 
3
 
 
 1
(iii) Form the cubic equation with roots 1, 1   , 1   2
 z  1z 2  2     2 z  1     2   3   0

 z  1z 2  z  1  0

z  z  z  z  z 1  0
z3  2z 2  2z 1  0
3

2

2



1  

2
2
 2

1
d) Solve z 5  z 4  z 3  z 2  z  1  0
d) Solve z 5  z 4  z 3  z 2  z  1  0

Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
d) Solve z 5  z 4  z 3  z 2  z  1  0

Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
And z 6  1  0 has solutions;
 2 k 
z  cis 
 k  0, 1, 2,3
 6 
d) Solve z 5  z 4  z 3  z 2  z  1  0

Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
And z 6  1  0 has solutions;
 2 k 
z  cis 
 k  0, 1, 2,3
 6 
z5  z4  z3  z2 1  0
d) Solve z 5  z 4  z 3  z 2  z  1  0

Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
And z 6  1  0 has solutions;
 2 k 
z  cis 
 k  0, 1, 2,3
 6 
z5  z4  z3  z2 1  0

 z  1z 5  z 4  z 3  z 2  1
0
 z  1
z 6  1  0, z  1
d) Solve z 5  z 4  z 3  z 2  z  1  0

Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
And z 6  1  0 has solutions;
 2 k 
z  cis 
 k  0, 1, 2,3
 6 
z5  z4  z3  z2 1  0

 z  1z 5  z 4  z 3  z 2  1
0
 z  1
z 6  1  0, z  1


2
2
z  cis , cis  , cis
, cis 
, cis
3
3
3
3
1
3 1
3
1
3
1
3
z 
i, 
i,  
i,  
i, 1
2 2 2 2
2 2
2 2
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
z9  1
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
z9  1

 2k 
z  cis 

 9 
k
2 
z  cis 

9 


k  0,1,2,3,4,5,6,7,8
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
z9  1

 2k 
z  cis 

 9 
k
2 
z  cis 

9 

z  k

k  0,1,2,3,4,5,6,7,8
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
z9  1

 2k 
z  cis 
k  0,1,2,3,4,5,6,7,8

 9 
k
2 
z  cis 

9 

z  k
(ii) Prove that    2   3   4   5   6   7   8  1
z9 1  0
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
z9  1

 2k 
z  cis 
k  0,1,2,3,4,5,6,7,8

 9 
k
2 
z  cis 

9 

z  k
(ii) Prove that    2   3   4   5   6   7   8  1
z9 1  0
1     2   3   4   5   6   7   8  0 sum of roots 
e) 1996 HSC
2
2
 i sin
Let   cos
9
9
(i) Show that  k is a solution of z 9  1  0, where k is an integer
z9  1

 2k 
z  cis 
k  0,1,2,3,4,5,6,7,8

 9 
k
2 
z  cis 

9 

z  k
(ii) Prove that    2   3   4   5   6   7   8  1
z9 1  0
1     2   3   4   5   6   7   8  0 sum of roots 

   2   3   4   5   6   7   8  1


2
4 1
(iii) Hence show that cos cos
cos

9
9
9 8


2
4 1
(iii) Hence show that cos cos
cos

9
9
9 8
9
z 1
  z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 


2
4 1
(iii) Hence show that cos cos
cos

9
9
9 8
9
z 1
  z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 
2
4
 2
 2

z  1 z  2cos
z  1
  z  1  z  2cos
9
9



6
8
 2


z  2cos
z  1 z 2  2cos
z  1

9
9



2
4
 2
 2

z  1 z  2cos
z  1
  z  1  z  2cos
9
9



8
 2

2
 z  z  1  z  2cos 9 z  1




2
4 1
(iii) Hence show that cos cos
cos

9
9
9 8
9
z 1
  z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 
2
4
 2
 2

z  1 z  2cos
z  1
  z  1  z  2cos
9
9



6
8
 2


z  2cos
z  1 z 2  2cos
z  1

9
9



2
4
 2
 2

z  1 z  2cos
z  1
  z  1  z  2cos
9
9



8
 2

2
 z  z  1  z  2cos 9 z  1


Let z  i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 


i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 


i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 

2 
4 
8 

i  1  i  i  1  2cos
 2cos
 2cos 
9 
9 
9 

4


i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 

2 
4 
8 

i  1  i  i  1  2cos
 2cos
 2cos 
9 
9 
9 

2
4
8
cos
cos
1  8cos
9
9
9
4


i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 

2 
4 
8 

i  1  i  i  1  2cos
 2cos
 2cos 
9 
9 
9 

2
4
8
cos
cos
1  8cos
9
9
9
2
4 

cos
1  8cos
  cos 
9
9 
9
4


i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 

2 
4 
8 

i  1  i  i  1  2cos
 2cos
 2cos 
9 
9 
9 

2
4
8
cos
cos
1  8cos
9
9
9
2
4 

cos
1  8cos
  cos 
9
9 
9
4



2
4 1
cos cos
cos

9
9
9 8


i

2

i  1   i  1  2cos
9

9

4

i  2cos
9


8
 
i   i   2cos
9
 


i


2 
4 
8 

i  1  i  i  1  2cos
 2cos
 2cos 
9 
9 
9 

2
4
8
cos
cos
1  8cos
9
9
9
2
4 

cos
1  8cos
  cos 
9
9 
9
4



2
4 1
cos cos
cos

9
9
9 8
Cambridge: Exercise 7C; 1 to 4, 5ac, 6, 7, 8, 9, 11
Patel: Exercise 4I; 1, 3, 5 (need 4b), 7
Patel: Exercise 4J; 1 to 4, 7ac

More Related Content

What's hot

Effect of orientation angle of elliptical hole in thermoplastic composite pla...
Effect of orientation angle of elliptical hole in thermoplastic composite pla...Effect of orientation angle of elliptical hole in thermoplastic composite pla...
Effect of orientation angle of elliptical hole in thermoplastic composite pla...
ijceronline
 
Expanding
ExpandingExpanding
Expanding
mathsteacher101
 
1. complex numbers
1. complex numbers1. complex numbers
1. complex numbers
Infomatica Educations
 
+2 maths pta question bank come book english medium
+2 maths  pta question bank come book  english medium+2 maths  pta question bank come book  english medium
+2 maths pta question bank come book english medium
Mdk Raja
 
Algebra presentation
Algebra presentation Algebra presentation
Algebra presentation
ShirleyAdriane
 
Expressions
Expressions Expressions
Expressions
miburton
 
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle Square
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle SquareOdd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle Square
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle Square
Alan Dix
 
3. apply distance and midpoint
3.  apply distance and midpoint3.  apply distance and midpoint
3. apply distance and midpoint
Regina McDonald, MA.Ed
 
Arithmetic and Geometric Progressions
Arithmetic and Geometric Progressions Arithmetic and Geometric Progressions
Arithmetic and Geometric Progressions
Dr. Tushar J Bhatt
 
8.1, 3, 4 harder
8.1, 3, 4 harder8.1, 3, 4 harder
8.1, 3, 4 harderMsKendall
 
Algebra 2 Section 3-3
Algebra 2 Section 3-3Algebra 2 Section 3-3
Algebra 2 Section 3-3
Jimbo Lamb
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresArithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
Lossian Barbosa Bacelar Miranda
 
8.1 8.4 quizzo
8.1 8.4 quizzo8.1 8.4 quizzo
8.1 8.4 quizzo
claireirene75
 
ทักษะการลงความเห็นจากข้อมูล
ทักษะการลงความเห็นจากข้อมูลทักษะการลงความเห็นจากข้อมูล
ทักษะการลงความเห็นจากข้อมูลPom Piyatip
 
Math is Awesome ACT Prep
Math is Awesome ACT PrepMath is Awesome ACT Prep
Math is Awesome ACT PrepJTKnull
 
Algebra
AlgebraAlgebra

What's hot (20)

Effect of orientation angle of elliptical hole in thermoplastic composite pla...
Effect of orientation angle of elliptical hole in thermoplastic composite pla...Effect of orientation angle of elliptical hole in thermoplastic composite pla...
Effect of orientation angle of elliptical hole in thermoplastic composite pla...
 
Expanding
ExpandingExpanding
Expanding
 
1. complex numbers
1. complex numbers1. complex numbers
1. complex numbers
 
+2 maths pta question bank come book english medium
+2 maths  pta question bank come book  english medium+2 maths  pta question bank come book  english medium
+2 maths pta question bank come book english medium
 
Algebra presentation
Algebra presentation Algebra presentation
Algebra presentation
 
Expressions
Expressions Expressions
Expressions
 
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle Square
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle SquareOdd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle Square
Odd Permutations - Part 5 of The Mathematics of Professor Alan's Puzzle Square
 
3. apply distance and midpoint
3.  apply distance and midpoint3.  apply distance and midpoint
3. apply distance and midpoint
 
Arithmetic and Geometric Progressions
Arithmetic and Geometric Progressions Arithmetic and Geometric Progressions
Arithmetic and Geometric Progressions
 
Jeopardy review
Jeopardy reviewJeopardy review
Jeopardy review
 
8.1, 3, 4 harder
8.1, 3, 4 harder8.1, 3, 4 harder
8.1, 3, 4 harder
 
Algebra 2 Section 3-3
Algebra 2 Section 3-3Algebra 2 Section 3-3
Algebra 2 Section 3-3
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresArithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
 
8.1 8.4 quizzo
8.1 8.4 quizzo8.1 8.4 quizzo
8.1 8.4 quizzo
 
#125 documented
#125 documented#125 documented
#125 documented
 
ทักษะการลงความเห็นจากข้อมูล
ทักษะการลงความเห็นจากข้อมูลทักษะการลงความเห็นจากข้อมูล
ทักษะการลงความเห็นจากข้อมูล
 
Math is Awesome ACT Prep
Math is Awesome ACT PrepMath is Awesome ACT Prep
Math is Awesome ACT Prep
 
Algebra
AlgebraAlgebra
Algebra
 
Alg1 lesson 7-1
Alg1 lesson 7-1Alg1 lesson 7-1
Alg1 lesson 7-1
 
Alg2 lesson 8-1
Alg2 lesson 8-1Alg2 lesson 8-1
Alg2 lesson 8-1
 

Viewers also liked

11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
Sequencias e series
Sequencias e series Sequencias e series
Sequencias e series
antonio alves dos santos neto
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Viewers also liked (6)

11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
Sequencias e series
Sequencias e series Sequencias e series
Sequencias e series
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Similar to X2 t01 11 nth roots of unity (2012)

11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)Nigel Simmons
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)Nigel Simmons
 
Pc12 sol c08_ptest
Pc12 sol c08_ptestPc12 sol c08_ptest
Pc12 sol c08_ptestGarden City
 
X2 T01 07 nth roots of unity
X2 T01 07 nth roots of unityX2 T01 07 nth roots of unity
X2 T01 07 nth roots of unityNigel Simmons
 
X2 t01 07 nth roots of unity (2012)
X2 t01 07 nth roots of unity (2012)X2 t01 07 nth roots of unity (2012)
X2 t01 07 nth roots of unity (2012)Nigel Simmons
 
X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)Nigel Simmons
 
X2 T01 07 nth roots of unity (2010)
X2 T01 07 nth roots of unity (2010)X2 T01 07 nth roots of unity (2010)
X2 T01 07 nth roots of unity (2010)Nigel Simmons
 
X2 T02 04 forming polynomials
X2 T02 04 forming polynomialsX2 T02 04 forming polynomials
X2 T02 04 forming polynomialsNigel Simmons
 
Problem solvingstrategies pp
Problem solvingstrategies ppProblem solvingstrategies pp
Problem solvingstrategies ppcollins1156
 
X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)Nigel Simmons
 
X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)Nigel Simmons
 
X2 T01 02 complex equations
X2 T01 02 complex equationsX2 T01 02 complex equations
X2 T01 02 complex equationsNigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
Carlon Baird
 

Similar to X2 t01 11 nth roots of unity (2012) (16)

11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)
 
Pc12 sol c08_ptest
Pc12 sol c08_ptestPc12 sol c08_ptest
Pc12 sol c08_ptest
 
X2 T01 07 nth roots of unity
X2 T01 07 nth roots of unityX2 T01 07 nth roots of unity
X2 T01 07 nth roots of unity
 
X2 t01 07 nth roots of unity (2012)
X2 t01 07 nth roots of unity (2012)X2 t01 07 nth roots of unity (2012)
X2 t01 07 nth roots of unity (2012)
 
X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)
 
X2 T01 07 nth roots of unity (2010)
X2 T01 07 nth roots of unity (2010)X2 T01 07 nth roots of unity (2010)
X2 T01 07 nth roots of unity (2010)
 
X2 T02 04 forming polynomials
X2 T02 04 forming polynomialsX2 T02 04 forming polynomials
X2 T02 04 forming polynomials
 
Problem solvingstrategies pp
Problem solvingstrategies ppProblem solvingstrategies pp
Problem solvingstrategies pp
 
X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)
 
X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)
 
X2 T01 02 complex equations
X2 T01 02 complex equationsX2 T01 02 complex equations
X2 T01 02 complex equations
 
EKR for Matchings
EKR for MatchingsEKR for Matchings
EKR for Matchings
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
0913 ch 9 day 13
0913 ch 9 day 130913 ch 9 day 13
0913 ch 9 day 13
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)Nigel Simmons
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)Nigel Simmons
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)Nigel Simmons
 
X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)
 
X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)X2 t01 02 solving quadratics (2013)
X2 t01 02 solving quadratics (2013)
 

Recently uploaded

Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
RaedMohamed3
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
TechSoup
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
timhan337
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Po-Chuan Chen
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 

Recently uploaded (20)

Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 

X2 t01 11 nth roots of unity (2012)

  • 1. nth Roots Of Unity  z n  1
  • 2. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity
  • 3. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle.
  • 4. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1
  • 5. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5 
  • 6. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  5 5 5 5
  • 7. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 5 5 5 5 cis 0 x
  • 8. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 2 cis 5 5 5 5 5 cis 0 x 2 cis  5
  • 9. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 2 4 cis 5 5 5 5 cis 5 5 cis 0 x 4 cis  5 2 cis  5
  • 10. nth Roots Of Unity  z n  1 The solutions of equations of the form, z n  1, are the nth roots of unity When placed on an Argand Diagram, they form a regular n sided polygon, with vertices on the unit circle. e.g . z 5  1  2 k  0  z  cis   k  0, 1, 2  5  2 2 4 4 z  cis 0, cis , cis  , cis , cis  y 2 4 cis 5 5 5 5 cis 5 5 cis 0 x 4 cis  5 2 cis  5
  • 11. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots.
  • 12. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1
  • 13. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1 5 5     15  5 is a solution 1
  • 14. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1 5 5     15  5 is a solution 1      2 5 5 2  12 1  2 is a solution
  • 15. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1 5 5     15  5 is a solution 1      2 5 5 2  12 1  2 is a solution      3 5 5 3  13 1  3 is a solution
  • 16. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1 5 5     15  5 is a solution 1      2 5 5 2  12 1  2 is a solution      3 5 5 3  13 1  3 is a solution      4 5 5 4  14 1  4 is a solution
  • 17. b) i  If  is a complex root of z 5  1  0, show that  2 ,  3 ,  4 and  5 are the other roots. z5  1 If  is a solution then  5  1 5 5     15  5 is a solution 1      2 5 5 2  12 1  2 is a solution      3 5 5 3  13 1  3 is a solution      4 5 5 4  14 1  4 is a solution Thus if  is a root then  2 ,  3 ,  4 and  5 are also roots
  • 18. ii  Prove that 1     2   3   4  0
  • 19. ii  Prove that 1     2   3   4  0 b        a 1   2  3  4  0 2 3 4 5 sum of the roots   5  1
  • 20. ii  Prove that 1     2   3   4  0 b        a 1   2  3  4  0 2 3 4 5 5 OR   1  0   11     2   3   4   0 1     2   3   4  0   1 sum of the roots    1  NOTE :   n   1  0     11     2     n1   0   5
  • 21. ii  Prove that 1     2   3   4  0 b        a 1   2  3  4  0 2 3 4 sum of the roots  5  5 OR   1  0   11     2   3   4   0 1     2   3   4  0   1 OR 1   2  3  4   a  r n  1 r 1 1 5  1  1  1  NOTE :   n   1  0     11     2     n1   0   5 GP: a  1, r   , n  5 0  5 1  0
  • 22. ii  Prove that 1     2   3   4  0 b        a 1   2  3  4  0 2 3 4 5 sum of the roots   5 OR   1  0   11     2   3   4   0 1     2   3   4  0   1 OR 1   2  3  4  a  r n  1 r 1 1 5  1  1  NOTE :   n   1  0     11     2     n1   0   5 GP: a  1, r   , n  5  1  0  0  1 iii  Find the quadratic equation whose roots are    4 and  2   3 5
  • 23. ii  Prove that 1     2   3   4  0 b        a 1   2  3  4  0 2 3 4 5 sum of the roots   5 OR   1  0   11     2   3   4   0 1     2   3   4  0   1 OR 1   2  3  4  a  r n  1 r 1 1 5  1  1  NOTE :   n   1  0     11     2     n1   0   5 GP: a  1, r   , n  5  1  0  0  1 iii  Find the quadratic equation whose roots are    4 and  2   3 4 2 3      4  2   3           3  4  6  7  1  3  4    2  1 5
  • 24. ii  Prove that 1     2   3   4  0 b        a 1   2  3  4  0 2 3 4 5 sum of the roots   5 OR   1  0   11     2   3   4   0 1     2   3   4  0   1 OR 1   2  3  4  a  r n  1 r 1 1 5  1  1  NOTE :   n   1  0     11     2     n1   0   5 GP: a  1, r   , n  5  1  0  0  1 iii  Find the quadratic equation whose roots are    4 and  2   3 4 2 3      4  2   3           3  4  6  7  1  3  4    2  equation is x 2  x  1  0  1 5
  • 25. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1    2 3
  • 26. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1        2 3 3
  • 27. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; (i ) Evaluate 1       3   3  1  2 3
  • 28. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3       3  1
  • 29. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3     1 1  2  3      1  1   2
  • 30. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3     1 1  2  3      1  1   2 2  2  1
  • 31. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3     1 1  2  3      1 (iii) Form the cubic equation with roots 1, 1   , 1   2  1   2 2  2  1
  • 32. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3     1 1  2  3      1 (iii) Form the cubic equation with roots 1, 1   , 1   2  z  1z 2  2     2 z  1     2   3   0  1   2 2  2  1
  • 33. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3     1 1  2  3      1 (iii) Form the cubic equation with roots 1, 1   , 1   2  z  1z 2  2     2 z  1     2   3   0  z  1z 2  z  1  0  1   2 2  2  1
  • 34. c) If  is a complex cube root of unity, use the fact that 1  ω  ω 2  0 to; 1 1 2 3  (ii ) Evaluate (i ) Evaluate 1    1  1 2 3     1 1  2  3      1 (iii) Form the cubic equation with roots 1, 1   , 1   2  z  1z 2  2     2 z  1     2   3   0  z  1z 2  z  1  0 z  z  z  z  z 1  0 z3  2z 2  2z 1  0 3 2 2  1   2 2  2  1
  • 35. d) Solve z 5  z 4  z 3  z 2  z  1  0
  • 36. d) Solve z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
  • 37. d) Solve z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6 
  • 38. d) Solve z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6  z5  z4  z3  z2 1  0
  • 39. d) Solve z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6  z5  z4  z3  z2 1  0  z  1z 5  z 4  z 3  z 2  1 0  z  1 z 6  1  0, z  1
  • 40. d) Solve z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6  z5  z4  z3  z2 1  0  z  1z 5  z 4  z 3  z 2  1 0  z  1 z 6  1  0, z  1   2 2 z  cis , cis  , cis , cis  , cis 3 3 3 3 1 3 1 3 1 3 1 3 z  i,  i,   i,   i, 1 2 2 2 2 2 2 2 2
  • 41. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer
  • 42. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer z9  1
  • 43. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis    9  k 2  z  cis   9   k  0,1,2,3,4,5,6,7,8
  • 44. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis    9  k 2  z  cis   9   z  k k  0,1,2,3,4,5,6,7,8
  • 45. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis  k  0,1,2,3,4,5,6,7,8   9  k 2  z  cis   9   z  k (ii) Prove that    2   3   4   5   6   7   8  1 z9 1  0
  • 46. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis  k  0,1,2,3,4,5,6,7,8   9  k 2  z  cis   9   z  k (ii) Prove that    2   3   4   5   6   7   8  1 z9 1  0 1     2   3   4   5   6   7   8  0 sum of roots 
  • 47. e) 1996 HSC 2 2  i sin Let   cos 9 9 (i) Show that  k is a solution of z 9  1  0, where k is an integer z9  1  2k  z  cis  k  0,1,2,3,4,5,6,7,8   9  k 2  z  cis   9   z  k (ii) Prove that    2   3   4   5   6   7   8  1 z9 1  0 1     2   3   4   5   6   7   8  0 sum of roots     2   3   4   5   6   7   8  1
  • 48.  2 4 1 (iii) Hence show that cos cos cos  9 9 9 8
  • 49.  2 4 1 (iii) Hence show that cos cos cos  9 9 9 8 9 z 1   z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 
  • 50.  2 4 1 (iii) Hence show that cos cos cos  9 9 9 8 9 z 1   z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5  2 4  2  2  z  1 z  2cos z  1   z  1  z  2cos 9 9    6 8  2   z  2cos z  1 z 2  2cos z  1  9 9    2 4  2  2  z  1 z  2cos z  1   z  1  z  2cos 9 9    8  2  2  z  z  1  z  2cos 9 z  1  
  • 51.  2 4 1 (iii) Hence show that cos cos cos  9 9 9 8 9 z 1   z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5  2 4  2  2  z  1 z  2cos z  1   z  1  z  2cos 9 9    6 8  2   z  2cos z  1 z 2  2cos z  1  9 9    2 4  2  2  z  1 z  2cos z  1   z  1  z  2cos 9 9    8  2  2  z  z  1  z  2cos 9 z  1   Let z  i 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9    i 
  • 52. 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9    i 
  • 53. 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9   2  4  8   i  1  i  i  1  2cos  2cos  2cos  9  9  9   4  i 
  • 54. 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9   2  4  8   i  1  i  i  1  2cos  2cos  2cos  9  9  9   2 4 8 cos cos 1  8cos 9 9 9 4  i 
  • 55. 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9   2  4  8   i  1  i  i  1  2cos  2cos  2cos  9  9  9   2 4 8 cos cos 1  8cos 9 9 9 2 4   cos 1  8cos   cos  9 9  9 4  i 
  • 56. 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9   2  4  8   i  1  i  i  1  2cos  2cos  2cos  9  9  9   2 4 8 cos cos 1  8cos 9 9 9 2 4   cos 1  8cos   cos  9 9  9 4  2 4 1 cos cos cos  9 9 9 8  i 
  • 57. 2  i  1   i  1  2cos 9  9 4  i  2cos 9  8   i   i   2cos 9    i  2  4  8   i  1  i  i  1  2cos  2cos  2cos  9  9  9   2 4 8 cos cos 1  8cos 9 9 9 2 4   cos 1  8cos   cos  9 9  9 4  2 4 1 cos cos cos  9 9 9 8 Cambridge: Exercise 7C; 1 to 4, 5ac, 6, 7, 8, 9, 11 Patel: Exercise 4I; 1, 3, 5 (need 4b), 7 Patel: Exercise 4J; 1 to 4, 7ac