The Argand Diagram

Complex numbers can be represented geometrically on an Argand
y (imaginary axis)
Diagram.
4
3
2
1
-4 -3 -2 -1
-1
-2
-3

1

2

3 4 x (real axis)
The Argand Diagram

Complex numbers can be represented geometrically on an Argand
y (imaginary axis)
Diagram.
4
3
A=2
2
1
A
-4 -3 -2 -1
1 2 3 4 x (real axis)
-1
-2
-3
The Argand Diagram

Complex numbers can be represented geometrically on an Argand
y (imaginary axis)
Diagram.
4
3
A=2
2
B = -3i
1
A
-4 -3 -2 -1
1 2 3 4 x (real axis)
-1
-2
-3 B
The Argand Diagram

Complex numbers can be represented geometrically on an Argand
y (imaginary axis)
Diagram.
4
3
A=2
2
B = -3i
C = -2 + i
C 1
A
-4 -3 -2 -1
1 2 3 4 x (real axis)
-1
-2
-3 B
The Argand Diagram

Complex numbers can be represented geometrically on an Argand
y (imaginary axis)
Diagram.
4
3
A=2
2
B = -3i
C = -2 + i
C 1
A
D=4-i
-4 -3 -2 -1
1 2 3 4 x (real axis)
-1
D
-2
-3 B
The Argand Diagram

Complex numbers can be represented geometrically on an Argand
y (imaginary axis)
Diagram.
4
3
A=2
NOTE: Conjugates
2
B = -3i
are reflected in the
E
real (x) axis
C = -2 + i
C 1
A
D=4-i
-4 -3 -2 -1
1 2 3 4 x (real axis)
E=4+i
-1
D
-2
-3 B
The Argand Diagram

Complex numbers can be represented geometrically on an Argand
y (imaginary axis)
Diagram.
4
3
A=2
NOTE: Conjugates
2
B = -3i
are reflected in the
E
real (x) axis
C = -2 + i
F
C 1
A
D=4-i
-4 -3 -2 -1
1 2 3 4 x (real axis)
E=4+i
-1
D
F = -(4 - i)
-2
= - 4 + i NOTE:
Opposites are -3 B
rotated 180°
The Argand Diagram

Complex numbers can be represented geometrically on an Argand
y (imaginary axis)
Diagram.
4G
NOTE: Multiply
3
A=2
NOTE: Conjugates
by i results in
2
B = -3i 90° rotation
are reflected in the
E
real (x) axis
C = -2 + i
F
C 1
A
D=4-i
-4 -3 -2 -1
1 2 3 4 x (real axis)
E=4+i
-1
D
F = -(4 - i)
-2
= - 4 + i NOTE:
G = i(4 - i) Opposites are -3 B
rotated 180°
= 1+4i
The Argand Diagram

Complex numbers can be represented geometrically on an Argand
y (imaginary axis)
Diagram.
4G
NOTE: Multiply
3
A=2
NOTE: Conjugates
by i results in
2
B = -3i 90° rotation
are reflected in the
E
real (x) axis
C = -2 + i
F
C 1
A
D=4-i
-4 -3 -2 -1
1 2 3 4 x (real axis)
E=4+i
-1
D
F = -(4 - i)
-2
= - 4 + i NOTE:
G = i(4 - i) Opposites are -3 B
rotated 180°
= 1+4i
Every complex number can be represented by a unique
point on the Argand Diagram.
Locus in Terms of Complex
Numbers
Horizontal and Vertical Lines
Locus in Terms of Complex
Numbers
Horizontal and Vertical Lines
y
c

x

Im z   c
Locus in Terms of Complex
Numbers
Horizontal and Vertical Lines

y
c

y

x
Im z   c

k

x
Re z   k
y
R

Circles

zz  R 2

R

R
R

x
y
R

Circles

zz  R 2

R

R

x

R
e.g.Find and describe the locus of points in the Argand diagram;
(i)  z  4  i  z  4  i   49
y
R

Circles

zz  R 2

R

R

x

R
e.g.Find and describe the locus of points in the Argand diagram;
(i)  z  4  i  z  4  i   49
z z  (4  i ) z  (4  i ) z  (4  i )(4  i )  49
y
R

Circles

zz  R 2

R

R

x

R
e.g.Find and describe the locus of points in the Argand diagram;
(i)  z  4  i  z  4  i   49
z z  (4  i ) z  (4  i ) z  (4  i )(4  i )  49
z z  4( z  z )  iz  iz  (4  i )(4  i )  49
z z  4( z  z )  iz  iz  (4  i )(4  i )  49





z z  4( z  z )  iz  iz  (4  i )(4  i )  49
x 2  y 2  8 x  2 y  16  1  49
y
R

Circles

zz  R 2

R

R

x

R
e.g.Find and describe the locus of points in the Argand diagram;
(i)  z  4  i  z  4  i   49
z z  (4  i ) z  (4  i ) z  (4  i )(4  i )  49
z z  4( z  z )  iz  iz  (4  i )(4  i )  49
z z  4( z  z )  iz  iz  (4  i )(4  i )  49





z z  4( z  z )  iz  iz  (4  i )(4  i )  49
x 2  y 2  8 x  2 y  16  1  49

x 2  8 x  16  y 2  2 y  1  49
y
R

Circles

zz  R 2

R

R

x

R
e.g.Find and describe the locus of points in the Argand diagram;
(i)  z  4  i  z  4  i   49
z z  (4  i ) z  (4  i ) z  (4  i )(4  i )  49

x 2  8 x  16  y 2  2 y  1  49

z z  4( z  z )  iz  iz  (4  i )(4  i )  49

 x  4    y  1

z z  4( z  z )  iz  iz  (4  i )(4  i )  49





z z  4( z  z )  iz  iz  (4  i )(4  i )  49
x 2  y 2  8 x  2 y  16  1  49

2

2

 49
y
R

Circles

zz  R 2

R

R

x

R
e.g.Find and describe the locus of points in the Argand diagram;
(i)  z  4  i  z  4  i   49
z z  (4  i ) z  (4  i ) z  (4  i )(4  i )  49

x 2  8 x  16  y 2  2 y  1  49

z z  4( z  z )  iz  iz  (4  i )(4  i )  49

 x  4    y  1

z z  4( z  z )  iz  iz  (4  i )(4  i )  49





z z  4( z  z )  iz  iz  (4  i )(4  i )  49
x 2  y 2  8 x  2 y  16  1  49

2

2

Locus is a circle
centre :  4 ,  1
radius : 7 units

 49
y
R

Circles

 z    z     R 2
zz  R 2

R

R

x

Locus is a circle
centre ω
radius R

R

e.g.Find and describe the locus of points in the Argand diagram;
(i)  z  4  i  z  4  i   49
z z  (4  i ) z  (4  i ) z  (4  i )(4  i )  49

x 2  8 x  16  y 2  2 y  1  49

z z  4( z  z )  iz  iz  (4  i )(4  i )  49

 x  4    y  1

z z  4( z  z )  iz  iz  (4  i )(4  i )  49





z z  4( z  z )  iz  iz  (4  i )(4  i )  49
x 2  y 2  8 x  2 y  16  1  49

2

2

Locus is a circle
centre :  4 ,  1
radius : 7 units

 49
1 1
(ii )   1
z z
1 1
(ii )   1
z z
z  z  zz
1 1
(ii )   1
z z
z  z  zz
2x  x 2  y 2
1 1
(ii )   1
z z
z  z  zz
2x  x 2  y 2

x2  2 x  y 2  0
( x  1) 2  y 2  1
1 1
(ii )   1
z z
z  z  zz
2x  x 2  y 2

x2  2 x  y 2  0
( x  1) 2  y 2  1

Locus is a circle
centre: 1,0 
radius: 1 unit
1 1
(ii )   1
z z
z  z  zz

Locus is a circle
centre: 1,0 
radius: 1 unit

2x  x 2  y 2

x2  2 x  y 2  0

y

( x  1) 2  y 2  1
1

2 x
1 1
(ii )   1
z z
z  z  zz

Locus is a circle
centre: 1,0 
radius: 1 unit

2x  x 2  y 2

x2  2 x  y 2  0

y

( x  1) 2  y 2  1

excluding the point (0,0)
1

2 x
1 1
(ii )   1
z z
z  z  zz

Locus is a circle
centre: 1,0 
radius: 1 unit

2x  x 2  y 2

x2  2 x  y 2  0

y

( x  1) 2  y 2  1

excluding the point (0,0)
1

2 x

Cambridge: Exercise 1C; 1 ace, 2 bdf, 3, 4 ace, 5 bdfh, 6,
10 to 15

X2 t01 03 argand diagram (2013)

  • 1.
    The Argand Diagram Complexnumbers can be represented geometrically on an Argand y (imaginary axis) Diagram. 4 3 2 1 -4 -3 -2 -1 -1 -2 -3 1 2 3 4 x (real axis)
  • 2.
    The Argand Diagram Complexnumbers can be represented geometrically on an Argand y (imaginary axis) Diagram. 4 3 A=2 2 1 A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 -2 -3
  • 3.
    The Argand Diagram Complexnumbers can be represented geometrically on an Argand y (imaginary axis) Diagram. 4 3 A=2 2 B = -3i 1 A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 -2 -3 B
  • 4.
    The Argand Diagram Complexnumbers can be represented geometrically on an Argand y (imaginary axis) Diagram. 4 3 A=2 2 B = -3i C = -2 + i C 1 A -4 -3 -2 -1 1 2 3 4 x (real axis) -1 -2 -3 B
  • 5.
    The Argand Diagram Complexnumbers can be represented geometrically on an Argand y (imaginary axis) Diagram. 4 3 A=2 2 B = -3i C = -2 + i C 1 A D=4-i -4 -3 -2 -1 1 2 3 4 x (real axis) -1 D -2 -3 B
  • 6.
    The Argand Diagram Complexnumbers can be represented geometrically on an Argand y (imaginary axis) Diagram. 4 3 A=2 NOTE: Conjugates 2 B = -3i are reflected in the E real (x) axis C = -2 + i C 1 A D=4-i -4 -3 -2 -1 1 2 3 4 x (real axis) E=4+i -1 D -2 -3 B
  • 7.
    The Argand Diagram Complexnumbers can be represented geometrically on an Argand y (imaginary axis) Diagram. 4 3 A=2 NOTE: Conjugates 2 B = -3i are reflected in the E real (x) axis C = -2 + i F C 1 A D=4-i -4 -3 -2 -1 1 2 3 4 x (real axis) E=4+i -1 D F = -(4 - i) -2 = - 4 + i NOTE: Opposites are -3 B rotated 180°
  • 8.
    The Argand Diagram Complexnumbers can be represented geometrically on an Argand y (imaginary axis) Diagram. 4G NOTE: Multiply 3 A=2 NOTE: Conjugates by i results in 2 B = -3i 90° rotation are reflected in the E real (x) axis C = -2 + i F C 1 A D=4-i -4 -3 -2 -1 1 2 3 4 x (real axis) E=4+i -1 D F = -(4 - i) -2 = - 4 + i NOTE: G = i(4 - i) Opposites are -3 B rotated 180° = 1+4i
  • 9.
    The Argand Diagram Complexnumbers can be represented geometrically on an Argand y (imaginary axis) Diagram. 4G NOTE: Multiply 3 A=2 NOTE: Conjugates by i results in 2 B = -3i 90° rotation are reflected in the E real (x) axis C = -2 + i F C 1 A D=4-i -4 -3 -2 -1 1 2 3 4 x (real axis) E=4+i -1 D F = -(4 - i) -2 = - 4 + i NOTE: G = i(4 - i) Opposites are -3 B rotated 180° = 1+4i Every complex number can be represented by a unique point on the Argand Diagram.
  • 10.
    Locus in Termsof Complex Numbers Horizontal and Vertical Lines
  • 11.
    Locus in Termsof Complex Numbers Horizontal and Vertical Lines y c x Im z   c
  • 12.
    Locus in Termsof Complex Numbers Horizontal and Vertical Lines y c y x Im z   c k x Re z   k
  • 13.
    y R Circles zz  R2 R R R x
  • 14.
    y R Circles zz  R2 R R x R e.g.Find and describe the locus of points in the Argand diagram; (i)  z  4  i  z  4  i   49
  • 15.
    y R Circles zz  R2 R R x R e.g.Find and describe the locus of points in the Argand diagram; (i)  z  4  i  z  4  i   49 z z  (4  i ) z  (4  i ) z  (4  i )(4  i )  49
  • 16.
    y R Circles zz  R2 R R x R e.g.Find and describe the locus of points in the Argand diagram; (i)  z  4  i  z  4  i   49 z z  (4  i ) z  (4  i ) z  (4  i )(4  i )  49 z z  4( z  z )  iz  iz  (4  i )(4  i )  49 z z  4( z  z )  iz  iz  (4  i )(4  i )  49   z z  4( z  z )  iz  iz  (4  i )(4  i )  49 x 2  y 2  8 x  2 y  16  1  49
  • 17.
    y R Circles zz  R2 R R x R e.g.Find and describe the locus of points in the Argand diagram; (i)  z  4  i  z  4  i   49 z z  (4  i ) z  (4  i ) z  (4  i )(4  i )  49 z z  4( z  z )  iz  iz  (4  i )(4  i )  49 z z  4( z  z )  iz  iz  (4  i )(4  i )  49   z z  4( z  z )  iz  iz  (4  i )(4  i )  49 x 2  y 2  8 x  2 y  16  1  49 x 2  8 x  16  y 2  2 y  1  49
  • 18.
    y R Circles zz  R2 R R x R e.g.Find and describe the locus of points in the Argand diagram; (i)  z  4  i  z  4  i   49 z z  (4  i ) z  (4  i ) z  (4  i )(4  i )  49 x 2  8 x  16  y 2  2 y  1  49 z z  4( z  z )  iz  iz  (4  i )(4  i )  49  x  4    y  1 z z  4( z  z )  iz  iz  (4  i )(4  i )  49   z z  4( z  z )  iz  iz  (4  i )(4  i )  49 x 2  y 2  8 x  2 y  16  1  49 2 2  49
  • 19.
    y R Circles zz  R2 R R x R e.g.Find and describe the locus of points in the Argand diagram; (i)  z  4  i  z  4  i   49 z z  (4  i ) z  (4  i ) z  (4  i )(4  i )  49 x 2  8 x  16  y 2  2 y  1  49 z z  4( z  z )  iz  iz  (4  i )(4  i )  49  x  4    y  1 z z  4( z  z )  iz  iz  (4  i )(4  i )  49   z z  4( z  z )  iz  iz  (4  i )(4  i )  49 x 2  y 2  8 x  2 y  16  1  49 2 2 Locus is a circle centre :  4 ,  1 radius : 7 units  49
  • 20.
    y R Circles  z   z     R 2 zz  R 2 R R x Locus is a circle centre ω radius R R e.g.Find and describe the locus of points in the Argand diagram; (i)  z  4  i  z  4  i   49 z z  (4  i ) z  (4  i ) z  (4  i )(4  i )  49 x 2  8 x  16  y 2  2 y  1  49 z z  4( z  z )  iz  iz  (4  i )(4  i )  49  x  4    y  1 z z  4( z  z )  iz  iz  (4  i )(4  i )  49   z z  4( z  z )  iz  iz  (4  i )(4  i )  49 x 2  y 2  8 x  2 y  16  1  49 2 2 Locus is a circle centre :  4 ,  1 radius : 7 units  49
  • 21.
    1 1 (ii )  1 z z
  • 22.
    1 1 (ii )  1 z z z  z  zz
  • 23.
    1 1 (ii )  1 z z z  z  zz 2x  x 2  y 2
  • 24.
    1 1 (ii )  1 z z z  z  zz 2x  x 2  y 2 x2  2 x  y 2  0 ( x  1) 2  y 2  1
  • 25.
    1 1 (ii )  1 z z z  z  zz 2x  x 2  y 2 x2  2 x  y 2  0 ( x  1) 2  y 2  1 Locus is a circle centre: 1,0  radius: 1 unit
  • 26.
    1 1 (ii )  1 z z z  z  zz Locus is a circle centre: 1,0  radius: 1 unit 2x  x 2  y 2 x2  2 x  y 2  0 y ( x  1) 2  y 2  1 1 2 x
  • 27.
    1 1 (ii )  1 z z z  z  zz Locus is a circle centre: 1,0  radius: 1 unit 2x  x 2  y 2 x2  2 x  y 2  0 y ( x  1) 2  y 2  1 excluding the point (0,0) 1 2 x
  • 28.
    1 1 (ii )  1 z z z  z  zz Locus is a circle centre: 1,0  radius: 1 unit 2x  x 2  y 2 x2  2 x  y 2  0 y ( x  1) 2  y 2  1 excluding the point (0,0) 1 2 x Cambridge: Exercise 1C; 1 ace, 2 bdf, 3, 4 ace, 5 bdfh, 6, 10 to 15